
Cost-efficient Block Verification for a UMTS Up-link Chip-rate Coprocessor 
Klaus Winkelmann, Infineon Technologies AG 

Hans-Joachim Trylus, Siemens AG 
Dominik Stoffel, Kaiserslautern University 

Görschwin Fey, Bremen University 
 
 

Abstract 
ASIC designs for future communication applications 

cannot be simulated exhaustively. Formal Property 
Checking is a powerful technology to overcome the 
limitations of current functional verification approaches. 
The paper reports on a large-scale experiment employing 
the CVE property checker for verifying the block-level 
functional correctness of a large ASIC. 

This new verification methodology achieves 
substantial quality and productivity gains. The two biggest 
advantages are:  
• Coding and Verification can be done in parallel.  
• The whole state space of a test case will be verified 

in a single run.  
Formal Property Checking simplifies and shortens 

the functional verification of large-scale ASICs at least in 
the same order of magnitude as Static Timing Analysis did 
for timing verification. 

1 Challenges in Designing Complex 
Wireless Communication ASICs 
With the aim of making it possible for people to 

communicate at any time, anywhere, and in any language, 
Siemens Mobile is developing a whole range of devices, 
appropriate network infrastructures and innovative 
applications for now and the future. 

In the last decade the useable chip area for 
semicustom ASIC design increased rapidly. In the early 
nineties the maximum available gate size was about 
several 100k, today more than 20 million in a 0.11µm 
technology are possible. The attempt of using the 
available gate size results in the two main problems:  
• How to meet the functional verification coverage.  
• How to meet the correct timing of the ASIC.  

With physical driven synthesis and static timing 
analysis the latter can be achieved more or less. The first 
one is the big challenge. 

1.1 Context: UMTS  
The third generation mobile communication systems 

are also called UMTS (Universal Mobile Telecommunica-
tion System). In Europe and most parts of Asia UMTS is 
based on the WCDMA (Wideband Code Division Multi-
ple Access) Standard and uses a chip rate of 3,84MBits/s. 
With these chips, quasi-random bits generated from 

pseudo-noise (PN) sequences, the user data/bits are 
multiplied and thus are spread over a wider bandwidth. 
The PN sequences are orthogonal for different users and 
applications. This means multiplexing in the power plane.  
The spreading process consists of two separate 
multiplications. First, the multiplication with a real-valued 
channelisation code. Second, the multiplication with a 
complex-valued scrambling code  

In CDMA systems all users share the same fre-
quency spectrum. Thus every user gives a contribution to 
the background noise level of each other user. To 
minimize the noise level, and for other reasons, it is 
essential to have a good and fast power control in CDMA 
systems. One of the big advantages of CDMA systems is 
that these systems are relatively robust against multi-path 
fading. This is achieved by adding up the multi-path 
components after the correlation with a path specific delay 
and phase adjustment in the so-called Rake Receivers. 

The needed overall performance for a cost efficient 
solution could only be reached by the use of a 
combination of ASICs and DSPs. 

1.2 Design Characteristics 
The uplink chip-rate coprocessor considered in this 

paper serves as a ‘number-cruncher’ for a DSP. The data 
path design of the ASIC is based around a generic 
multiply-and-accumulate engine, which performs the 
necessary correlation operations and multi-path combina-
tions. The DSP controls these correlation operations, 
called tasks, via the control path of the ASIC, using 
parameter tables. The DSP is also responsible for starting 
and stopping the tasks by setting execution conditions, 
stored in execution tables.  

The coprocessor consists of six major sub-chips. In 
total there are more than 200 logic blocks with approx. 
85k FlipFlops and nearly 300 RAM instances. The area 
equivalent is more than 2 million used gates, clocked 
above 100MHz. The average data throughput lies in the 
range of several Gbit/s. 

1.3 Verification Challenge 
The main challenges for the verification of the ASIC 

are the complex task scheduling and the complex data 
path. 

The task scheduling depends on many parameters 
like: spreading factor (7 different ones are possible), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/04 $20.00 (c) 2004 IEEE 



priority flags, mask flags and others. Most of the 
parameters are allowed to change every 10 ms (the 
duration of one frame). This results in a case space of 
more than 1018 cases. Obviously this case space could not 
be verified with classical approaches like simulation.  

The data path involves the correlation and de-
correlation of the signals. This is a non-trivial task that 
also depends on several parameters for a task. 

