
 
A Probabilistic Method for the Computation  

of Testability of RTL Constructs 
 

José M. Fernandes, Marcelino B. Santos, Arlindo L. Oliveira, João C. Teixeira 
IST / INESC-ID, R. Alves Redol, 9, 1000-029 Lisboa, Portugal 

 
 
Abstract 
 
Validation of RTL descriptions remains one of the principal 
bottlenecks in the circuit design process. Random simulation 
based methods for functional validation suffer from 
fundamental limitations and may be inappropriate or too 
expensive. In fact, for some circuits, a large number of 
vectors is required in order to make the circuit reach hard to 
test constructs and obtain accurate values for their 
testability. In this work, we present a static, non-simulation 
based, method for the determination of the controllability of 
RTL constructs that is efficient and gives accurate feedback 
to the designers in what regards the presence of hard to 
control constructs in their RTL code. The method takes as 
input a Verilog RTL description, solves the Chapman-
Kolmogorov equations that describe the steady-state of the 
circuit and outputs the computed values for the 
controllability of the RTL constructs. To avoid the 
exponential blow-up that results from writing one equation 
for each circuit state and solving the resulting system of 
equations, an approximation method is used. We present 
results showing that the approximation is effective and 
describe how the method can be used to bias a random test 
generator in order to achieve higher coverage using a 
smaller number of vectors. 
 
 
1. Introduction 
 
The steady growth in complexity of integrated circuits and 
the need to reduce the time to market of products has 
contributed to increase the percentage of time spent in circuit 
verification. This verification is important both in the design 
phase (functional verification) and in the post- manufacturing 
test phase (defect testing). 
 
In both cases, the existence of appropriate test vectors is 
critical to ensure defect free circuits and to avoid the need for 
costly re-design cycles.  
 
There are essentially two approaches for the verification of 
RTL descriptions: simulation based methods and formal 
verification methods. Simulation based methods try to 
exercise all parts of the circuits by using a high number of 
vectors, obtained either by using knowledge of the design or 
by using some pseudo-random test vector generator. Formal 
based methods can be used to verify RTL descriptions 

against original specifications of the circuit, sometimes 
obtained from behavioral descriptions. 
 
Simulation based method require the existence of appropriate 
test vectors. Regrettably, automatic generation of test vectors 
at higher abstraction levels [2] for complex designs remains 
an open problem, although significant advances have been 
made in this field [5][6]. The key problem is that random 
vectors don’t exercise adequately the hard to reach 
conditions that lead to the execution of the dark spots in the 
design, and efficient algorithms for sequential test pattern 
generation are unlikely to exist since the problem is known 
to be PSPACE-complete [7]. 
 
Verification based approaches, on the other hand, require the 
existence of formal higher level specifications that are not 
always available. Furthermore, algorithms for formal 
verification of sequential circuits are also inherently 
complex, although advances in heuristics have made them 
applicable in a wider range of designs [10]. 
 
The present work addresses this problem by proposing an 
approximate statistic modeling approach that obtains 
accurate estimates of the controllability (and, in future 
phases, of the observability) of RTL constructs. These 
estimates can be used to improve the design and test 
processes in a number of ways.  
 
In the design phase, they can be used to inform the designer 
that a given construct is not being adequately tested and that 
it may require changes or some other manual intervention. 
Our approach is specially appropriate for this type of 
intervention, since there is a very close connection between 
the RTL constructs and the internal model signals whose 
testability is being evaluated. At this level, it can also be used 
to bias the generation of randomized tests, in order to achieve 
adequate functional coverage of hard to test constructs. 
 
At the defect testing phase, these testability metrics can be 
used in a number of ways to improve the design and test 
processes. Test preparation cost can be reduced if designs for 
testability (DFT) techniques are used before the test 
generation phase. These DFT techniques, like built-in self-
test (BIST), test point insertion (TPI) or scan can have their 
impact on the circuit minimized in terms of area overhead 
and performance degradation if testability metrics are used to 
guide them.  
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The use of testability measures to direct the generation of 
randomized vectors, either by biasing the random number 
generators [13] or by considering the existence of bit masks 
[11] has also been proposed. This represents another 
significant application of the techniques proposed in this 
work. 
 
