
Scheduling Reusable Instructions for Power Reduction

J. S. Hu, N. Vijaykrishnan, S. Kim, M. Kandemir, and M. J. Irwin
Microsystems Design Lab

The Pennsylvania State University
University Park, PA 16802, USA

{jhu,vijay,sookim,kandemir,mji}@cse.psu.edu

Abstract

In this paper, we propose a new issue queue design that
is capable of scheduling reusable instructions. Once the is-
sue queue is reusing instructions, no instruction cache ac-
cess is needed since the instructions are supplied by the is-
sue queue itself. Furthermore, dynamic branch prediction
and instruction decoding can also be avoided permitting the
gating of the front-end stages of the pipeline (the stages be-
fore register renaming). Results using array-intensive codes
show that up to 82% of the total execution cycles, the
pipeline front-end can be gated, providing a power reduc-
tion of 72% in the instruction cache, 33% in the branch pre-
dictor, and 21% in the issue queue, respectively, at a small
performance cost. Our analysis of compiler optimizations
indicates that the power savings can be further improved by
using optimized code.

1. Introduction

Advancing technology has increased the speed gap be-
tween on-chip caches and the datapath. Even in current
technology, the access latency of the level one instruction
cache can hardly be maintained within one cycle (e.g., two
cycles for accessing the trace cache in the Pentium 4 [6]). In
this case, pipelined instruction cache must be implemented
in order to supply instructions each cycle. As a result, the
pipeline depth of the front end of the datapath will increase
(e.g., 6 stages in Pentium 4 [6]). Sophisticated branch pre-
dictors employed in the latest microprocessors are also very
power consuming [11]. This again will increase the power
contribution of the pipeline front-end.

To reduce the power consumption in the pipeline front-
end, stage-skip pipeline [7][2] introduces a small decoded
instruction buffer (DIB) to temporarily store decoded loop
instructions that are reused to stop instruction fetching and
decoding for power reduction. The DIB is controlled by a
special loop-evoking instruction and requires ISA modifi-
cation. Loop caches [10][1] dynamically detect loop struc-
tures and buffer loop instructions or decoded loop instruc-
tions in an additional loop cache for later reuse. A preloaded

loop cache is proposed in [5] using profiling information.
Loops dominating the execution time are preloaded into the
loop cache during system reset based on static profiling.
More generally, filter caches [9][14] use smaller level zero
caches (between the level one cache and datapath) to cap-
ture tight spatial/temporal locality in cache access thus re-
ducing the power consumption in larger level one caches.

In this paper, we propose a new issue queue design that is
capable of instruction reuse. The proposed issue queue has
a mechanism to dynamically detect and identify reusable in-
structions, particularly instructions belonging to tight loops.
Once reusable instructions are detected, the issue queue
switches its operation mode to buffer these instructions.
In contrast to conventional issue logic, buffered instruc-
tions are not removed from the issue queue after they are
issued. After the buffering is finished, the issue queue is
then switched to an operation mode to reuse those buffered
reusable instructions. During this mode, issued (buffered)
instructions keep occupying their entries in the issue queue
and are reused in later cycles. A special mechanism em-
ployed by the issue queue guarantees that the reused in-
structions are register-renamed in the original program or-
der. Thus, the instructions are supplied by the issue queue
itself rather than the fetch unit. There is no need to per-
form instruction cache access, branch prediction, or instruc-
tion decoding. Consequently, the front-end of the datapath
pipeline, i.e., pipelines stages before register renaming, can
be gated during this instruction reusing mode. We propose
this design as a solution to effectively address the power
problem in the front-end of the pipeline. Since no instruc-
tion is entering or leaving the issue queue in this mode, the
power consumption in the issue queue is also reduced due
to the reduced activities.

As embedded microprocessor designs are moving on
to use superscalar architecture for high performance such
as SandCraft MIPS64 embedded processor [12], we target
at an out-of-order multi-issue superscalar processor rather
than simple in-order single-issue processors that have been
the focus of previous research on loop caches. Different
from previous research [7][10][1][9][14], our scheme elim-
inates the need of an additional instruction buffer for loop
caching and utilizes the existing issue queue resources. It

1530-1591/04 $20.00 (c) 2004 IEEE

CommitIssueDecodeFetch

calc
Add

Data

Int Function Units

FP Function Units

File

Register
Resource

Map
Register

Decoder
Inst.

