
Automatic Verification of Safety and Liveness for XScale-Like Processor Models
Using WEB Refinements

Panagiotis Manolios
College of Computing

Georgia Institute of Technology
Atlanta, GA 30318

manolios@cc.gatech.edu

Sudarshan K. Srinivasan
School of Electrical & Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30318

darshan@ece.gatech.edu

Abstract

We show how to automatically verify that com-
plex XScale-like pipelined machine models satisfy the
same safety and liveness properties as their correspond-
ing instruction set architecture models, by using the no-
tion of Well-founded Equivalence Bisimulation (WEB)
refinement. Automation is achieved by reducing the WEB-
refinement proof obligation to a formula in the logic of
Counter arithmetic with Lambda expressions and Un-
interpreted functions (CLU). We use the tool UCLID to
transform the resulting CLU formula into a Boolean for-
mula, which is then checked with a SAT solver. The models
we verify include features such as out of order comple-
tion, precise exceptions, branch prediction, and interrupts.
We use two types of refinement maps. In one, flush-
ing is used to map pipelined machine states to instruction
set architecture states; in the other, we use the commit-
ment approach, which is the dual of flushing, since partially
completed instructions are invalidated. We present experi-
mental results for all the machines modeled, including ver-
ification times. For our application, we found that the time
spent proving liveness accounts for about 5% of the over-
all verification time.

1. Introduction

We present what we believe is the first method for auto-
matically and efficiently verifying both safety and liveness
properties of pipelined machine models. Verification entails
constructing a WEB-refinement proof, which implies that,
relative to a refinement map, a pipelined machine has ex-
actly the same infinite executions as the machine defined
by the instruction set architecture, up to stuttering. A con-
sequence is that the pipelined machine satisfies exactly the
same CTL∗ \X properties satisfied by the instruction set ar-

chitecture. For the types of machines we study, we can re-
duce the WEB-refinement proof to a statement expressible
in the logic of Counter arithmetic with Lambda expressions
and Uninterpreted functions (CLU), which is a decidable
logic [2]. We use the tool UCLID [9] to transform the CLU
formula into a CNF (Conjunctive Normal Form) formula,
which we then check with a SAT solver. We provide ex-
perimental results for eight XScale-like [4] pipelined ma-
chine models of varying complexity and including features
such as precise exceptions, branch prediction, and inter-
rupts. Our results show that our approach is computationally
efficient, as verification times for WEB-refinement proofs
are only 4.3% longer than the verification times for the stan-
dard Burch and Dill type proofs, which do not address live-
ness.

The use of WEB-refinement for proving the correctness
of pipelined machines was introduced in [10], where a num-
ber of simple three stage pipelined machines were verified
using the ACL2 theorem proving system [7, 8]. The pa-
per also showed that the variant of the Burch and Dill no-
tion of correctness [3] used by Sawada [18] can be satisfied
by machines that deadlock, and an argument was given that
such anomalies are not possible if WEB-refinement is used.
Our main contribution is to show how one can prove WEB-
refinement theorems automatically and efficiently, which
we accomplish by defining “rank” functions and refinement
maps automatically. The WEB-refinement theorem contains
quantifiers and involves exhibiting the existence of certain
rank functions. We achieve automation in two steps. First,
we strengthen the theorem in a way that leads to a simplified
statement that is expressible in the CLU logic and which
holds for the examples we consider. Second, we show how
to define the rank function in a general way that does not re-
quire any deep understanding of the pipelined machine and
in fact is simpler to define than flushing.

The paper is organized as follows. In Section 2, we pro-
vide an overview of refinement based on WEBs, the theory
upon which our correctness proofs depend. In Section 3, we

1530-1591/04 $20.00 (c) 2004 IEEE

give a quick overview of the XScale-like processor mod-
els we use, and in Section 4, we outline how we verify such
models. In Section 5, we report verification times and statis-
tics for eight processor models, some based on the flushing
approach and some on the commitment approach. We com-
pare the time taken to prove safety alone with the time taken
to prove both safety and liveness and we compare the run-
ning times of the SAT solvers Siege [17] and Chaff [15]
on our problems. Everything required to reproduce our re-
sults, e.g., machine models, correctness statements, CNF
formulas, etc., is available upon request. Related work is de-
scribed in Section 6, while conclusions and an outline of fu-
ture work appear in Section 7.

