
A Self-Tuning Cache Architecture for Embedded Systems
Chuanjun Zhang

Department of Electrical Engineering
University of California, Riverside

czhang@ee.ucr.edu

Frank Vahid* and Roman Lysecky
Department of Computer Science and Engineering

University of California, Riverside
{vahid/rlysecky}@cs.ucr.edu,

 (* also with the Center for Embedded Computer Systems,
UC Irvine)

Abstract
Memory accesses can account for about half of a microprocessor
system’s power consumption. Customizing a microprocessor
cache’s total size, line size and associativity to a particular
program is well known to have tremendous benefits for
performance and power. Customizing caches has until recently
been restricted to core-based flows, in which a new chip will be
fabricated. However, several configurable cache architectures
have been proposed recently for use in pre-fabricated
microprocessor platforms. Tuning those caches to a program is
still however a cumbersome task left for designers, assisted in part
by recent computer-aided design (CAD) tuning aids. We propose
to move that CAD on-chip, which can greatly increase the
acceptance of configurable caches. We introduce on-chip
hardware implementing an efficient cache tuning heuristic that can
automatically, transparently, and dynamically tune the cache to an
executing program. We carefully designed the heuristic to avoid
any cache flushing, since flushing is power and performance
costly. By simulating numerous Powerstone and MediaBench
benchmarks, we show that such a dynamic self-tuning cache can
reduce memory-access energy by 45% to 55% on average, and as
much as 97%, compared with a four-way set-associative base
cache, completely transparently to the programmer.

Keywords
Cache, configurable, architecture tuning, low power, low energy,
embedded systems, on-chip CAD, dynamic optimization.

1. Introduction
Using a prefabricated microprocessor platform in an embedded
system product provides strong time-to-market advantages over
fabricating an application-specific integrated circuit (ASIC). With
on-chip configurable logic available on many platforms today, the
attractiveness of prefabricated platforms over ASICs expands to
even more situations. A drawback of a prefabricated platform is
that key architectural features, such as cache size, cannot be
synthesized such that they are tuned to the application. While
microprocessor manufacturers could previously provide a variety
of prefabricated ICs spanning the continuum of desired
architectures, providing such variety becomes increasingly difficult
as microprocessors coexist with numerous other coprocessors,
configurable logic, peripherals, etc., in today’s era of system-on-a-
chip platforms.

A solution is for key architectural features to be designed with
built-in configurability, enabling designers to configure those
features to a particular application. Motorola’s M*CORE designers
[6] incorporated a configurable unified set-associative cache whose
four ways could be individually shutdown to reduce dynamic
power during cache accesses. We have designed a highly
configurable cache [13][14] with three parameters that designers
can configure: total size (8, 4 or 2 Kbytes), associativity (4, 2, or 1-
way for 8 Kbytes, 2 or 1-way for 4 Kbytes, and 1-way only for 2

Kbytes), and line size (64, 32 or 16 bytes). The benefits of
optimally tuning a cache is quite significant, resulting in an
average of over 40% savings for Powerstone [6] and MediaBench
[5] benchmarks, and up to 70% on certain benchmarks.

Tuning is presently a cumbersome task imposed on the
designer, who in most cases must manually determine the best
configuration. A designer can use simulation to determine the best
cache parameters, but such simulation is often cumbersome to
setup. Simulations can also be extremely slow, requiring tens of
hours or days to simulate just seconds of an application, and
represents an extra step in the designer’s tool flow. Furthermore,
simulating an application typically uses a fixed set of input data
during execution. Such a simulation approach cannot capture
actual runtime behavior where the data changes dynamically.
Recently, some design automation aids have evolved to assist the
designer in the tuning task [4]. While tuning fits into existing
hardware design flows reasonably well, such simulation-based
tuning does not fit in well with standard, well-established
embedded software design flows, which instead primarily consist
of compile, download and execute.