Cache

Reorder Buffer (ROB)

Cache
Inst.

Rename

Gate-Gate-

Detected
Loop

Register #

LRL

Issue

Queue

Control

Rename
Register

SignalSignal

Reuse

Queue
Store
Load

(b)

(a)

DcacheAcc
WriteBackExecuteReg Read

Queue

Figure 1. (a) The datapath diagram and (b)
pipeline stages of the modeled baseline su-
perscalar microprocessor. Parts in dotted
lines are augmented for our new design.

automatically unrolls the loops in the issue queue to reduce
the inter-loop dependences instead of buffering only one it-
eration of the loop in the small DIB or loop cache. Further,
there is no need for ISA modification as in [7]. Note that
the concept and the purpose of instruction reuse in this pa-
per is also different from that proposed in [13]. We spec-
ulatively reuse the decoded instructions buffered in the is-
sue queue to avoid the instruction streaming from the in-
struction cache rather than speculatively reusing the result
of a previous instance of the instruction for performance as
in [13].

The rest part of this paper is organized as follows. We
present our detailed issue queue design in Section 2. Sec-
tion 3 describes the experimental framework and provides
the evaluation results. We investigate the impact of compiler
optimizations in Section 4. Finally, Section 5 concludes the
paper.

2. Modified Issue Queue Design

In this section, the detailed design of our new issue queue
is elaborated. Our design is based on a superscalar archi-
tecture with a separated issue queue and re-order buffer
(ROB) and the datapath model is similar to that of the MIPS
R10000 [15] except that we use a unified issue queue in-
stead of separated integer queue and floating-point queue.
The baseline datapath pipeline is given in Figure 1.

The fetch unit fetches instructions from the instruction
cache and performs branch prediction and next PC genera-
tion. Fetched instructions are then sent to the decoder for de-
coding. Decoded instructions are register-renamed and dis-
patched into the issue queue. At the same time, each instruc-
tion is allocated an entry in the ROB in program order. In-
structions with all source operands ready are waken up and
selected to issue to the appropriate available function units
for execution, and removed from the issue queue. The re-
sults coming either from the function units or the data cache
are written back to the register file. Instructions in ROB are
committed in order.

Reusable instructions are those mainly belonging to loop
structures that are repeatedly executed. Our new issue queue
is thus designed to be able to reuse these instructions in the
loop structures. The new issue queue design consists of the
following four parts: a loop structure detector, a mechanism
to buffer the reusable instructions within the issue queue,
a scheduling mechanism to reuse those buffered instruc-
tions in their program order, and a recovery scheme from
the reuse state to the normal state. The dotted parts in Fig-
ure 1 shows the augmented logic for this new design.

2.1. Detecting Reusable Loop Structures

To enable loop detection, we add logic to check for con-
ditional branch instructions and direct jump instructions
that may form the last instruction of a loop iteration. The
loop detector performs two checks for these instructions:
(1) whether it is a backward branch/jump; (2) whether the
static distance from the current instruction to the target in-
struction is no larger than the issue queue size.

Loop detection can be performed at either the decode
stage or stages after execution stage. If detection takes place
at post-execution stages, the detector can be 100% sure
whether it is a loop or not by comparing the computed target
address and the current instruction address. However, it has
several drawbacks. First, the detection may come too late
for small tight loops. Second, deciding when to start buffer-
ing the detected loop can be complex. Third, the ROB has
to keep the address information for each instruction in flight
in order to perform this detection. On the other hand, per-
forming loop detection at decode stage by using predicted
target address has many advantages. First, loop buffering
can be started immediately after a loop is detected. Sec-
ond, since the instruction fetch buffer is very small (e.g.,
4 or 8 entries), adding address information will not incur
much hardware overhead. Further, the target address of di-
rect jump will be available at decode stage and can be di-
rectly used for this purpose. With these tradeoffs in con-
sideration, we choose to perform loop detection at decode
stage.