2. Refinement

Why develop a theory of refinement? Why not just use
the Burch and Dill notion of correctness augmented with
some kind of liveness criterion? First, pipelined machines
are complicated enough that it is easy to make mistakes,
e.g., after we prove a WEB-refinement, it follows directly
from the metatheory that the pipelined machine cannot
deadlock, whereas this does not necessarily follow from a
Burch and Dill correctness proof, even when augmented
with theorems that researchers thought would establish live-
ness [10]. If the deadlock arises only in certain rare corner
cases, then the bug can also easily avoid detection from sim-
ulation. Second, by using a theory of refinement, we can
strengthen the proof obligations in ways that make automa-
tion possible, without risking inconsistencies. It was this
line of reasoning that led to the work described in this pa-
per, the first method we know of for automatically proving
both safety and liveness properties for pipelined machines.

The point of a correctness proof is to establish a mean-
ingful relationship between ISA, a machine modeled at the
instruction set architecture level and MA, a machine mod-
eled at the microarchitecture level, a low level description
that includes the pipeline. We accomplish this by first defin-
ing a refinement map, r, a function from MA states to ISA
states; think of r as showing us how to view an MA state as
an ISA state. We then prove a stuttering bisimulation refine-
ment: for every pair of states w, s such that w is an MA state
and s = r(w), for every infinite path σ starting at s, there is
a “matching” infinite path δ starting at w, and conversely.
That σ and δ match implies that applying r to the states in δ
results in a sequence that can be obtained from σ by repeat-
ing, but only finitely often, some of σ’s states, as MA may
require several steps before matching a single step of ISA.
A problem with this approach is that it requires reasoning
about infinite paths, which is difficult to automate. In [11],
we give an equivalent formulation, WEB-refinement, that
requires only local reasoning. We now give the relevant def-
initions, which are given in terms of general transition sys-

tems (TS). A TS M is a triple 〈S,99K,L〉, consisting of a set
of states, S, a transition relation, 99K, and a labeling func-
tion L with domain S, where L(s) is what is visible at s.

Definition 1 (WEB Refinement) Let M = 〈S,99K,L〉, M ′ =
〈S′,99K′,L′〉, and r : S → S′. We say that M is a WEB refine-
ment of M ′ with respect to refinement map r, written M ≈r

M ′, if there exists a relation, B, such that 〈∀s ∈ S :: sBr(s)〉
and B is a WEB on the TS 〈S] S′,99K] 99K

′,L〉, where
L(s) = L′(s) for s an S′ state and L(s) = L′(r(s)) other-
wise.

In the above definition, it helps to think of M ′ as corre-
sponding to ISA and M as corresponding to MA. Note that
in the disjoint union of M and M ′, the label of every M
state, s, matches the label of the corresponding M ′ state,
r(s). WEBs are defined next; the main property enjoyed by
a WEB, say B, is that all states related by B have the same
(up to stuttering) visible behaviors.

Definition 2 B ⊆ S×S is a WEB on TS M = 〈S,99K,L〉 iff:

(1) B is an equivalence relation on S; and
(2) 〈∀s,w ∈ S :: sBw ⇒ L(s) = L(w)〉; and
(3) There exist functions rankl : S×S → N,rankt : S →W,

such that 〈W,l〉 is well-founded, and
〈∀s,u,w ∈ S :: sBw ∧ s 99K u ⇒

(a) 〈∃v :: w 99K v ∧ uBv〉 ∨

(b) (uBw ∧ rankt(u)l rankt(s)) ∨

(c) 〈∃v :: w 99K v ∧ sBv ∧

rankl(v,u) < rankl(w,u)〉〉

The third WEB condition says that given states s and w in
the same class, such that s can step to u, u is either matched
by a step from w, or u and w are in the same class and a
rank function decreases (to guarantee that w is eventually
forced to take a step), or some successor v of w is in the
same class as s and a rank function decreases (to guaran-
tee that u is eventually matched). To prove that a relation
is a WEB, reasoning about single steps of 99K suffices. It
turns out that if MA is a refinement of ISA, then the two
machines satisfy the same formulas expressible in the tem-
poral logic CTL∗ \X, over the state components visible at
the instruction set architecture level.

