

A Probabilistic Method for the Computation

of Testability of RTL Constructs

José M. Fernandes, Marcelino B. Santos, Arlindo L. Oliveira, João C. Teixeira
IST / INESC-ID, R. Alves Redol, 9, 1000-029 Lisboa, Portugal

Abstract

Validation of RTL descriptions remains one of the principal
bottlenecks in the circuit design process. Random simulation
based methods for functional validation suffer from
fundamental limitations and may be inappropriate or too
expensive. In fact, for some circuits, a large number of
vectors is required in order to make the circuit reach hard to
test constructs and obtain accurate values for their
testability. In this work, we present a static, non-simulation
based, method for the determination of the controllability of
RTL constructs that is efficient and gives accurate feedback
to the designers in what regards the presence of hard to
control constructs in their RTL code. The method takes as
input a Verilog RTL description, solves the Chapman-
Kolmogorov equations that describe the steady-state of the
circuit and outputs the computed values for the
controllability of the RTL constructs. To avoid the
exponential blow-up that results from writing one equation
for each circuit state and solving the resulting system of
equations, an approximation method is used. We present
results showing that the approximation is effective and
describe how the method can be used to bias a random test
generator in order to achieve higher coverage using a
smaller number of vectors.

1. Introduction

The steady growth in complexity of integrated circuits and
the need to reduce the time to market of products has
contributed to increase the percentage of time spent in circuit
verification. This verification is important both in the design
phase (functional verification) and in the post- manufacturing
test phase (defect testing).

In both cases, the existence of appropriate test vectors is
critical to ensure defect free circuits and to avoid the need for
costly re-design cycles.

There are essentially two approaches for the verification of
RTL descriptions: simulation based methods and formal
verification methods. Simulation based methods try to
exercise all parts of the circuits by using a high number of
vectors, obtained either by using knowledge of the design or
by using some pseudo-random test vector generator. Formal
based methods can be used to verify RTL descriptions

against original specifications of the circuit, sometimes
obtained from behavioral descriptions.

Simulation based method require the existence of appropriate
test vectors. Regrettably, automatic generation of test vectors
at higher abstraction levels [2] for complex designs remains
an open problem, although significant advances have been
made in this field [5][6]. The key problem is that random
vectors don’t exercise adequately the hard to reach
conditions that lead to the execution of the dark spots in the
design, and efficient algorithms for sequential test pattern
generation are unlikely to exist since the problem is known
to be PSPACE-complete [7].

Verification based approaches, on the other hand, require the
existence of formal higher level specifications that are not
always available. Furthermore, algorithms for formal
verification of sequential circuits are also inherently
complex, although advances in heuristics have made them
applicable in a wider range of designs [10].

The present work addresses this problem by proposing an
approximate statistic modeling approach that obtains
accurate estimates of the controllability (and, in future
phases, of the observability) of RTL constructs. These
estimates can be used to improve the design and test
processes in a number of ways.

In the design phase, they can be used to inform the designer
that a given construct is not being adequately tested and that
it may require changes or some other manual intervention.
Our approach is specially appropriate for this type of
intervention, since there is a very close connection between
the RTL constructs and the internal model signals whose
testability is being evaluated. At this level, it can also be used
to bias the generation of randomized tests, in order to achieve
adequate functional coverage of hard to test constructs.

At the defect testing phase, these testability metrics can be
used in a number of ways to improve the design and test
processes. Test preparation cost can be reduced if designs for
testability (DFT) techniques are used before the test
generation phase. These DFT techniques, like built-in self-
test (BIST), test point insertion (TPI) or scan can have their
impact on the circuit minimized in terms of area overhead
and performance degradation if testability metrics are used to
guide them.

1530-1591/04 $20.00 (c) 2004 IEEE

The use of testability measures to direct the generation of
randomized vectors, either by biasing the random number
generators [13] or by considering the existence of bit masks
[11] has also been proposed. This represents another
significant application of the techniques proposed in this
work.

Our approach is based on the statistical modeling proposed
by Fallah et al. [3][4] but addresses the controllability of
structures directly at the RTL level, while the original work
accepts a post-synthesis logic level description. In this way,
the feedback given to the designer is easier to use, since
testability results are given in terms of RTL constructs and
not in terms of post-synthesis logic nodes.