2.2. Buffering Reusable Instructions

After a loop is detected and determined to be capturable
(loop size less than or equal to the issue queue size) by the
issue queue, we use two dedicated registersRloophead and
Rlooptail to record the addresses of the starting and ending
instructions of the loop iteration. We use a two-bit register
Riqstate to indicate the current state of the issue queue (00-
Normal, 01-Loop Buffering, 11-CodeReuse, 10-not used).
A complete state transition diagram of the issue queue is
given in Figure 2. The issue queue state is then changed
from Normal to Loop Bufferingstate. In the following cy-
cle, the issue queue starts to buffer instructions as the sec-
ond iteration begins. Our new issue queue is augmented as
illustrated in Figure 3.

 Reuse

Rec
ov

er
y

Detected

Buffering Revoke

M
isprediction Recovery/

Start

Capturable Loop

M
isp

re
di

cti
on

Code_
Buffering

Loop_
Buffering finished

Normal

Figure 2. State machine for the issue queue.

Specifically, each entry is augmented with aclassifica-
tion bit indicating whether this instruction belongs to a loop
being buffered, and aissue state bitindicating whether a
buffered instruction has been issued or not. The logical reg-
ister numbers for each buffered instruction are stored in the
logical register list(LRL). For an issue queue size of 64 en-
tries, the additional hardware cost for these augmented com-
ponents is around 136 byte (= (1 bit + 1 bit + 15 bits for
three logical register numbers) * 64 / 8) cache structure.

After the issue queue entersLoop Bufferingstate, buffer-
ing a reusable instruction requires several operations as the
instruction is renamed and queued into the issue queue: the
classification bit is set, the issue state bit is reset to zero, the
logical register numbers of all the operands are recorded in
the logical register list. With the classification bit set, the in-
struction will not be removed from the issue queue even af-
ter it has been issued. Note that a collapsing design is used
for the issue queue.

We address two important issues concerning the buffer-
ing: when to terminate the instruction buffering and how to
handle procedure calls within a loop, in the following sub-
sections.

2.2.1. Buffering Strategy There are at least two strate-
gies for deciding when to stop buffering and promote to
CodeReusestate. The first strategy is to buffer only one
iteration of the loop. This scheme is simple to implement
and enables more instructions to be reused from the issue
queue. This is because it stops instruction fetch from the in-
struction cache and entersCodeReusestate much earlier
(at the beginning of the third iteration). In contrast, the sec-
ond strategy tries to buffer multiple iterations of the loop ac-
cording to available free entries in the issue queue. We use
an additional counter to record the size of the current buffer-
ing iteration and to predict the size of the next iteration. Af-
ter buffering one iteration of the loop, a decision is made
whether the remaining issue queue can hold another iter-
ation by comparing the counter value with the number of
free entries in the issue queue. If yes, the buffering con-
tinues. Otherwise, the state of the issue queue is switched
from Loop Buffering to CodeReuse, and the front end of
the pipeline is then gated. It automatically unrolls the loop
to exploit more instruction level parallelism, which is basi-
cally the way that the original issue queue works. Also, the
issue queue resource is used more effectively here than in
the first strategy, especially for small loops. Although the

6263 1 0

scan direction
reuse pointer

loopheadR

Rlooptail

rs
rt

rd rdrd

rtrt

rsrsrsrsrs

rtrtrt
rd rd rd

Logical Register List 15 bits

2

10

Original Issue Queue

0

Index

Classification Bit 1 11111 1 bit
 1 bit0 1 0Issue State Bit

Figure 3. The new issue queue with aug-
mented components supporting instruction
reuse.

second strategy does not gate the pipeline front-end as fast
as the first strategy, we choose the second one in this work
for performance sake. If the execution exits the loop (check
with RloopheadandRlooptail) during the buffering state, the
buffering is revoked and the issue queue switches back to
theNormalstate.