2 Infineon's CVE Circuit Verification 
Environment 
Infineon Technologies AG offers a broad range of 

semiconductor products for important target markets such 
as mobile communications and networks, access control 
and network security, car electronics, and more. In order 
to meet its highly demanding cost and quality targets, 
Infineon is using an advanced design flow incorporating 
state-of-the-art commercial tools, as well as innovative in-
house tools.  

2.1 Tool environment 
The Infineon design flow includes formal 

verification by the in-house system CVE (Circuit Verifi-
cation Environment, [2]), which has been developed by 
Siemens and Infineon for more than a decade. No 
commercial alternative is considered equivalent. Beyond 
in-house use, the tool is also available to co-operation 
partners, such as Siemens AG.  

CVE consists of language front-ends including 
VHDL and Verilog, the gatecomp equivalence checker 
and a property checker called gateprop. 

2.2 gateprop Property Checker 
Functional verification, using gateprop, is based on  

• compiling (automatically) the design into an internal 
finite state machine representation, and  

• formalising (manually) its specification using a 
simple temporal property language, called ITL.  
An ITL property is essentially a constraint on the 

design's signals over a finite time interval. To be valid, a 
property needs to hold for every observation window of 
the appropriate length, in every run. Using a proprietary 
combination of algorithms such as bounded model-
checking [1], the tool checks each property and, if it is 
found to be not valid, produces a counter-example. 

The basic concepts of the language are: 
HDL flavour:  The user chooses to write in either a 

VHDL or Verilog syntax, using familiar language 
constructs to quickly get up to speed with property 
writing. 

Time steps:  A property is written over a number of 
time steps, from time t (i.e. t+0) to a future time (e.g. 
time t+4 after 4 clock cycles). Consequently, there are a 

few time constructs in the language (e.g. at t, 
during[t,t+2], etc.). 

Each property consists of a "prove" and an "assume" 
part. 

Assume part: This part allows the designer to 
specify the working mode of the design under inspection. 
Assumptions such as ’no reset occurs at time t’ are 
typically necessary to investigate if the design exhibits a 
particular behavior. Further typical assumptions are ’at 
time t the input connection_request is high’ or ’there will 
be no write_request during time interval t+1 to t+5’. 

Prove part: This part of the property specifies 
expected behavior. Typical assertions in the prove-part are 
’the grant output is set at time t+5’ or ’the 
write_acknowledge output will somewhere be issued 
within time interval t+1 to t+3’. 

There are a number of language extensions that are 
designed to result in concise but intuitive properties, 
including data quantifiers, a powerful macro mechanism 
and time variables.  

3 Block Verification  
The verification approach in our ASIC project 

combines block-level formal verification with system-
level simulation. Working in a bottom-up way, each block 
was verified formally before the system level is even 
coded. 

The verification team was headed by one experien-
ced CVE verification engineer. All verification engineers 
had a scientific background  in formal methods and have 
been trained to use CVE. The major verification load was 
handled by this team, separating the concerns of designing 
and verifying. In addition, each designer underwent the 
same CVE training. Over the duration of the project the 
designers themselves increasingly started using the formal 
tool, e.g., adapting properties and running regressions. 

In the verification process we can discern several 
phases. For each of them a close interaction of designer 
and verifier was practised: 

Preparatory formalisation: Using the informal 
specification, and interaction with the designer team, first 
properties were written even before block level archi-
tecture was available. This required at least the entity 
description and saved some effort for the later phases – 
however in most cases the actual verification did also 
require some knowledge of implementation details, such 
as the names of state variables. 

Initial block verification: Parallel to the coding of a 
block, properties were written, and as soon as the VHDL 
code could be successfully compiled, formal verification 
was started. Alternatively, the designer often ran a first 
simple simulation for a few standard cases before he 
handed the code over for verification. The latter option 
filters out some trivial bugs, but makes little difference 
from a global perspective. In this phase both trivial and 



complex bugs were found (and fixed), and as a result a 
formal block-level specification existed which covered the 
block's function completely, and truthfully with respect to 
the implementation. 

Block-level regression: When a new HDL version 
was checked in, the existing property suite was re-run, in 
some cases catching errors that were introduced by the 
change. This was often but not always possible without 
adapting the property suite. 

Specification adaptation: As is common in a large 
innovative project as this, the system specification 
changed during the development duration. E.g., certain 
additional modes and flags were proposed by system 
engineering, and had to be incorporated into the already 
coded blocks. In this case properties had to be adapted in 
parallel with the code change, and re-checked. The 
complete regression suite was very helpful in these cases 
as it is by no means trivial to maintain the existing 
function while adding new ones. 