2. Definitions and Basic Concepts

During the design process several abstraction levels are
normally used to achieve rapid development of digital
circuits. From the algorithmic to the physical level, design
testability assessment is an important issue. Accurate
assessment of the testability of a given part of a design is
important not only because it avoids problems in the
production testing phase, but also because it makes sure that
the design is being properly tested from a functional point of
view. In particular, the existence of dark spots in the design,
i.e., blocks or constructs that are not being properly exercised
is to be avoided in an agile development process.

In this work, we model the behavior or the RTL description
of a circuit using a discrete time Markov chain. For the most
generic case, that of sequential circuits, we are interested in
the circuit behavior in the steady-state. This is important
because, for sequential circuits (e.g., counters, shift-registers,
control systems), many constructs only become active and
exercisable when a given set of conditions is met. By
computing the steady-state behavior of a circuit, we make
sure that the probabilities of occurrence of events are
calculated with precision, even if the events are rare or
depend on very specific input conditions.

Simulation based methods need to use a very high
(sometimes prohibitively high) number of vectors to make
sure that even rare events occur a sufficient number of times
to obtain accurate measures of the testability of the
constructs. By using a statistical approach, we avoid the need
to use a very high number of vectors, while still obtaining
accurate estimates, even for rare events. The method
described here solves the Chapman-Kolmogorov equations
that describe the steady state behavior of the circuit, and
calculates the probability associated with each state of the
Markov chain. To reduce the computation effort and cope
with large designs we use symbolic representation methods
that describe the circuit function using Binary Decision
Diagrams (BDD).

Figure 1 represents the general scheme of a generic
synchronous sequential circuit. Its behavior can be
represented by a transition graph, modeled by a tuple
()λδ ,,,,, 0qQ∆Σ where 0≠Σ is a finite set of input symbols,

0≠∆ is a finite set of output symbols, is a finite set of
states,

0≠Q
Qq ∈0 is the initial reset state, Q→Q Σ×:δ is the

transition function, and ∆→Σ×Q:λ is the output function.

Fig. 1: Scheme of a generic synchronous sequential circuit

Under rather general assumptions, the system can be
modeled by a Markov chain and the equations that describe
the steady state probabilities of each state in the transition
graph (the Chapman-Kolmogorov equations) have a unique
solution.

Consider a binary variable ()nxxxfy ,...,2,1=

ix
jj ,

represented in terms in its inputs. The positive and negative
cofactors of with respect to variable , are defined by:

j
f

(xf 1)niiij xxxxf ,...,,1,,...,)1(11 +−==

()niiij xxxxfxf ,...,,0,,...,)0(111 +−==

The probability of the variable being one is equal to its
conditional probability given the values of its inputs.
It can be computed using the Shannon decomposition:

ky
(P)ky

∑
∈

=⋅==
}1,0{

))(()()(
k

kixjfPkixPjyP (1)

By using a dynamic programming approach and traversing
the BDD in a bottom-up fashion, the static probabilities can
be computed in time linear on the size of the corresponding
BDD. We will use this property of BDD representations to
efficiently compute the probability of a node in the circuit
being in a given state. From this probability, the computation
of the controlability of that node is straightforward.

 3. Parsing and Analysis of RTL Description

The proposed probabilistic analysis tool, named ASCOPA –
Automatic Static Controlability/Observability Probabilistic
Analysis tool, accepts as entry an HDL Verilog description.

The Verilog subset is based on the IEEE 1364 1995 and
IEEE 1364.1 1999 norms [16][17]. The system can process a
commonly accepted verifiable subset of Verilog keywords
that includes the most frequently used control structures and
operators. The parsing process was implemented using a
customized version of a research tool [1], based on widely
available parsing tools. In the sequence we describe briefly
the steps that are performed to process a Verilog description
into an internal implicit representation of the state transition
graph of the circuit.

From the Verilog parsing, the Control and Data Flow Graphs
are generated. Each node of the Control Flow Graph (CFG)
is associated with a Data Flow Graph (DFG). The
description can have a hierarchy of several module
instantiation statements. Figure 2 represents an example of a
CFG for a Verilog description for one module instance with
two concurrent statements.