2.2.2. Handling Procedure CallsNote that the loop de-
tector has no knowledge about either the existence or the
sizes of procedure calls within a detected loop. This is be-
cause the detection only uses one iteration and happens at
the end of the first iteration of the loop. If the procedure is
small, the issue queue should be managed so as to capture
both the loop and the procedure. Otherwise, it may not be
possible to buffer the loop. Our strategy dealing with pro-
cedure calls works as follows. During theLoop Buffering
state, if a procedure call instruction is decoded, it will keep
buffering. If the issue queue is used up before the loop-
ending instruction is met, which means the procedure is too
large to be captured by the issue queue, the buffering is re-
voked and the issue queue state is changed back toNormal.
Otherwise, the counter value (the size of current iteration in-
cluding procedure calls) is checked with the number of free
entries in the issue queue to make the decision whether to
promote toCodeReusestate or to continue buffering.

2.3. Optimizing Loop Buffering Strategy

To avoid the state thrashing betweenLoop Bufferingand
Normal, we introduce a small non-bufferable loop table
(NBLT) holding the most recent non-bufferable loops (e.g.,
8 loops). The NBLT is implemented in CAM and main-
tained as a FIFO queue. Each entry in NBLT has a valid bit
and the address of the loop-ending instruction. If a detected
loop appears in NBLT, it is identified as non-bufferable. In
this case, no buffering is attempted for this loop. Otherwise,
the issue queue is switched toLoop Bufferingstate. Dur-
ing the Loop Bufferingstate, if an inner loop is detected,
or the execution exits the current loop, or a procedure call
within the loop causes the issue queue to become full be-
fore the loop end is met, the current loop is identified as
a non-bufferable loop and registered with the NBLT table.
Figure 4 shows an example of an non-bufferable loop. With

(bufferable)
Loop

(non-bufferable)
Outer Loop Innermost

slti r2, r24, 499
addiu r24, r24, 1
addiu r5, r5, 2000
addiu r6, r6, 2000

slti r2, r22, 499

addiu r3, r3, 4
addiu r4, r4, 4

addiu r22, r22, 1

sw r2, 0(r4)
subu r2, r24, 422
sw r2, 0(r3)

addu r3, r0, r5
addu r4, r0, r6
beq r20, r0, 0x4002e8
addiu r20, r0, 499
����������
����������
����������
����������addu r22, r0, r0

bne r2, r0, 0x4002a0

addu r2, r24, r22

bne r2, r0, 0x400278

Figure 4. An example of a non-bufferable loop
that is an outer loop in this code piece .

this optimization, the issue queue can eliminate most of the
buffering of non-bufferable loops.

2.4. Reusing Instructions in the Issue Queue

After the reusable instructions of a loop have been suc-
cessfully buffered, the state of the issue queue is switched
to CodeReuse. A gating signal is then sent to the fetch unit
and the instruction decoder. In the following cycles, the is-
sue queue starts to supply instructions itself by reusing the
buffered instructions already in the issue queue. Thus, the
instruction streaming from the instruction cache is no longer
needed and the pipeline front-end is then completely gated.

During instruction scheduling, the classification bit of a
ready-to-issue instruction is checked at the issue time. If this
bit is not set (i.e., its value is zero meaning not a reusable in-
struction), the instruction is removed from the issue queue
after being issued. Otherwise, the instruction still occupies
its entry in the issue queue after its issue. And its corre-
sponding issue state bit is set to indicate that this buffered
instruction has been issued. The issue queue collapses each
cycle if any hole is generated due to the removal of an is-
sued instruction.

We utilize a reuse pointer to scan the buffered instruc-
tions in unidirection for instructions to be reused in the next
cycle. The pointer is initiated to point to the first buffered
instruction. In each cycle, the issue state bits of the firstn
(equal to the issue width) instructions starting from the en-
try pointed by the reuse pointer are checked. If the firstm
(m≤ n) bits are set, which means thesem instructions have
been issued and can be reused, the logical register numbers
of these instructions are fetched from the logical register
list and sent to renaming logic. The reuse pointer then ad-
vances bym and scans instructions for the next cycle. Re-
named instructions update their corresponding entries in the
issue queue. Note that only register information and ROB
pointer of each instruction are updated in this case. Regis-
ter renaming is needed anyway in both this scheme and con-
ventional issue queues and hence is not an overhead. After

the last buffered instruction is reused, the reused pointer is
automatically reset to the position of the first buffered in-
struction. This process repeats until a branch misprediction
is detected due to either the execution exiting the loop or the
execution taking a different path within the loop. The state
of the issue queue is then switched back theNormalstate.