Interface verification: Once two or more communi-
cating blocks had been completely verified at the block 
level, the formal specification provided an excellent 
means to check their mutual interfaces. The ITL properties 
unequivocally describe the timing, handshake protocols 
and dependencies for each partner of an interface.  

An example of such a situation is this: block A 
produces a result x, together with a "valid" flag x_valid. 
Block B, which consumes x, assumes that if x is not valid, 
it will not take the special value X'010', and acts on this 
assumption. None of the blocks is faulty by itself, but B's 
assumption is just not guaranteed by A.  

Such dependencies were captured in ITL properties, 
and by carefully reviewing these, several bugs were 
discovered, which result from two designers' deviating 
understanding of the informal specification. 

3.1 Verifying the Control Path  
 Verifying control logic is an ideal application of 

property checking. Instead of generating sophisticated 
stimuli to check the normal operation and all of the corner 
cases, properties cover all cases of an expected function-
nality at once.  

This section explains the verification of one module 
that contains mainly control logic. 

The uplink chip-rate coprocessor consists of several 
modules that fulfil different tasks. Interfacing the connec-
tion to the antenna and to the digital signal processor is 
done by dedicated modules. The decoding of the signals is 
executed by four similar units that actually implement the 
necessary arithmetic functions. Of these four sub-units, 
the despreader is the one carrying the main work load in 
terms of operations per second. 

The task controller of the despreader (TCD) holds 
the state of several hundreds of tasks and evaluates 
changes on their finite state machines. For each such task 
a change may be caused by a request of the DSP or by an 

execution condition becoming true. To meet the specifi-
cation the TCD has to evaluate the execution condition of 
each task once during a calculation period (= 2048 clock 
cycles) and has to be able to consider all requests that 
occur during a calculation period. 

A request of the DSP may lead to a transition in the 
task’s FSM and may also cause the execution condition of 
the task to change. An execution condition becoming valid 
may switch a task from active (i.e., arithmetic operations 
for this task are executed) to inactive or vice versa. For 
each active task a job has to be issued to the arithmetic 
units following the task controller. Furthermore each task 
has assigned a task descriptor that is sent by the DSP. It 
defines several parameters for the execution of the task as 
for example the task time frame, the antenna where the 
data originates or the handset a task is related to. A change 
of the task descriptor is introduced by a request as well.  

All tasks were defined by the same parameters. This 
symmetry was exploited to scale down the number of 
tasks for verification. Thus, model generation and 
verification were speeded up. 

The property suite of the task controller can be 
grouped in three major categories: 
• OPERATION/RESET-properties  

show that the task controller itself operates correctly, 
e.g., pipelines operate correctly, all tasks are evalu-
ated during an iteration period, and the inter-process 
communication is fine. 

• DATA-properties  
prove that data is correctly modified. For this, the 
correctness of accesses to RAMs is modelled. The 
properties prove that upon a read access the retrieved 
data is modified consistently with the specification 
and after that written back. In addition it is proven by 
properties that no intermediate access to the RAM 
occurs. 

• ENVIRONMENT-properties  
verify that the needs arising from the connection to 
other modules are fulfilled, e.g. all requests that occur 
can be processed in time, and the number of jobs for 
succeeding modules is correct with respect to the 
amount of time needed to evaluate them. 
On the first synthesizable version of the code a large 

number of bugs were found. This is due to the fact that no 
simulation run was preceding the formal verification, so a 
lot of simple bugs occurred. The advantage was that no 
effort was spent to set up a test bench at module level for 
the task controller. 

The most important contribution of the formal 
verification was the detection of some difficult bugs that 
would not have been caught by a simulation run. In the 
following one such bug is considered in more detail. 

Upon an update request the task descriptor of a task 
is changed. This may contain a correction of the delay 
between task time and system time. When this delay 
crosses a critical value a corner case has to be handled. 



This was done correctly for so-called data tasks but not for 
control tasks. To find this bug in a simulation run the old 
task descriptor would have to provide a delay that is near 
the corner case. An update request upon the task would 
have to place a new task descriptor that corrected the 
delay by a critical value into the necessary direction. Also 
this would have to be done for a control, not a data task. 
Indeed only a few of the possible time delays are within 
reachability of the corner case, besides the time delay 
several other parameters are contained in the task descrip-
tor, an update request is only one of several possible 
requests on a running task and half of the tasks are data 
tasks. 