The idea now is to strengthen the WEB-refinement proof
obligation such that we obtain a CLU-expressible statement
that holds for the examples we consider. We start by defin-
ing the equivalence classes of B to consist of one ISA state
and all the MA states that map to the ISA state under r. Now,
condition 2 of the WEB definition clearly holds. Our ISA
and MA machines are deterministic (actually they are non-
deterministic, but we use oracle variables to make them de-
terministic [12]), thus, after some symbolic manipulation,
we can strengthen condition 3 of the WEB definition to
the following “core theorem”, where rank is a function that

maps states of MA into the natural numbers.

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)
=⇒ s = r(v) ∧ rank(v) < rank(w)〉

In the formula above s and u are ISA states, and w and
v are MA states; ISA-step is a function corresponding
to stepping the ISA machine once and MA-step is a func-
tion corresponding to stepping the MA machine once. The
core theorem says that if w refines s, u is obtained by step-
ping s, v is obtained by stepping w, and v does not refine u,
then v refines s and the rank of v is less than the rank of w.
The proof obligation relating s and v is the safety compo-
nent, and the proof obligation that rank(v) < rank(w) is the
liveness component. We use two types of refinement maps
and provide a general method for defining rank functions
in both cases. The details appear in Section 4, after we de-
scribe the processor models.

3. Processor Models

Figure 1 shows the high-level organization of the
XScale-like processor model, a seven stage pipeline whose
stages are IF1, IF2 (2-cycle fetch), ID (instruction de-
code), EX (execute), M1, M2 (2-cycle memory access), and
WB (write back). Five abstract instruction types are mod-
eled including register-register, register-immediate, load,
store, and branch. The branch and store instructions com-
plete out of order with respect to the ALU instruc-
tions. This base model is extended with branch predic-
tion, ALU exceptions, and interrupts. The models are
similar to those appearing in [20] (which use model-
ing techniques from [22]), except that our models are
written in the CLU logic and we model interrupts. Mod-
eling issues are not the point of this paper, neverthe-
less, a brief overview of CLU and the processor models
we use is helpful for understanding the rest of the pa-
per. The CLU logic [2] consists of Uninterpreted Functions
(UFs) and Predicates (UPs), restricted lambda expres-
sions, ordering, and successor and predecessor functions.
Interrupts are detected in the M1 stage and squash all pre-
vious instructions including the instruction that caused the
interrupt. We use temporal abstraction to model the be-
havior of interrupts: after an interrupt the PC is set to
the program counter corresponding to the oldest instruc-
tion that was squashed by the interrupt, the data memory
is modified by applying a UF to the current data mem-
ory, and the register file remains the same.

4. Verification of Processor Models

In Section 2, we showed that proving the “core theorem”
allows us to establish a WEB-refinement, and in this sec-

tion we present two methods for defining r and rank. One
is based on flushing. The other, based on the commitment
approach, can be loosely thought of as the dual of flush-
ing, since partially completed instructions are invalidated
instead of completed.

In the flushing approach, r maps an MA state, w, to the
ISA state obtained by flushing w and projecting out the pro-
grammer visible components, where by flushing we mean
feeding the pipeline with bubbles to complete partially ex-
ecuted instructions without fetching any new instructions.
A pipelined machine model can be easily instrumented to
enable such flushing. It turns out that for a single-issue
pipelined machine, the safety proof of the core WEB the-
orem is similar to the Burch and Dill approach [3].