Our approach is based on the statistical modeling proposed 
by Fallah et al. [3][4] but addresses the controllability of 
structures directly at the RTL level, while the original work 
accepts a post-synthesis logic level description. In this way, 
the feedback given to the designer is easier to use, since 
testability results are given in terms of RTL constructs and 
not in terms of post-synthesis logic nodes. 
 
2. Definitions and Basic Concepts 
 
During the design process several abstraction levels are 
normally used to achieve rapid development of digital 
circuits. From the algorithmic to the physical level, design 
testability assessment is an important issue. Accurate 
assessment of the testability of a given part of a design is 
important not only because it avoids problems in the 
production testing phase, but also because it makes sure that 
the design is being properly tested from a functional point of 
view.  In particular, the existence of dark spots in the design, 
i.e., blocks or constructs that are not being properly exercised 
is to be avoided in an agile development process.  
 
In this work, we model the behavior or the RTL description 
of a circuit using a discrete time Markov chain. For the most 
generic case, that of sequential circuits, we are interested in 
the circuit behavior in the steady-state. This is important 
because, for sequential circuits (e.g., counters, shift-registers, 
control systems), many constructs only become active and 
exercisable when a given set of conditions is met. By 
computing the steady-state behavior of a circuit, we make 
sure that the probabilities of occurrence of events are 
calculated with precision, even if the events are rare or 
depend on very specific input conditions.  
 
Simulation based methods need to use a very high 
(sometimes prohibitively high) number of vectors to make 
sure that even rare events occur a sufficient number of times 
to obtain accurate measures of the testability of the 
constructs. By using a statistical approach, we avoid the need 
to use a very high number of vectors, while still obtaining 
accurate estimates, even for rare events. The method 
described here solves the Chapman-Kolmogorov equations 
that describe the steady state behavior of the circuit, and 
calculates the probability associated with each state of the 
Markov chain. To reduce the computation effort and cope 
with large designs we use symbolic representation methods 
that describe the circuit function using Binary Decision 
Diagrams (BDD).  
 

Figure 1 represents the general scheme of a generic 
synchronous sequential circuit. Its behavior can be 
represented by a transition graph, modeled by a tuple 
( )λδ ,,,,, 0qQ∆Σ  where 0≠Σ is a finite set of input symbols, 

0≠∆ is a finite set of output symbols, is a finite set of 
states, 

0≠Q
Qq ∈0 is the initial reset state, Q→Q Σ×:δ is the 

transition function, and ∆→Σ×Q:λ is the output function. 
 

 
Fig. 1:  Scheme of a generic synchronous sequential circuit 

 
Under rather general assumptions, the system can be 
modeled by a Markov chain and the equations that describe 
the steady state probabilities of each state in the transition 
graph (the Chapman-Kolmogorov equations) have a unique 
solution. 
 
Consider a binary variable ( )nxxxfy ,...,2,1=
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represented in terms in its inputs.  The positive and negative 
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By using a dynamic programming approach and traversing 
the BDD in a bottom-up fashion, the static probabilities can 
be computed in time linear on the size of the corresponding 
BDD. We will use this property of BDD representations to 
efficiently compute the probability of a node in the circuit 
being in a given state. From this probability, the computation 
of the controlability of that node is straightforward.  
    
 3. Parsing and Analysis of RTL Description 
 
The proposed probabilistic analysis tool, named ASCOPA – 
Automatic Static Controlability/Observability Probabilistic 
Analysis tool, accepts as entry an HDL Verilog description.  
 

 



The Verilog subset is based on the IEEE 1364 1995 and 
IEEE 1364.1 1999 norms [16][17]. The system can process a 
commonly accepted verifiable subset of Verilog keywords 
that includes the most frequently used control structures and 
operators. The parsing process was implemented using a 
customized version of a research tool [1], based on widely 
available parsing tools. In the sequence we describe briefly 
the steps that are performed to process a Verilog description 
into an internal implicit representation of the state transition 
graph of the circuit. 
  