It is virtually impossible to cover all these combina-
tions of conditions in a test bench even at block level, far 
less at system level. 

3.2 Verifying the Data Path 
Since the mission of the ASIC is to serve as a 

“number-crunching” coprocessor for a DSP it consists to a 
large extent of data path circuitry involving a lot of 
arithmetic. Initially, there was concern whether formal 
verification could at all be applied to the larger data path 
blocks since it is well-known that the proof engines in 
verification tools have problems dealing with arithmetic. 
Our experiences, however, showed that the data path 
blocks could indeed be formally verified with only a few 
and only minor restrictions. A great number of design 
errors were detected, some of which had a great 
probability of surviving a simulation-based verification 
step without being detected.   

In this section we discuss data path verification with 
CVE gateprop using an example from the design.  

  Fig. 1 Despreader 
 
Fig. 1 shows a simplified view of the despreader, a 

typical signal processing component as it is found in 
several places in this ASIC. In the despreader, the raw 
signal coming from an antenna interface is correlated with 
de-spreading and de-scrambling codes. After correlation 
computation, the signal is rotated in order to compensate 
the rotation caused by the transmission channel. Finally, 
the reconstructed transmitted symbols are stored in buffers 

in an interface block where they can be picked up by the 
DSP. All computations are complex-valued. Some of 
these blocks are quite large. For example, the block 
labelled “code generator” has a size equivalent to 80000 
NAND gates. 

3.2.1 Code generator example 
In our example, we take a closer look at a generator 

for a scrambling code which is part of the block labelled 
“code generator” in Fig. 1. The code generator is not only 
responsible for synthesizing various types of scrambling 
codes but also the de-spreading codes needed in the 
CDMA-typical correlation operations.  

The code generator delivers a code word upon 
request by the correlator. The code word is a segment of a 
scrambling code sequence. The values of the sequence are 
typically binary or quaternary, and they are generated by 
generator polynomials starting from a given start state. For 
example, if the polynomial is x25+x3 +1, then the first 25 
bits y(0), ..., y(24) of the sequence constitute the start state 
(which may be an arbitrarily chosen state other than 0), 
and the succeeding bits y(i) are defined by y(i) = y(i-
22) + y(i-25) mod 2, for i > 24. However, not individual 
bits of the scrambling code sequence are needed by the 
correlator but segments of 64 consecutive bits. Note that 
the sequences can be very long (e.g., ~50,000 bits). In 
order to allow the parallelism needed in this ASIC, the 
code segments must be produced and delivered to the 
correlator within only a few clock cycles, prohibiting a 
naive implementation based on (sequential) linear feed-
back shift registers (LFSRs). The typical solution for this 
problem is to use a direct code generation method 
involving matrix multiplications which allows to produce 
an arbitrary vector in the state space starting from any 
given start state. It is schematically shown in Fig. 2  
 

Fig.  2 - Code Segment Computation Scheme 
 

The basic idea is the following. An arbitrary n-bit 
state vector S’ (where n is the degree of the generator 
polynomial) can be obtained from a start state vector S by 
multiplying S with an appropriate n × n-matrix M: 
S’ = M · S. If M0 corresponds to a single application of the 
generator polynomial, then powers M of M0, i.e., 
M=(M0)p, are matrices that can be used to “jump” to a 
state at an arbitrary offset p from the start state in the 
sequence. In a typical hardware implementation, certain 
selected matrices Mi = (M0)k  are stored as constants such 
that k is a power of 2:  k = 2i. This way, a code segment at 

Antenna 
Interface 

Correlator 

Code 
Generator 

Rotator 
Accumulator 

DSP 
Interface 

LFSR
chain 

*M0 *Mn-1 *Mn-2 *M1 

st
ar

t s
ta

te
 

co
de

 s
eg

m
en

t code segment offset k(n-1 downto 0) 



an offset p from the start state with 2k ≤ p < 2k+1 can be 
computed using only log2 k instead of p matrix 
multiplications. Still, the depth of this data path and the 
hardware required is quite large. Since the value of p may 
range up to around 50,000, there are still 17 stages of 
matrix multiplications needed for computing an n-bit 
segment of the scrambling code sequence. Finally, the 
block labelled ‘LFSR chain’ in Fig. 2 computes the 
remaining (64-n) bits of the code segment.  