The rank of an MA state, w, is the number of steps re-
quired to fetch a new instruction that eventually completes.
We determine the rank by stepping w, to obtain v, flush-
ing v to obtain v′, and comparing v′ with w′, the flushed
state of w, to check if v′ 6= w′, i.e., to check if the instruction
fetched by stepping from w to v completed. (A branch mis-
predict may lead to a valid instruction being squashed.) The
number of steps required to fetch an instruction that com-
pletes is the rank. The straightforward implementation of
this idea requires 174 symbolic simulations, which UCLID
was not able to handle. We implemented an optimized ver-
sion based on the observation that stepping and flushing the
MA states can be folded together so as to reduce the num-
ber of symbolic simulations. In more detail, we determine
the number of steps required to flush the pipeline (by flush-
ing it) and we set a counter to this value. The MA state is
simulated for this number of steps and the rank of the MA
state is the number of steps required for the latch between
M2 and WB to become valid. Notice that an invalid opti-
mization of the rank function will be caught during veri-
fication because the core theorem guarantees that the rank
function provided is appropriate.

In the commitment approach, r maps an MA state, w,
to the ISA state obtained by committing w and projecting
out the programmer visible components, where by commit-
ting we mean invalidating all the partially executed instruc-
tions in the pipeline and rolling back the PC so that it points
to the oldest invalidated instruction. A pipelined machine
model can be easily instrumented to enable such commit-
ting by using history variables. The history variables record
the components of MA states that may need to be modi-
fied in the process of invalidating instructions. In our case,
we needed to remember 5 state components, including the
PC and the data memory, some for multiple steps, leading
to 18 history variables.

The rank of an MA state, w, is the number of steps re-
quired to commit a new instruction, which can be computed
by starting at the end of the pipeline and counting how many
consecutive latches are invalid. For example, if there are 3

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Figure 1. Pipeline organization of processor model

invalid latches at the end of the pipeline, then after three
steps, an instruction will be ready to commit. Determining
the rank of a state is therefore straightforward.

In order to use the commitment approach we have to use
an invariant. To see why, consider a pipelined machine state
w whose only valid latch is IF1, but where IF1 is inconsis-
tent with MA, e.g., IF1 does not match any instruction in
memory. Suppose s is the state obtained by committing w
and projecting. Clearly, s and w do not have the same infi-
nite behaviors, as when the instruction in IF1 completes,
it will not match the successor of s. We address this is-
sue by characterizing the set of reachable MA states, the
“good” MA states. An MA state is “good” iff it is reach-
able from a committed state. To check that an MA state, w,
is “good,” the committed state, c, corresponding to w is de-
termined. State w is “good” if it can be reached from c in
0 to 6 steps. Proving that if a state is good, so is its succes-
sor amounts to proving that starting from an arbitrary com-
mitted state and taking 7 steps gives a state that is good. The
CLU formula corresponding to this invariant is straightfor-
ward to write down.

The flushing approach does not usually require the use of
an invariant. Why not? Because inconsistent states, such as
the one mentioned above get flushed away, but that means
that inconsistent states are related to ISA states. Deciding
between using the commitment approach or the flushing ap-
proach depends on how comfortable one is with this aspect
of flushing. Sometimes, even the flushing approach requires
the use of invariants and since the invariant we describe
above is the strongest invariant, it tends to do the trick.

The core theorem is easily expressible in the CLU logic,
as the successor function can be used to directly define the
rank functions. However, we can do without the succes-
sor function since the rank of a state is always less than

the number of latches in the pipeline. This means that our
approach is applicable even with tools that only support
propositional logic, equality, uninterpreted functions, and
memories, but we find that defining the rank explicitly is
clearer and performance is essentially the same. Finally, the
UCLID tool generates a counterexample if it finds a bug.

5. Results

In this section, we review our experimental results. We
start with two base processor models, CXS and FXS: the
prefix C indicates the use of the commitment approach for
defining the refinement map and prefix F indicates the use of
flushing for defining the refinement map. The base models
are extended to implement: branch prediction, designated
by “-BP”; ALU exceptions, designated by “-EX”; and in-
terrupts, designated by “-INP”.