From the Verilog parsing, the Control and Data Flow Graphs 
are generated. Each node of the Control Flow Graph (CFG) 
is associated with a Data Flow Graph (DFG).  The 
description can have a hierarchy of several module 
instantiation statements. Figure 2 represents an example of a 
CFG for a Verilog description for one module instance with 
two concurrent statements. 
 

 
 

Fig. 2: Behavioral Verilog Description and CFG’s 
 
By traversing this data representation, a module  instantiation 
graph tree is build. The same module can be instantiated 
more than one time. For each module instance, a new context 
is created for the variables of that instance. Next, and only 
once for each description module, the CFG´s for the 
concurrent statements are built, preserving the hierarchical 
structure of the behavioral description.  In Figure 2 two 
CFG’s are generated: one for the concurrent assign 
statement, and another for the always statement. For each 
module instance variable (Net or Register) the variable 
propagation and influence lists are created by traversing the 
module instantiation graph tree in a hierarchical way. The 
variables are then associated with an hierarchical name. 
 
Each node of the CFG is associated with a Verilog statement. 
Two types of nodes are considered: arithmetic expression 
nodes and Boolean expression nodes. Each node corresponds 
to a particular Verilog construct in the code, such as an IF, 
CASE or an Always control structure. 

By traversing the statements of the Verilog description, every 
CFG is traversed in breadth first order and a BDD 
representation is built for each bit of each variable. In this 
way, every variable (Net, Register or port) of every module 
instance is represented by an array of Boolean functions, one 
for each bit of the variable, represented as BDDs in terms of 
the primary input and state variables. Ports are considered 
Nets, in what concerns expression evaluation crossing the 
borders of an instance. A variable dependence graph (at the 
bit level) is created concurrently while traversing the Verilog 
description.  
 
During the generation of the Boolean function 
representation, each CFG node of a specific instance 
becomes associated with an array pointing to all the variables 
of that instance that have been evaluated on that path. For the 
moment, two possible situations that involves expression 
evaluation are considered, depending on the CFG node type: 
 
Assignment nodes have a CFG associated with the 
expression in the right-hand side (RHS) of the statement that 
depends on the individual functions associated with every 
variable (Net or Register) of the RHS expression, After node 
evaluation, the array associated with every LHS variable bit 
is updated with the new values.  
Condition nodes have a CFG associated with the condition 
expression that depends on the individual functions 
associated with every variable (Net or Register) bit of the 
condition expression, that were calculated in the predecessor 
nodes. Two types of condition nodes are considered: 
IF nodes, in which the condition that affects every 
assignment inside the “then” path is the complement of the 
“else” path condition, if it exists.  
CASETAG nodes in which the condition is computed by the 
bit-wise XNOR between the CASE condition and the 
CASETEG condition.  
 
The same bit variable may be assigned in one or more 
condition paths. If a bit is not assigned in any of  the 
condition paths, or if the condition path is inexistent, it must 
keep the value as it was before the IF or CASE clause for the 
non assigned or inexistent paths. This is the case of the CFG 
for the IF statement in Figure 2.  If a bit of a Net variable 
includes an expression that requires evaluation (either RHS 
of an assignment or a condition) and it has not been assigned 
yet, it must be subject to a future composition in every 
evaluated left-hand side (LHS) bit expression or condition 
that depends on it. In this way, every Net or Register 
variable, after the BDD generation process, becomes a 
function only of primary inputs and Register variables. It is 
important to stress that the data structures are generated 
without loosing the hierarchical information, keeping all the 
time a direct connection to the lines of the RTL description.  
 
This makes it possible to relate directly the controllability of 
internal nodes with the original RTL constructs. 

 



4. Probabilistic Analysis of Symbolic Networks 
 
After processing the Verilog description as described in the 
previous section, it is possible to proceed to a symbolic 
probabilistic analysis of the circuit.  
 