How does one verify this large piece of data path, 
i.e., what exactly should the theorems check? The 
property language ITL with its HDL constructs makes it 
very easy to write properties that correspond closely to the 
structure of the RTL code of the design, since the very 
same constructs that are used in the RTL code can also be 
used for writing the theorems. However, simply importing 
RTL statements from the design into the theorems does 
not increase confidence in their correctness, since design 
errors may be imported as well. It is therefore crucial to 
find alternative formulations of the design functionality in 
order to obtain a second viewpoint on the implementation.  

 
 
1: theorem scrambling_code is 
2: for: i = 0..21;  
3: freeze:  
4:  y0 = y_sequence @ t_done; 
5:  y1 = y_sequence @ t_done+1; 
6: assume:  
7:  during [t, t_done+1]: reset /= 1;  
8:  at t+1: p=prev(p)+64;  
9: prove:  
10:  at t_done+1:  
11:   y1(i)=y0(64+i-22)+y0(64+i-25); 
12: end theorem; 

Fig. 3  – Correctness Property for Code generator 
 
A solution is sketched in Fig. 3. This theorem checks 

directly whether the generated code segments conform to 
the definition of the generator polynomial of the 
scrambling code. The structure of the implementation is 
not replicated in the theorem. For the theorem, it is 
assumed that a code segment at an arbitrary offset is 
requested from the code generator module at time t. At 
time t+1, another code segment is requested (line 8) with 
its offset p being larger by exactly 64, the bit-width of a 
generated code segment. In other words, the requested 
segments are assumed to be arbitrary but consecutive. The 
code generator produces both segments after a certain 
fixed delay. The first code segment is produced at time 
t_done, the second at time t_done+1. The freeze part of the 
theorem (lines 3-6) makes both code segments referable as 
y0 and y1. In the prove part (lines 9-11), it is now checked 
whether the produced segments are indeed consecutive, 
and whether the generator polynomial condition holds. 
This theorem formally verifies the complete functionality 
of the scrambling code generator, including an implicit 

check of the correctness of the stored matrices and matrix 
multiplications. (Note that the theorem shown in Fig. 3 
considers only the first 22 bits of the generated code 
segments (line 2). Additional similar theorems checking 
the remaining 42 bits as well as a theorem for the case p=0 
are needed but omitted here for reasons of space and to 
keep things simple.) 

A number of design errors were found by checking 
this theorem, including wrong addressing of the stored 
matrices and errors which were induced by introducing 
pipelining. Some of these errors had a very low proba-
bility to be detected in a test bench simulation. Note that, 
especially in this case, a simulation-based verification 
approach is greatly inferior to property checking. 
A scrambling code generator usually produces a pseudo-
random output sequence which must be compared bit by 
bit to a golden sequence, a tedious task. Moreover, in each 
simulation run, only one out of a vast number of possible 
sequences can be checked, resulting in very low coverage.  

While a theorem like the one in Fig. 3 concisely 
describes the required design functionality in a few lines 
of ITL code, the problems to be solved by the property 
checking engines of CVE can become very complex. 
However, after all design errors had been found and 
removed, the proofs of these theorems could be completed 
within short CPU time, with the exception of the largest of 
the scrambling code generators. In this case, an additional 
constraint had to be introduced into the theorem in order 
to reduce the problem size for the property checker: the 
start state of the code generator had to be restricted to an 
arbitrary but fixed value, making the theorem less general. 
Since, however, this verification problem is symmetric 
with respect to the variable ‘start state’, and generality in 
the much more important variable `code offset’ p was still 
maintained, this restriction is not severe.  

Except for this restriction which was applied to only 
one of the scrambling code generators, the complete code 
generator module was formally (i.e., exhaustively) 
verified with CVE, leading to an outstanding verification 
quality within short verification time. This would have 
been impossible in a traditional simulation-based verifi-
cation approach.  

3.2.2 Data path results 
Similar results were obtained for the remaining 

blocks of the data path of Fig. 1. These blocks contain 
more of the standard arithmetic such as complex addition 
and multiplication. Although arithmetic is typically prob-
lematic for formal verification tools, most blocks could be 
verified by CVE. In some cases we did encounter 
complexity problems, which, however, could always be 
alleviated by manual interaction, for example, by reducing 
the bit widths of the arithmetic operators. Note that 
current research is directed at automating such approa-
ches, e.g., [3,4,5,6], or at improving the backend proof 
engines in order to better cope with arithmetic circuits, 



e.g., [7]. Typical design errors found in these blocks 
include wrong operand signs, wrong comparison operators 
(‘<’ instead of  ‘≤’) and typical entity interface problems.  