Note that the dynamic branch prediction is avoided dur-
ing the CodeReusestate. Branch instructions are stat-
ically predicted using the previous dynamic prediction
outcome fromLoop Buffering state. The static predic-
tion scheme works very well for loops since the branches
within loops are normally highly-biased for one direc-
tion. In our scheme, the static prediction is still verified
after the branch instruction completes execution. The is-
sue queue exitsCodeReusestate if the static prediction is
detected to be incorrect during this verification.

2.5. RestoringNormal State

When an ongoing buffering is revoked, if an instruc-
tion is buffered (classification bit = 1) and issued (issue
state = 1), it is immediately removed from the issue queue.
All classification bits are then cleared. The issue queue
state is switched back toNormal. If a misprediction is de-
tected at the writeback stage and the issue queue is in the
Loop Bufferingstate, a conventional recovery is carried out
by removing instructions newer than this branch from the is-
sue queue, ROB and restoring registers, followed by the re-
covery process of revoking the current buffering state. If a
misprediction is detected in theCodeReusestate, this may
be due to an early branch outside the current loop, or a
branch within the loop taking different path, or the execu-
tion exiting the current loop. In this case, we perform a con-
ventional branch misprediction recovery followed by the re-
voking process. The gating signal is also reset when restor-
ing theNormalstate. It should be noted that our new issue
queue has no impact on exception handling.

3. Experiments

We model the proposed issue queue using SimpleScalar
3.0 [4] and develop its power model based on Wattch [3].
The baseline configuration for the simulated processor is
given in Table 1. We use a set of array-intensive applica-
tions listed in Table 2 to evaluate our new issue queue.

We find that two factors: the loop structure and the issue
queue size, affect the effectiveness of our proposed issue
queue design. A large loop structure cannot be completely
buffered in a small issue queue. We conduct a set of experi-
ments to evaluate the impact of issue queue size by varying
it from 32 to 256 entries. In these experiments, the ROB size
is set equal to the issue queue size, and the load/store queue
size is half that of the issue queue. An eight-entry NBLT is
used to optimize the loop detection, which helps reduce the
buffering revoke rate from around 40% to 1% below.

Parameters Configuration

Issue Queue 64 entries
Load/Store Queue 32 entries
ROB 64 entries
Fetch Queue 4 entries
Fetch/Decode Width 4 inst. per cycle
Issue/Commit Width 4 inst. per cycle
Function Units 4 IALU, 1 IMULT, 4 FPALU, 1 FPMULT
Branch Predictor bimod, 2048 entries, RAS 8 entries

BTB 512 set 4 way assoc.
L1 ICache 32KB, 2 way, 1 cycle
L1 DCache 32KB, 4 way, 1 cycle
L2 UCache 256KB, 4 way, 8 cycles
TLB ITLB: 16 set 4 way, DTLB: 32 set 4 way

4KB page size, 30 cycle penalty
Memory 80 cycles for first chunk, 8 cycles the rest

Table 1. The baseline configuration.

Name Source Name Source

adi Livermore tomcat Spec95
aps Perfect Club tsf Perfect Club
btrix Spec92/NASA vpenta Spec92/NASA
eflux Perfect Club wss Perfect Club

Table 2. Array-intensive applications.