Several researchers have proposed dynamically tuning cache
parameters. Veidenbaum [10] used an adaptive strategy to adjust
cache line size dynamically to an application. Albonesi [1]
proposed dynamically turning off the cache ways to reduce
dynamic energy dissipation. Balasubramonian [2] dynamically
detects the phase change of an application and configures the
hierarchy of the caches to improve the memory hierarchy
performance and therefore reduce dynamic energy dissipation.
However, these dynamic strategies each manipulate only one cache
parameter, like cache line size, cache size, and cache hierarchy.
Based on monitoring some predetermined criteria, such as cache
miss rate and memory-to-L1 cache data traffic volume in [10], the
instruction per cycle (IPC) in [1], and miss rate, IPC, and branch
frequency in [2], these dynamic strategies increase/decrease or turn
on/off the single aspect of the cache that is tunable.

In our work, we tune four cache parameters: cache line size
(64, 32 or 16 bytes), cache size (8, 4 or 2 Kbytes), associativity (4,
2, or 1-way for 8 Kbytes, 2 or 1-way for 4 Kbytes, and 1-way only
for 2 Kbytes), and cache way prediction (on or off). The space of
configurations is much larger, and hence we propose a method of
dynamically tuning the cache in a very efficient manner. Our
method uses some additional on-chip hardware that dynamically
tunes our configurable cache to an executing program. The tuning
could be applied using different approaches, perhaps being applied
only during a special software-selected tuning mode, during the
startup of a task, whenever a program phase change is detected, or
at fixed time periods. The choice of approach is orthogonal to the
design of the self-tuning architecture itself.

The paper is organized as follows. We briefly describe energy
evaluation in Section 2. In Section 3, we describe our self-tuning

1530-1591/04 $20.00 (c) 2004 IEEE

strategy involving a search heuristic. We provide the results of our
search heuristic in Section 4. We conclude in Section 5.

2. Energy evaluation
Power dissipation in CMOS circuits is comprised of two main
components, static power dissipation due to leakage current, and
dynamic power dissipation due to logic switching current and the
charging and discharging of the load capacitance. Energy equals
power times time. Dynamic energy consumption causes most of
the total energy dissipation in micrometer-scale technologies, but
static energy dissipation will contribute an increasingly larger
portion of total energy dissipation in nanometer-scale technologies.
Therefore, we consider both types of energies.

We should not disregard energy consumption due to accessing
off-chip memory, since fetching instructions and data from off-
chip memory is energy costly because of the high off-chip
capacitance and large off-chip memory storage. Additionally,
when accessing the off-chip memory, the microprocessor may stall
while waiting for the instruction and/or data, and such waiting still
consumes some energy. Thus, we calculate the total energy due to
memory accesses using Equation 1. Furthermore, we compute
energy dissipation of the cache tuner using Equation 2.

We simulated numerous Powerstone [6] and MediaBench [5]
benchmarks using SimpleScalar [3], a cycle-accurate simulator that
includes a MIPS-like microprocessor model, to obtain total cache
accesses, CacheTotal, and cache misses, CacheMisses, for each
benchmark. We obtain the energy of a cache hit, Ehit, from our own
CMOS 0.18 µm layout of our configurable cache (we found our
energy values correspond closely with CACTI [9] values). We
obtain the off-chip memory access energy, Eoff_chip_access, from a
standard Samsung memory, and the stall energy, EuP_stall, from a
0.18 µm MIPS microprocessor. Our total energy, Etotal, captures all
energy related to memory accesses, which is the value of interest
when configuring the cache. Furthermore, we obtained the power
consumed by our cache tuner, which we will describe later,
through simulation of a synthesized version of our cache tuner
written in VHDL. From the simulation, we also obtained the time
required by the tuner to search the cache configurations.

3. Self-tuning strategy
3.1 Problem overview
Given the many different possible configurations of our cache, our
goal is to automatically tune a configurable cache dynamically as
an application executes, thus eliminating the need for tuning via
simulation or manual platform configuration and measurement. We
accomplish this using a small amount of additional hardware, as
shown in Figure 1, that can be enabled and disabled by software.
Our goal is for the tuning process and the required additional

hardware to be as efficient as possible in terms of the size, power,
and performance.