Many circuits of interest described at the register transfer 
level exhibit structures that lead to very deep state transition 
graphs. For instance, a 16 bit counter with a reset signal 
cannot be reasonably tested by random patterns, since the 
reset signal needs to be held inactive for a long period in 
order to let the count proceed. Structures like this lead to 
hard to test parts of the RTL description, and can only be 
adequately tested if the system automatically identifies the 
hard to test constructs and identifies the reasons for their lack 
of controllability or observability. For instance, in this case, 
the terminal count signal, and any parts of the RTL code that 
depend on that signal, will be not be well tested unless the 
reset signal is actuated with very low probability and/or 
appropriate test points are inserted in the circuit. 
 
The probabilistic method can be used not only to compute 
the controllability and observability of internal signals but 
also to identify which signals (or combinations of signals) 
should be held preferentially at specific values to achieve 
higher levels of testability of the hard to test points. 
 
Consider a circuit with N registers. The state space 

 to explore has, in the worst case,  { 110 ,...,, −= MqqqQ
N

}
M 2=
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 possible states. Assume that the system is in state 
. Under the Markov assumption, the transition between 

state  and  occurs with probability , under some 
specific, time invariant, input distribution. Then, in steady 
state, the probability of state  is given by: 
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The direct solution of this system of M equations (the 
Chapman-Kolmogorov equations) is not feasible for the 
majority of circuits of interest, that have in general more than 
20 state variables, although special purpose techniques can 
be applied to solve them exactly for some circuits with more 
than states [8]. 302
Since exact solution of this system of equations is 
impracticable for N greater than 20, we have followed an 
approximation method that assumes independence of the 
state lines, ignoring correlations between them. Although this 
is known to be an approximation that, in some cases,  shows 
significant deviations from the exact values it reduces 
exponentially the computation requirements, since only N 
values need to be computed instead of 2N.  Consider that 
state  is encoded with values in the state lines. 
Under the state line independence assumption [9][14], the 
probability of the system being in state  is given by 
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In this way, the resolution of the Chapman-Kolmogorov 
equations (2) is reduced to the problem of finding the 
solution of a non-linear system of N equations, one for each 
state line. The state lines are themselves Boolean 
functions of the primary inputs, , and the previous values 
of the state lines, : 

  ,, 21 rr
  … 

,, 21 rr     (3) 

In terms of probabilities, this can written as 

)),,..., 1 NL rx   
                            …  

)),,..., NL rx      (4) 

The value of the right hand sides in equation (4) can be 
readily computed from the BDD representations of the next 
state variables, obtained as described in section 3, given 
values for  (obtained from the previous step 
computation of ) and . In steady state, the 
probability of the next state variables is equal to that of the 
previous state variables. 

)js )l
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The set of equations (4) is solved using a fixed point method, 
which, in this case, corresponds to the Picard-Peano method. 
Starting with an initial value for the latch probabilities , 
the process iterates the application of expressions (4) until a 
fixed point (5) is reached, where the differences in 
probability of the state lines between two consecutive 
iterations falls below a threshold. Alternatively, this non-
linear system of equations can be solved using the Newton-
Raphson method. Once the values of  are known, the 
controllability of a circuit node to 0 and to 1 is given by: 

ip

ip
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For the example of Fig. 2, Figure 3 represents the Markov 
chain with the transition probabilities between the states of 
the circuit, under a uniform distribution of the inputs.  
 

 
Figure 3: Markov chain for the example circuit 

 



This chain is associated with the transition matrix 
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which, in this case,  gives exactly the values of the state 
probabilities (since there is only one register, ) 
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The controllability of circuit nodes under the assumptions of 
uniform distribution of the inputs (and the RTL constructs 
that they correspond to) can now be directly computed. For 
example, the computation of  C using expressions (6) 
and (1), in this case, is equivalent to the computation of: 
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The existence of an implicit closed form expression that 
gives the controllability of an RTL construct as a function of 
the probabilities of the input signals opens the possibility of 
changing the test procedure in one of the ways addressed in 
section 1. In this particular case, if one is interested in the 
somewhat harder to test case of the output stuck at 0, this 
result leads to the indication that the probability of variable z 
should be increased above its default value of 0.5. 
 
5. Results 
 
The ITC99 benchmark circuits [15] were used to evaluate the 
precision of the controllability measures obtained by the new 
tool. A prototype of the developed system was integrated 
within the SIS framework [12] and used to test the approach.  
 