Table 1 presents the results. We report the number of
CNF variables and clauses and the verification time for both
the safety proofs and the safety and liveness proofs, i.e., for
the proofs of the core theorem. For the safety and liveness
proofs, we also report the size of the CNF files and the veri-
fication times taken by both Siege and Chaff. The total ver-
ification time reported includes the time taken by Siege and
UCLID, thus the time taken by UCLID can be obtained by
subtracting the Siege column from the Total column. Siege
uses a random number generator, which leads to large vari-
ations in the execution times obtained from multiple runs of
the same input, thus, in order to make reasonable compar-
isons, every Siege entry is really the average over 10 runs
and we report the standard deviations for the runs. The ex-
periments were conducted on an Intel XEON 2.20GHz pro-
cessor with an L1 cache size of 512KB.

5

Table 1. Statistics for boolean correctness formula and formal verification time.

Processor

Safety Safety and Liveness

CNF
Vars

CNF
Clauses

 Verification
Time [sec] CNF

Var
CNF

Clauses

CNF
Size
[KB]

Verification Time [sec]

Siege Total Siege Chaff Stdev Total

CXS 12,930 38,215 35 38 12,495 36,925 664 29 6,552 3.4 32

CXS-BP 24,640 72,859 284 289 23,913 70,693 1,336 300 7,861 48.7 305

CXS-BP-EX 24,651 72,841 244 249 24,149 71,350 1,344 233 4,099 50.2 238

CXS-BP-EX-INP 24,669 72,880 255 261 24,478 72,322 1,368 263 3,483 34.1 269

FXS 28,505 84,619 140 154 53,441 159,010 3,096 160 796 24.4 175

FXS-BP 33,964 100,624 170 185 71,184 211,723 4,136 187 586 50.4 203

FXS-BP-EX 35,827 106,114 179 195 74,591 221,812 4,344 163 759 17.6 180

FXS-BP-EX-INP 38,711 11,4742 128 147 81,121 241,345 4,736 170 1,427 32.3 189

column from the sum of the Safety and Liveness Siege
column and dividing by the latter is 4.6%; notice that
for the commitment approach it is 0.75%, whereas it is
9.3% for the flushing approach. Finally, we note that
there are cases in which the verification time for safety
and liveness is less than that of liveness; in fact, the ver-
ification time for liveness alone seems to be about the
same as the verification time for safety, e.g., when prov-
ing liveness for CXS, Siege takes 37 seconds (this is the
average of ten runs).

All machine models, correctness statements, CNF
formulas, and in general everything required to repro-
duce our results will be available on our Web pages.

6. Related Work
We now review previous work on pipelined machine

verification. A very early approach by Srivas and Bick
was based on the use of skewed abstraction functions
[23]. Burch and Dill showed how to automatically com-
pute the abstraction function using flushing [3]. There
are approaches based on model-checking, e.g., in [14],
McMillan uses compositional model-checking in con-
junction with symmetry reductions. Theorem proving
approaches are also popular, e.g., in [19,20], Sawada
uses an intermediate abstraction called MAETT to ver-
ify some safety and liveness properties of complex
pipelined machines. Another approach by Hosabettu et

al. uses the PVS theorem prover and the notion of com-
pletion functions [5]. Symbolic Trajectory Evaluation
(STE) is used by Patankar et al. to verify a processor
that is a hybrid between ARM7 and StrongARM [17].
SVC is used check the correct flow of instructions in a
pipelined DLX model [15]. Abstract State Machines are
used to prove the correctness of refinement steps that
transform a non-pipelined ARM processor into a pipe-
lined implementation [6]. An XScale processor model
is verified using a variation of the Burch and Dill
approach in [22].

This paper directly depends on previous work on
decision procedures for boolean logic with equality and
uninterpreted function symbols [1]. The results in [1]
were further extended in [2], where a decision proce-
dure for the logic of Counter arithmetic with Lambda
expressions and Uninterpreted functions (CLU) is
given. The decision procedure is implemented in
UCLID, which has been used to verify out-of-order
microprocessors [21].