A naive tuning approach exhaustively tries all possible cache
configurations, in some arbitrary order. For each configuration, the
approach measures the cache miss rate and estimates a
configuration’s energy from this miss rate. After trying all
configurations, the approach selects the lowest energy
configuration seen. Such an exhaustive approach has two main
drawbacks. First, an exhaustive search method may involve too
many configurations. While our configurable cache has 27
configurations, increasing the number of values of each parameter
could easily result in over 100 configurations. Consider also that
many other components within the system may have configurable
settings as well – such as a second level of cache, a bus, and even
the microprocessor itself. If we tune our system by considering all
possible configurations, the number of configurations of our cache
multiplies the configuration numbers for other components,
quickly reaching millions of possible configurations (e.g.,
100x100x100= 1,000,000). Thus, we need an approach that
minimizes the number of configurations examined. The second
drawback is that the naive approach may require too many cache
flushes. Searching the cache configurations in an arbitrary order
may require flushing the cache after each configuration to ensure
correct cache behavior, which is very time and power costly.
Without flushing, the new configuration could have items in the
wrong places, yielding incorrect results.

Therefore, we want to develop a tuning heuristic that
minimizes the number of cache configurations examined and
minimizes or eliminates cache flushing, while still finding a near-
optimal cache configuration.

3.2 Heuristic Development through Analysis
From Equation 1, the total energy consumption of memory
accesses is comprised of two main elements, specifically the
energy dissipated by on-chip cache, which includes dynamic cache
access energy and static energy, and the energy consumed by off-
chip memory accesses. Figure 2 provides the energy dissipation of
on-chip cache, off-chip memory, and total memory energy
dissipation for the benchmark parser from Spec 2000 [12]. When
the cache size is increased from 1 Kbyte to 1 Mbyte, the miss rate
(not shown due to space limits) dramatically decreases, which

cycleperstatictotalstatic

fillblockcachestalluPaccessoffchipmiss

missMisseshittotaldynamic

staticdynamictotal

ECyclesE

EEEE
ECacheECacheE

EEE

__

*

**

=

++=

+=

+=

Equation 1: Equations for calculating total energy due
to memory accesses.

Figure 1: Self-tuning cache architecture.

NumSearchTimePE totaltunertuner **=

Equation 2: Equation for calculating energy
consumption of the heuristic cache tuner.

0

1

2

3

4

5

1K
B

2K
B

4K
B

8K
B

16
K

B

32
K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

1M
B

Cache Size

En
er

gy
(J

)

Cache Memory Total

Figure 2: Energy dissipation of on-chip cache, off-chip memory and

the total for benchmark parser at cache size from 1 Kbyte to 1 Mbyte.

Microprocessor

I $

Tuner

D $

Off chip Memory

results in a decrease in off-chip memory accesses and a decrease in
off-chip memory energy consumption. As shown in Figure 2,
while the energy dissipation of off-chip memory decreases rapidly
as we increase the cache size from 1 Kbyte to 16 Kbytes, as we
further increase the cache size, the energy consumption of off-chip
memory decreases very little. However, the energy dissipated by
the on-chip cache continues to increase as the cache size increases.
Therefore, the increase in on-chip cache energy dissipation will
eventually outweigh the decrease in energy of the off-chip
memory. For the benchmark parser, this turning point is at a cache
size of 16 Kbytes, at which increasing the cache size will not
improve performance greatly but will increase energy dissipation
significantly. Unfortunately, this tradeoff point is different for
every application, and such tradeoffs exist not only for cache size,
but also for cache associativity and line size. For example, for
many applications, when associativity is increased from 4-way to
8-way, the performance improvement is very limited, but the
energy dissipation is greatly increased because more data and tag
ways are accessed concurrently. Therefore, in developing our
searching heuristic to find the best cache configuration, for each
possible cache parameter we attempt to iteratively adjust each
parameter, with the goal of increasing cache performance, as long
as a decrease in total energy dissipation is observed.