In order to obtain the simulation based testability metrics, the 
PLI (Programming Language Interface) of a commercial 
Verilog simulator was used to implement a task that 
evaluates controllability and detectability. This task reports 
the number of activations and detections of each LSA fault. 
Faults are injected in all bits of the RTL description. When 
using a large number of random vectors, the number of 
activations of the LSA0/1 fault is proportional to the 
controllability to 1/0. For the benchmark circuits used in 
these experiments the simulation-based controllability was 
calculated as the average of the controllability obtained with 
five sets of 5000 random vectors. 
 
Table 1 shows the percentage of nodes for each circuit that 
show deviations in the controllability values, when compared 
with the values obtained by random simulation with 5000 
vectors. 

 
Table 1: Percentage of nodes with controllability deviations 

within the indicated ranges 
 
% Dev b01 b02 b03 B04 B06 b09 b10 b13 

<0.1 85,7 100,0 70,6 72,7 54,5 96,6 74,2 76,2 
[0.1,0.3] 14,3 0,0 29,4 27,3 45,5 3,4 25,8 14,3 
[0.3,0.5] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 6,3 
[0.5,0.7] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,2 
[0.7,0.9] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

>0.9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
 

Figure 4 shows a graphic representation of the results in 
Table 1 and makes it clear that a very small number of nodes 
show significant discrepancies. Note that the deviations 
obtained may have as origin the approximations made in this 
approach, but may also result from imprecise results obtained 
from the limited length simulation runs.  
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Figure 4: Percentage of nodes with deviations in range. 

 
5.1 Automatic Mask Generation 
 
The automatic mask generation tool [11] was used to 
generate test masks for all the nodes of the benchmarks with 
probability value higher than 0,95 (low controllability to “0”) 
and lower than 0,05 (low controllability to “1”). The second 
column of Table 2 shows the number of nodes with low 
controllability for each circuit. This table shows also the 
number of registers (#regs) and the number of primary inputs 
(#PIs).  

 
Table 2: Number of registers that require partial-scan. 

 

Circuit
#bits with 
Contr<0,05 #regs #Pis 

#masked 
registers

#masked 
PIs 

b03 15 30 6 9 1
b04 10 86 13 7 1
b06 1 9 4 3 2
b09 22 28 3 19 1
b10 9 20 13 4 3
b13 25 63 12 25 1

 

 



For each one of the targeted bits, a set of masks was 
generated that force specific values on the register and 
primary input variables. The last two columns of Table 2 
show the number of registers and primary inputs that occur at 
least once in one of the generated masks.   
Control of the targeted nodes can be achieved including a 
partial-scan chain with the registers forced by masks. The 
required length for each chain, in these examples, is in 
average only 30% of the required length for full-scan. 
 

Table 3: Masks for control of uscite[1] in b06 
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x 1 x x x x x x Xxx x 
x 0 x x x x x x 000 x 
1 0 x x x x x x 001 x 
0 0 x x x x x x 001 x 

. 
Table 3 shows four masks that were automatically generated 
in order to enable controllability of four possible nodes for 
uscite[1] in circuit b06. Besides the clock input this circuit 
has three additional primary inputs: eql, reset and cont_eql. 
The generated masks require control over two of them. From 
the 9 registers of b06 only three of them have to be included 
in a partial-scan chain in order to ensure controllability of 
uscite[1]. 
 
6. Conclusions and Future Work 
 
In this work we presented the first non-simulation based 
approach that efficiently computes controllability of RTL 
constructs as a function of the probability distribution at the 
inputs. The approach uses a simplifying assumption 
regarding the probability of states in the steady state that has 
been shown to be efficient and effective in the computation 
of the state probabilities and the testability measures of 
constructs in the Verilog description.  
 
This ability to obtain a precise controllability measure of 
RTL constructs can be used in an effective way to improve 
the testability of the design. In the immediate future work, 
we will apply the system to improve BIST systems, by 
modifying the probabilities of input signals in order to 
improve the testability of the difficult to test parts. 
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