Fig. 2: Behavioral Verilog Description and CFG’s

By traversing this data representation, a module instantiation
graph tree is build. The same module can be instantiated
more than one time. For each module instance, a new context
is created for the variables of that instance. Next, and only
once for each description module, the CFG´s for the
concurrent statements are built, preserving the hierarchical
structure of the behavioral description. In Figure 2 two
CFG’s are generated: one for the concurrent assign
statement, and another for the always statement. For each
module instance variable (Net or Register) the variable
propagation and influence lists are created by traversing the
module instantiation graph tree in a hierarchical way. The
variables are then associated with an hierarchical name.

Each node of the CFG is associated with a Verilog statement.
Two types of nodes are considered: arithmetic expression
nodes and Boolean expression nodes. Each node corresponds
to a particular Verilog construct in the code, such as an IF,
CASE or an Always control structure.

By traversing the statements of the Verilog description, every
CFG is traversed in breadth first order and a BDD
representation is built for each bit of each variable. In this
way, every variable (Net, Register or port) of every module
instance is represented by an array of Boolean functions, one
for each bit of the variable, represented as BDDs in terms of
the primary input and state variables. Ports are considered
Nets, in what concerns expression evaluation crossing the
borders of an instance. A variable dependence graph (at the
bit level) is created concurrently while traversing the Verilog
description.

During the generation of the Boolean function
representation, each CFG node of a specific instance
becomes associated with an array pointing to all the variables
of that instance that have been evaluated on that path. For the
moment, two possible situations that involves expression
evaluation are considered, depending on the CFG node type:

Assignment nodes have a CFG associated with the
expression in the right-hand side (RHS) of the statement that
depends on the individual functions associated with every
variable (Net or Register) of the RHS expression, After node
evaluation, the array associated with every LHS variable bit
is updated with the new values.
Condition nodes have a CFG associated with the condition
expression that depends on the individual functions
associated with every variable (Net or Register) bit of the
condition expression, that were calculated in the predecessor
nodes. Two types of condition nodes are considered:
IF nodes, in which the condition that affects every
assignment inside the “then” path is the complement of the
“else” path condition, if it exists.
CASETAG nodes in which the condition is computed by the
bit-wise XNOR between the CASE condition and the
CASETEG condition.

The same bit variable may be assigned in one or more
condition paths. If a bit is not assigned in any of the
condition paths, or if the condition path is inexistent, it must
keep the value as it was before the IF or CASE clause for the
non assigned or inexistent paths. This is the case of the CFG
for the IF statement in Figure 2. If a bit of a Net variable
includes an expression that requires evaluation (either RHS
of an assignment or a condition) and it has not been assigned
yet, it must be subject to a future composition in every
evaluated left-hand side (LHS) bit expression or condition
that depends on it. In this way, every Net or Register
variable, after the BDD generation process, becomes a
function only of primary inputs and Register variables. It is
important to stress that the data structures are generated
without loosing the hierarchical information, keeping all the
time a direct connection to the lines of the RTL description.

This makes it possible to relate directly the controllability of
internal nodes with the original RTL constructs.

4. Probabilistic Analysis of Symbolic Networks

After processing the Verilog description as described in the
previous section, it is possible to proceed to a symbolic
probabilistic analysis of the circuit.

Many circuits of interest described at the register transfer
level exhibit structures that lead to very deep state transition
graphs. For instance, a 16 bit counter with a reset signal
cannot be reasonably tested by random patterns, since the
reset signal needs to be held inactive for a long period in
order to let the count proceed. Structures like this lead to
hard to test parts of the RTL description, and can only be
adequately tested if the system automatically identifies the
hard to test constructs and identifies the reasons for their lack
of controllability or observability. For instance, in this case,
the terminal count signal, and any parts of the RTL code that
depend on that signal, will be not be well tested unless the
reset signal is actuated with very low probability and/or
appropriate test points are inserted in the circuit.

The probabilistic method can be used not only to compute
the controllability and observability of internal signals but
also to identify which signals (or combinations of signals)
should be held preferentially at specific values to achieve
higher levels of testability of the hard to test points.