7. Conclusions and Future Work
We show how to automatically verify safety and

liveness properties of complex XScale-like pipelined
machine models with a slight performance penalty over
verifying safety properties alone. This is accomplished
by proving a WEB-refinement theorem, which implies

As is clear from Table 1, Siege provides superior perfor-
mance when compared to Chaff. If we divide the total run-
ning time of Chaff with Siege, we see that Siege provides
a speedup of about 17 and in the case of CXS the speedup
is 226. The overall cost of liveness, computed by subtract-
ing the sum of the Safety Siege column from the sum of the
Safety and Liveness Siege column and dividing by the lat-
ter is 4.6%; notice that for the commitment approach it is
0.75%, whereas it is 9.3% for the flushing approach. The
verification time for liveness alone seems to be about the
same as the verification time for safety, e.g., when proving
liveness for CXS, Siege takes 37 seconds (this is the av-
erage of ten runs). Since the liveness and safety theorems
share considerable structure (e.g., the machine models), the
SAT solvers are able to prove the conjunction of the two
theorems more quickly than proving each conjunct sepa-
rately; in fact, in some cases the verification times for safety
and liveness are slightly less than the verification times for
safety alone, indicating that the heuristics of the SAT solver
are able to effectively exploit the shared structure.

The differences in verification times between CXS and
CXS-BP can be understood by noting that we compute the
strongest invariant and introducing branch mispredicts leads
to an irregular set of “good” states. Since exceptions and
interrupts are very similar to branch mispredicts, introduc-
ing these features does not affect verification times much.
In all the CXS models, the proof of the “good” invariant
accounted for all but about .2 seconds of the verification
times. The strongest invariant can be very useful for check-
ing other types of properties, e.g., performance properties.

6. Related Work

We now selectively review previous work on pipelined
machine verification. A very early approach by Srivas and
Bick was based on the use of skewed abstraction func-
tions [21]. Burch and Dill showed how to automatically
compute the abstraction function using flushing [3]. There
are approaches based on model-checking, e.g., in [13],
McMillan uses compositional model-checking and symme-
try reductions. Theorem proving approaches are also popu-
lar, e.g., in [18, 19], Sawada uses an intermediate abstrac-
tion called MAETT to verify some safety and liveness prop-
erties of complex pipelined machines. Another approach by
Hosabettu et al. uses the notion of completion functions [5].
Symbolic Trajectory Evaluation (STE) is used by Patankar
et al. to verify a processor that is a hybrid between ARM7
and StrongARM [16]. SVC is used to check the correct
flow of instructions in a pipelined DLX model [14]. Ab-
stract State Machines are used to prove the correctness of
refinement steps that transform a non-pipelined ARM pro-
cessor into a pipelined implementation [6]. An XScale pro-
cessor model is verified using a variation of the Burch and
Dill approach in [20]. This paper directly depends on pre-
vious work on decision procedures for boolean logic with
equality and uninterpreted function symbols [1]. The results
in [1] were further extended in [2], where a decision proce-
dure for the CLU logic is given. The decision procedure is
implemented in UCLID, which has been used to verify out-
of-order microprocessors [9].

7. Conclusions and Future Work

Our main contribution is to show how to automati-
cally verify both safety and liveness properties of complex
XScale-like pipelined machine models with a slight perfor-
mance penalty over verifying safety properties alone. This
improves on previous automatic methods, which can only
check safety properties. Verifying pipelined machines in-
volves establishing a WEB-refinement theorem, which im-
plies that the pipelined machine satisfies exactly the same
CTL∗ \ X properties satisfied by the instruction set ar-
chitecture. We show how to automate the verification of
the WEB-refinement theorem, which contains quantifiers
and involves exhibiting the existence of certain rank func-
tions. The automation is achieved in two steps. First, we
strengthen the theorem in a way that leads to a simpli-
fied statement that holds for the examples we consider.
Second, we show how to define the rank function in a gen-
eral way that does not require any deep understanding of
the pipelined machine; in fact, it is much simpler to de-
fine the rank function than it is to define how the ma-
chine is flushed. As a result, we are left with a formula in
the CLU logic and can use UCLID to obtain a CNF for-
mula, which we then check with a SAT solver.

For future work, we plan to explore how to connect
UCLID with the ACL2 theorem proving system [7, 8]. This
will allow us to use ACL2 for efficient simulation and ad-
vanced debugging. In addition, we plan to explore methods
for verifying larger instructions sets more efficiently than is
currently possible with either approach alone.