Once the issue queue entersCodeReusestate, the
pipeline front-end is gated. Figure 5 shows the percent-
ages of the total execution cycles that the front-end of the
pipeline has been gated due to the instruction reuse for is-
sue queues with different sizes. Benchmarksaps, ts f, and
wssachieve very high gated percentage even with small is-
sue queues due to their small loop structures. Some bench-
marks work well only with large issue queues, such asadi,
btrix, e f lux, tomcat, andvpenta. An interesting observa-
tion from this figure is that increasing issue queue size does
not always improve the ability to perform pipeline gat-
ing (e.g., seets f andwss). The main reason for this case
is that a larger issue queue will unroll and buffer more it-
erations of the loop, delaying the instruction reuse and
pipeline gating. On the average, the ability to gate the
pipeline front-end increases from 42% to 82% as the is-
sue queue size increases.

Gated pipeline front-end leads to activity reduction in the
instruction cache, branch predictor, and instruction decoder.
Figure 6 shows the corresponding power reduction in the in-
struction cache ranging from 35% to 72%, branch predictor
from 19% to 33%, and issue queue from 12% to 21%, as
the issue queue size increases from 32 entries to 256 en-
tries. The power reduction in the issue queue is due to the
partial update (only register information and ROB pointer
are updated) during the instruction reuse state in contrast to
removing and inserting the instructions in a conventional is-
sue queue. The overhead power consumption due to the log-
ical register list, non-bufferable loop table (8 entries), and
other supporting logic is also given as a percentage of the
overall power consumption in Figure 6.

adi aps btrix eflux tomcat tsf vpenta wss avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pi
pe

lin
e F

ro
nt−

en
d G

ate
d R

ate
 (in

 C
yc

les
) IQ−32

IQ−64
IQ−128
IQ−256

Figure 5. Percentages of the total execution
cycles that the pipeline front-end has been
gated with different issue queue sizes: 32, 64,
128, 256 entries.

IQ−32 IQ−64 IQ−128 IQ−256
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ov
er

all
 P

ow
er

 (p
er

 C
yc

le)
 S

av
ing

s

Icache
Bpred
IssueQueue
Overhead

Figure 6. Power reduction in the instruction
cache, branch predictor, issue queue, and
overhead power consumption for different is-
sue queue sizes.

The power reduction of the entire processor for each
benchmark at different issue queue sizes is shown in Fig-
ure 7. For benchmarkadi andbtrix, the overall power is in-
creased at some configurations. On the average, the power
reduction is improved from 8% to 12% as the issue queue
size increases. The performance impact of this new issue
queue is illustrated in Figure 8. The average performance
loss ranges from 0.2% (32 entry issue queue) to 4% (256
entry issue queue). This performance degradation is mainly

adi aps btrix eflux tomcat tsf vpenta wss avg
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Ov
er

all
 P

ow
er

 (p
er

 C
yc

le)
 S

av
ing

s

IQ−32
IQ−64
IQ−128
IQ−256

Figure 7. The overall power reduction com-
pared to a baseline microprocessor using the
conventional issue queue at different issue
queue sizes.

adi aps btrix eflux tomcat tsf vpenta wss avg
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Pe

rfo
rm

an
ce

 (I
PC

) D
eg

ra
da

tio
n

IQ−32
IQ−64
IQ−128
IQ−256

Figure 8. Performance impact of reusing in-
structions at different issue queue sizes.

due to the non-fully utilized issue queue (i.e., we only buffer
an integer number of iterations of the loop). In benchmark
btrix, the execution is dominated by a loop with size of
90 instructions that results in a low utilization of the issue
queue with size of 128 entries or 256 entries inCodeReuse
state, consequently a noticeable performance loss (around
12%) as seen in Figure 8.

4. Impact of Compiler Optimizations

We notice that some benchmarks such asadi, btrix,
e f lux, tomcat, andvpentahave large loop structures, and
these loops can hardly be captured with a small issue queue
(e.g., with size of 32 or 64). Compiler optimizations, es-
pecially loop transformations can play an important role in
optimizing these loop structures. In this work, we specifi-
cally focus on loop distribution [8] to reduce the size of the
loop body.