Consider a circuit with N registers. The state space

 to explore has, in the worst case, { 110 ,...,, −= MqqqQ
N

}
M 2=

iq
iq jq

 possible states. Assume that the system is in state
. Under the Markov assumption, the transition between

state and occurs with probability , under some
specific, time invariant, input distribution. Then, in steady
state, the probability of state is given by:

ijπ

iq

 (2) ∑=
i

iijj qPqP)()(π

The direct solution of this system of M equations (the
Chapman-Kolmogorov equations) is not feasible for the
majority of circuits of interest, that have in general more than
20 state variables, although special purpose techniques can
be applied to solve them exactly for some circuits with more
than states [8]. 302
Since exact solution of this system of equations is
impracticable for N greater than 20, we have followed an
approximation method that assumes independence of the
state lines, ignoring correlations between them. Although this
is known to be an approximation that, in some cases, shows
significant deviations from the exact values it reduces
exponentially the computation requirements, since only N
values need to be computed instead of 2N. Consider that
state is encoded with values in the state lines.
Under the state line independence assumption [9][14], the
probability of the system being in state is given by

=j 1
, where is the static probability of

line state j in state i.

iq N
iii sss ,..., 21

iq

∏= N j
ii sPqP)()(

j

)(j
isP

js
lx

r

),..., Nr

),..., Nr

,...,, 2 rr

,...,, 21 rr

(xP

,...,,(21
1

1 Lxxxfs =

,...,,(21 L
N

N xxxfs =

,(()(21
1

1 xxfPsP =

,(()(21
N

N xxfPsP =

)(jrP
(P

i
ii prPsP ==)()(]N,

)(1)0(ii yPyC −==

)()1(ii yPyC ==

In this way, the resolution of the Chapman-Kolmogorov
equations (2) is reduced to the problem of finding the
solution of a non-linear system of N equations, one for each
state line. The state lines are themselves Boolean
functions of the primary inputs, , and the previous values
of the state lines, :

 ,, 21 rr
 …

,, 21 rr (3)

In terms of probabilities, this can written as

)),,..., 1 NL rx
 …

)),,..., NL rx (4)

The value of the right hand sides in equation (4) can be
readily computed from the BDD representations of the next
state variables, obtained as described in section 3, given
values for (obtained from the previous step
computation of) and . In steady state, the
probability of the next state variables is equal to that of the
previous state variables.

)js)l

 , [i 1∈ (5)

The set of equations (4) is solved using a fixed point method,
which, in this case, corresponds to the Picard-Peano method.
Starting with an initial value for the latch probabilities ,
the process iterates the application of expressions (4) until a
fixed point (5) is reached, where the differences in
probability of the state lines between two consecutive
iterations falls below a threshold. Alternatively, this non-
linear system of equations can be solved using the Newton-
Raphson method. Once the values of are known, the
controllability of a circuit node to 0 and to 1 is given by:

ip

ip

 (6)

For the example of Fig. 2, Figure 3 represents the Markov
chain with the transition probabilities between the states of
the circuit, under a uniform distribution of the inputs.

Figure 3: Markov chain for the example circuit

This chain is associated with the transition matrix









=












=∏ 875.0

125.0
25.0
75.0

11

10

01

00
π

π

π

π

In this particular case, the solution gives 667.0)(=sP

)()(1
1 sPqP =

,
which, in this case, gives exactly the values of the state
probabilities (since there is only one register,)









=








6667.0
3333.0

)(
)(

1

0

qP
qP

The controllability of circuit nodes under the assumptions of
uniform distribution of the inputs (and the RTL constructs
that they correspond to) can now be directly computed. For
example, the computation of C using expressions (6)
and (1), in this case, is equivalent to the computation of:

)(Out

 667.0)()()1(1 =∧∧+== zysPzPOutC

The existence of an implicit closed form expression that
gives the controllability of an RTL construct as a function of
the probabilities of the input signals opens the possibility of
changing the test procedure in one of the ways addressed in
section 1. In this particular case, if one is interested in the
somewhat harder to test case of the output stuck at 0, this
result leads to the indication that the probability of variable z
should be increased above its default value of 0.5.

5. Results

The ITC99 benchmark circuits [15] were used to evaluate the
precision of the controllability measures obtained by the new
tool. A prototype of the developed system was integrated
within the SIS framework [12] and used to test the approach.