References

[1] R. E. Bryant, S. German, and M. N. Velev. Exploiting
positive equality in a logic of equality with uninterpreted
functions. In CAV’99, vol. 1633 of LNCS, pages 470–482.
Springer, 1999.

[2] R. E. Bryant, S. K. Lahiri, and S. Seshia. Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In CAV’02,
vol. 2404 of LNCS, pages 78–92. Springer, 2002.

[3] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In CAV’94, vol. 818 of
LNCS, pages 68–80. Springer, 1994.

[4] L. Clark, E. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Straz-
dus, M.Morrow, K. Velarde, and M. Yarch. An embed-
ded 32-bit microprocessor core for low-power and high-
performance applications. IEEE Journal of Solid-State Cir-
cuits, 36(11):1599–1608, 2001.

[5] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the com-
pletion functions approach. In CAV’99, vol. 1633 of LNCS.
Springer, 1999.

[6] J. K. Huggins and D. V. Campenhout. Specification and ver-
ification of pipelining in the ARM2 RISC microprocessor.

ACM Transactions on Design Automation of Electronic Sys-
tems, 3(4):563–580, 1998.

[7] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publish-
ers, July 2000.

[8] M. Kaufmann and J. S. Moore. ACL2 homepage.
See URL http://www.cs.utexas.edu/users/-
moore/acl2.

[9] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verifica-
tion of out-of-order microprocessors using UCLID. In For-
mal Methods in Computer-Aided Design, vol. 2517 of LNCS,
pages 142–159. Springer, 2002.

[10] P. Manolios. Correctness of pipelined machines. In For-
mal Methods in Computer-Aided Design, vol. 1954 of LNCS,
pages 161–178. Springer, 2000.

[11] P. Manolios. Mechanical Verification of Reactive Systems.
PhD thesis, University of Texas at Austin, August 2001. See
URL http://www.cc.gatech.edu/∼manolios/-
publications.html.

[12] P. Manolios. A compositional theory of refinement for
branching time. In CHARME’03, vol. 2860 of LNCS, pages
304–318. Springer, 2003.

[13] K. L. McMillan. Verification of an implementation of
Tomasulo’s algorithm by compositional model checking. In
CAV’98, vol. 1427 of LNCS, pages 110–121. Springer, 1998.

[14] P. Mishra and N. Dutt. Modeling and verification of
pipelined embedded processors in the presence of hazards
and exceptions. In IFIP WCC 2002 Stream 7 on Distributed
and Parallel Embedded Systems (DIPES’02), 2002.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT solver.
DAC’01, pages 530–535, 2001.

[16] V. A. Patankar, A. Jain, and R. E. Bryant. Formal verification
of an ARM processor. In Twelfth International Conference
On VLSI Design, pages 282–287, 1999.

[17] L. Ryan. Siege homepage. See URL http://www.cs.-
sfu.ca/∼loryan/personal.

[18] J. Sawada. Formal Verification of an Advanced Pipelined
Machine. PhD thesis, University of Texas at Austin,
Dec. 1999. See URL http://www.cs.utexas.edu/-
users/sawada/dissertation/.

[19] J. Sawada. Verification of a simple pipelined machine model.
In M. Kaufmann, P. Manolios, and J. S. Moore, editors,
Computer-Aided Reasoning: ACL2 Case Studies, pages 137–
150. Kluwer Academic Publishers, June 2000.

[20] S. K. Srinivasan and M. N. Velev. Formal verification of an
Intel XScale processor model with scoreboarding, special-
ized execution pipelines, and imprecise data-memory excep-
tions. In MEMOCODE’03, pages 65–74, 2003.

[21] M. Srivas and M. Bickford. Formal verification of a
pipelined microprocessor. IEEE Software, pages 52–64,
Sept. 1990.

[22] M. N. Velev and R. E. Bryant. Formal verification of super-
scalar microprocessors with multicycle functional units, ex-
ceptions, and branch prediction. In DAC’00, pages 112–117.
ACM Press, 2000.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