Note that property checking cannot completely 
replace simulation. For example, as stated before, 
designers usually maintain a test bench during the design 
process to be able to quickly simulate the basic 
functionality concurrently with coding and to immediately 
remove the most obvious design errors. Interestingly, after 
running these simulations, the designers very often felt 
sure that their designs were free of error, especially 
because their test benches operated the design at 
maximum load.  A number of errors stayed undetected 
just because the designed system was simulated at 
extreme operating conditions, thereby simply disregarding 
the “ordinary” stimuli. These errors were, however 
quickly discovered by formal verification.    

4 Overall Result  
Formal verification has never before been applied to 

a large design project with the degree of coverage that we 
achieved. The block level verification was completely 
done by formal property checking. Comparing this to a 
traditional simulation-based approach, we have to con-
sider several factors, as follows. 

4.1 Verification Cost 
It would be naive to believe that the benefits of 

formal verification come for free. The total human effort 
for writing properties in our project was in the order of 1.5 
person years.  

This has to be compared to the total human effort for 
HDL coding on the one hand, and writing test benches on 
the other. The total coding effort was close to 2 person 
years. As test benches at the module level were not used 
in this project, we can only relate this to previous projects 
and conclude that the formal approach requires less total 
effort than thorough block-level verification, but not 
drastically so. As formal verification started in parallel to 
coding, the whole block verification time was reduced by 
approx. 40%, which saves nearly two months design time. 

The computation time for a complete regression run 
has to be compared to the total simulator run-time. On a 
basis of 30 blocks verified, we find that the sum of all 
verification run times is in the order of 50 CPU hours on 
standard Unix workstations. However, fewer than 2 % of 
all theorems (10 out of a total of about 700) account for 
more than 90% of this computation time. In other words 
98% functional coverage is possible within only 5 hours. 
Given that simulator time is today one of the severely 
limiting factors in the ASIC quality assurance process, 

these figures show that formal property checking provides 
a very valuable progress here. 

4.2 Quality Improvements 
The quality achieved by block-level verification is 

probably the most important factor. It can be measured by 
the number of bugs which make it to the later stages of 
system simulation and emulation, or even to silicon. An 
analysis showed that most of the problems arising during 
system simulation were related to aspects not addressed 
on the formal approach, such as RAM interfaces and 
system-level wiring. On the other hand, property checking 
provably discovered a substantial number of “difficult” 
bugs, i.e. which are related to certain corner cases likely to 
be missed by block-level as well as system-level 
simulation. This was one of the main reasons why there 
was no redesign necessary for that ASIC. 

4.3 Outlook 
Time to market and first-time-right silicon are the 

most important targets in today’s ASIC development. 
The promising results in this challenging ASIC 

project show that formal property checking has the ability 
to give ASIC verification a substantial boost. 

At Siemens Mobile Networks’ UMTS ASIC 
Development, formal property checking is now one of the 
supporting pillars of future design flows. 

5 References 
[1]  Biere, A. and Cimatti, A. and Clarke, E.M. and Zhu, Y. 

Symbolic Model Checking Without BDDs. TACAS’99, 
number 1579 in LNCS, pp 193–207, 1999. 

[2] J. Bormann, C. Spalinger, Formale Verifikation für Nicht-
Formalisten, IT+TI 2/2001. 

[3] R. Brinkmann, Using Symmetry for Problem Reduction in 
Bounded Model Checking on the Register-Transfer Level, 
SymCon 01, Paphos, Cyprus, 2001. 

[4] P. Johannsen, Booster: Speeding Up RTL Property 
Checking of Digital Designs by Word-Level Abstraction, 
Proceedings  CAV'01, pp. 373-377, 2001. 

[5] P. Johannsen, Reducing Bitvector Satisfiability Problems 
to Scale Down Design Sizes for RTL Property Checking, 
Proceedings HLDVT'01, pp. 123-128, 2001. 

[6] P. Johannsen, R. Drechsler, Formal Verification on the RT 
Level - Computing One-To-One Design Abstractions by 
Signal Width Reduction, Proceedings VLSI-SOC'01, 2001. 

[7] D. Stoffel, W. Kunz, Verification of Integer Multipliers on 
the Arithmetic Bit Level, Proceedings IEEE/ACM Intl. 
Conference on Computer-Aided Design (ICCAD-01), pp. 
183-189, 2001.  

 
 

 


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