In order to obtain the simulation based testability metrics, the
PLI (Programming Language Interface) of a commercial
Verilog simulator was used to implement a task that
evaluates controllability and detectability. This task reports
the number of activations and detections of each LSA fault.
Faults are injected in all bits of the RTL description. When
using a large number of random vectors, the number of
activations of the LSA0/1 fault is proportional to the
controllability to 1/0. For the benchmark circuits used in
these experiments the simulation-based controllability was
calculated as the average of the controllability obtained with
five sets of 5000 random vectors.

Table 1 shows the percentage of nodes for each circuit that
show deviations in the controllability values, when compared
with the values obtained by random simulation with 5000
vectors.

Table 1: Percentage of nodes with controllability deviations

within the indicated ranges

% Dev b01 b02 b03 B04 B06 b09 b10 b13

<0.1 85,7 100,0 70,6 72,7 54,5 96,6 74,2 76,2
[0.1,0.3] 14,3 0,0 29,4 27,3 45,5 3,4 25,8 14,3
[0.3,0.5] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 6,3
[0.5,0.7] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,2
[0.7,0.9] 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

>0.9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Figure 4 shows a graphic representation of the results in
Table 1 and makes it clear that a very small number of nodes
show significant discrepancies. Note that the deviations
obtained may have as origin the approximations made in this
approach, but may also result from imprecise results obtained
from the limited length simulation runs.

0

20

40

60

80

100

<0.1 [0.1,0.3] [0.3,0.5] [0.5,0.7]

b01 b02 b03 b04 b06 b09 b10 b13

Figure 4: Percentage of nodes with deviations in range.

5.1 Automatic Mask Generation

The automatic mask generation tool [11] was used to
generate test masks for all the nodes of the benchmarks with
probability value higher than 0,95 (low controllability to “0”)
and lower than 0,05 (low controllability to “1”). The second
column of Table 2 shows the number of nodes with low
controllability for each circuit. This table shows also the
number of registers (#regs) and the number of primary inputs
(#PIs).

Table 2: Number of registers that require partial-scan.

Circuit
#bits with
Contr<0,05 #regs #Pis

#masked
registers

#masked
PIs

b03 15 30 6 9 1
b04 10 86 13 7 1
b06 1 9 4 3 2
b09 22 28 3 19 1
b10 9 20 13 4 3
b13 25 63 12 25 1

For each one of the targeted bits, a set of masks was
generated that force specific values on the register and
primary input variables. The last two columns of Table 2
show the number of registers and primary inputs that occur at
least once in one of the generated masks.
Control of the targeted nodes can be achieved including a
partial-scan chain with the registers forced by masks. The
required length for each chain, in these examples, is in
average only 30% of the required length for full-scan.

Table 3: Masks for control of uscite[1] in b06

Eq
l

R
es

et

co
nt

eq
l

us
ci

te
[1

]
us

ci
te

[0
]

cc
_m

ux
[1

]
cc

_m
ux

[0
]

ac
ko

ut

st
at

e[
2.

.0
]

en
ab

le
_c

ou
nt

x 1 x x x x x x Xxx x
x 0 x x x x x x 000 x
1 0 x x x x x x 001 x
0 0 x x x x x x 001 x

.
Table 3 shows four masks that were automatically generated
in order to enable controllability of four possible nodes for
uscite[1] in circuit b06. Besides the clock input this circuit
has three additional primary inputs: eql, reset and cont_eql.
The generated masks require control over two of them. From
the 9 registers of b06 only three of them have to be included
in a partial-scan chain in order to ensure controllability of
uscite[1].

6. Conclusions and Future Work

In this work we presented the first non-simulation based
approach that efficiently computes controllability of RTL
constructs as a function of the probability distribution at the
inputs. The approach uses a simplifying assumption
regarding the probability of states in the steady state that has
been shown to be efficient and effective in the computation
of the state probabilities and the testability measures of
constructs in the Verilog description.

This ability to obtain a precise controllability measure of
RTL constructs can be used in an effective way to improve
the testability of the design. In the immediate future work,
we will apply the system to improve BIST systems, by
modifying the probabilities of input signals in order to
improve the testability of the difficult to test parts.