adi aps btrix eflux tomcat tsf vpenta wss avg
−0.05

0

0.05

0.1

0.15

0.2

Ov
er

all
 P

ow
er

 (p
er

 C
yc

le)
 R

ed
uc

tio
n

Original
Optimized

adi aps btrix eflux tomcat tsf vpenta wss avg
−0.05

0

0.05

0.1

0.15

0.2

0.25

Ov
er

all
 P

ow
er

 (p
er

 C
yc

le)
 R

ed
uc

tio
n

Original
Optimized

Figure 9. Impact of compiler optimizations

Figure 9 shows the comparison between optimized code
(performed loop distribution) and non-optimized code, both
simulated with the baseline configuration (64 entry issue
queue). The average power reduction of the entire processor
is increased from 8% to 13% by using the optimized code,
at the cost of a slightly increased performance loss from
1% to 2%, on the average. This improvement of power re-
duction results from the increased percentage of gated cy-
cles (an average from 48% to 86% (not shown due to space
limit)) when executing the optimized code.

5. Conclusions

In this work, we propose a new issue queue design that is
capable of buffering the dynamically detected reusable in-
structions, and reusing these buffered instructions in the is-
sue queue. The front-end of the pipeline is then completely
gated when the issue queue enters instruction reusing state,
thus invoking no activities in the instruction cache, branch
predictor, and the instruction decoder. Consequently, this
leads to a significant power reduction in these components,
and a considerable overall power reduction. Our evaluation
also shows that compiler optimizations (loop transforma-
tions) can further gear the code towards a given issue queue
size and improve these power savings.

Acknowledgments

This work was supported in part by NSF CAREER
Awards 0093085 and 0093082, an NSF grant 0103583, and
a grant from MARCO/GSRC-PAS.

References

[1] T. Anderson and S. Agarwala. Effective hardware-based two-way
loop cache for high performance low power processors. InIEEE
Int’l Conf. on Computer Design, 2000.

[2] R. S. Bajwa et al. Instruction buffering to reduce power in proces-
sors for signal processing.IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 5(4):417–424, December 1997.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. InProc.
HPCA-6, 2000.

[4] D. Burger, A. Kagi, and M. S. Hrishikesh. Memory hierarchy exten-
sions to simplescalar 3.0. Technical Report TR99-25, Department
of Computer Sciences, The University of Texas at Austin, 2000.

[5] A. Gordon-Ross, S. Cotterell, and F. Vahid. Exploiting fixed pro-
grams in embedded systems: A loop cache example.IEEE Com-
puter Architecture Letters, 2002.

[6] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel. The microarchitecture of the pentium 4 processor.
Intel Technical Journal, Q1 2001 Issue, Feb. 2001.

[7] M. Hiraki et al. Stage-skip pipeline: A low power processor archi-
tecture using a decoded instruction buffer. InProc. International
Symposium on Low Power Electronics and Design, 1996.

[8] K. Kennedy and K. S. McKinley. Optimizing for parallelism and
data locality. InProc. the 6th ACM International Conference on Su-
percomputing (ICS’92, Washington, DC, 1992.

[9] J. Kin et al. The filter cache: An energy efficient memory structure.
In Proc. International Symposium on Microarchitecture, 1997.

[10] L. H. Lee, B. Moyer, and J. Arends. Instruction fetch energy reduc-
tion using loop caches for embedded applications with small tight
loops. InProc. International Symposium on Low Power Electron-
ics and Design, 1999.

[11] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R. Stan.
Power issues related to branch prediction. InProc. the 8th Inter-
national Symposium on High-Performance Computer Architecture
(HPCA’02), February 2002.

[12] Silicon Strategies. Sandcraft mips64 embedded processor hits 800-
mhz. http://www.siliconstrategies.com, 2002.

[13] A. Sodani and G. S. Sohi. Dynamic instruction reuse. InProc.
the 24th Annual International Symposium on Computer Architec-
ture (ISCA-97), June 1997.

[14] W. Tang, R. Gupta, and A. Nicolau. Power savings in embedded pro-
cessors through decode filter cache. InProc. Design and Test in Eu-
rope Conference, 2002.

[15] K. C. Yager. The mips r10000 superscalar microprocessor.IEEE
Micro, 16(2):28–40, April 1996.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