References
[1] Cheng S. T., Brayton R. K., “Compiling Verilog into
Automata”, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, TR. UCB/ERL
M94/37, May 1994.
[2] Cho C. H., Armstrong J. R., “B-Algorithm: A Behavioral Test

Generation Algorithm”, Proc. IEEE International Test Conference
(ITC), pp. 968-979, 1994.
[3] Fallah F., Devadas S., Keutzer K., “OCCOM: Efficient
Computation of Observability-Based Code Coverage for Functional
Verification “, Proc. of the 34th Design Automation Conference
(DAC), pp. 152-157, June 1998.
[4] Fallah F., Ashar P., Devadas S., “Simulation Vector
Generation from HDL Descriptions for Observability-Enhanced
Statement Coverage”, Proc. of the 35th Design Automation
Conference (DAC), pp. 666-671, 1999.
[5] Ferrandi F., Fummi F., Sciuto D., “Implicit Test Generation for
Behavioral VHDL Models”. Proc. IEEE International Test
Conference (ITC), pp. 587-596, 1998.
[6] Ferrara G., Ferrandi F., Fin A., Fummy F., Sciuto D.,
“Functional Test Generation for Behaviorally Sequential Models ”,
Proc. of the Design Automation and Test in Europe Conference
(DATE), pp. 403-410, March 2001.
[7] Freitas A. T., Neto H. C. and Oliveira A. L.. “On the
complexity of power estimation problems”. In International
Workshop on Logic Synthesis (ILWS), pages 239-244, June 2000.
[8] Freitas A. T. and Oliveira A. L., “Implicit resolution of the
Chapman-Kolmogorov equations in sequential circuits : An
application in power estimation”, Proc. of the Design Automation
and Test in Europe Conference (DATE), pp. 764--769, March 2003.
[9] Hachtel G.D., Macii E., Pardo A., Somenzi F., “Markovian
Analysis of Large Finite State Machines”, IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems”, Vol.
15, Num. 12, pp. 1479-1493, December 1996.
[10] Kern C., Greenstreet M.R., “Formal Verification In Hardware
Design: A Survey”, ACM Transactions on Design Automation of
Electronic Systems, 4:2, pp. 123-193, 1999.
[11] Santos M.B., Fernandes J.M., Teixeira I.C., Teixeira J.P.,
“RTL Test Pattern Generation for High Quality Loosely
Deterministic BIST”, Proc. of the Design Automation and Test in
Europe Conference (DATE), pp. 994--999, March 2003.
[12] Sentovich E. M., Singh K. J., Lavagno L. , Moon C., Murgai
R., Saldanha A., Savoj H., Stephan P. R., Brayton R. K. and
Sangiovanni-Vincentelli, A., “SIS: A System for Sequential Circuits
Synthesis”, Electronics Research Laboratory, Memorandum No.
UCB/ERL M92/41, Department of EECS, University of California,
Berkeley, 1992.
[13] Tasiran S., Fallah F., Chinnery D., Weber S., Keutzer K-, “A
Functional Validation Technique: Biased-Random Simulation
Guided by Observability-Based Coverage”, Proc. of the 2001 IEEE
Int. Conference on Computer Design: VLSI in Computers &
Processors (ICCD), pp. 82-88, 2001.
[14] Tsui C. Y., Monteiro J., Pedram M., Devadas S., DespianS.,
Lin B., “ Power Estimation Methods for Sequencial Logic Circuits”,
IEEE Transactions on VLSI Systems, 3(3):404-416, 1995.
[15] CMUDSP benchmark (I – 99 - 5, ITC 99 5),
http://www.ece.cmu.edu/~lowpower/benchmarks.html
[16] IEEE Standard 1364-1995, “IEEE Standard Hardware
Description Language Based on the Verilog Hardware Description
Language”, IEEE, Inc., New York, NY, USA, October 14, 1996.
[17] IEEE Standard P1364.1/D1.4, “Draft Standard for Verilog
Register Transfer Level Synthesis”, IEEE, Inc., New York, NY,
USA, April 26, 1999.

http://www.ece.cmu.edu/~lowpower/benchmarks.html

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