To help us develop the heuristic for efficiently searching the
configuration space, we first analyzed each parameter – cache size,
associativity, line size, and way prediction – to determine their
impacts on miss rate and energy. The parameter with the greatest
impact would likely be the best to configure first. We executed 13
of Motorola’s Powerstone benchmarks [6] and 6 MediaBench
benchmarks [5] for all 27 possible cache configurations. Although
there are 3 cache parameters each with 3 possible values, and way
prediction as on or off, there are less than 3*3*3*2=54
configurations, because not all configurations are possible – size is
decreased by shutting down ways, so a 4-way 2 Kbyte cache is not
possible, for example. A common way to evaluate the impact of
several variables is to fix some variables and vary the others. We
therefore fix three parameters and vary the fourth.

Figure 3 shows the average instruction miss rate of all the
benchmarks simulated and the average energy consumption of the
instruction cache for the examined configurations. Figure 4 shows
the average data miss rate of all the benchmarks simulated and the
average energy consumption of the data cache. Total cache sizes
are shown as 8 Kbytes, 4 Kbytes, and 2 Kbytes, line sizes as 16
bytes, 32 bytes, and 64 bytes, and associativity as 1-way, 2-way,
and 4-way. The energy dissipation for way prediction isn’t shown,
as way prediction doesn’t impact miss rate.

By looking at the varying bar heights in each group of bars, we
see in general that total cache size has the biggest average impact
on energy and miss rate – changing cache size can impact energy
by a factor of two or more. By looking at the difference in the
same shaded bars for different line sizes, we notice very little
energy variation for different instruction cache line size. However,
we do see more variation in data cache energy due to line size,
especially for a 2 Kbyte cache. This result is not surprising, since
data addresses tend not to have as strong of a spatial locality
compared with instruction addresses. Finally, by examining the
same shaded bars for different associativity, we notice very little
change in energy consumption, indicating that associativity has a
smaller impact on energy consumption than either cache size or
line size. From our analysis, we developed a search heuristic that
finds the best cache size first, determines the best line size,
determines the best associativity, and finally if the best
associativity is more than one, our heuristic determines whether to
use way prediction.

3.3 Minimizing Cache Flushing
In the previous section, we determined a heuristic order in which to
vary the parameters. However, the order in which we vary the
values of each parameter also matters – one order may require
cache flushing and/or incur extra misses, while a different order
may not.

For cache size, starting with the smallest cache and increasing
the size is preferable over decreasing the size. We’ll illustrate the
concept using a trivially small 8 byte memory for simplicity.
Figure 5 illustrates an 8 byte memory, a 4 byte cache configured as
1-way and 2-way, and a 2 byte 1-way cache. When decreasing the
cache size from 4 bytes to 2 bytes as shown in Figure 5(b) and (c),
an original hit may turn into a miss after the cache entries are
shutdown. For example, addresses 000 (index=00, tag=00) and 110
(index=10, tag=11) are both hits before shutdown, but will be
mapped to the same block indexed by 0, resulting in a miss. While
the width of the tag is fixed (in this example the tag is two bits
wide), the width of the index changes as the cache’s configuration

0
0 . 2
0 . 4
0 . 6
0 . 8

1

1 6 B 3 2 B 6 4 B 1 W 2 W 4 W

A
ve

. I
$

en
er

gy
 8 k 4 k 2 k

0%

4%

8%

12%

16B 32B 64B 1W 2W 4W

A
ve

. I
$

m
is

s r
at

e 8k 4k 2k

Figure 3:Average instruction cache miss rate (top) and

normalized instruction fetch energy (bottom) of the benchmarks.

0%

1%

2%

3%

4%

16B 32B 64B 1W 2W 4W

A
ve

 D
$

m
is

s r
at

e 8k 4k 2k

1.2

0.0

0.2

0.4

0.6

0.8

1.0

16B 32B 64B 1W 2W 4W

A
ve

. D
$

en
er

gy

8k 4k 2k

Figure 4: Average data cache miss rate (top) and normalized

data fetch energy (bottom) of the benchmarks.

One way

Line size 32B

One way
Line size 32B

One way

One way

Line size 32B

Line size 32B

does. For data cache, we have to write back such items when the
data in the shutdown ways is dirty. Such flushing is expensive in
terms of power and time.

Alternatively, increasing the cache size does not require
flushing. For example, before the cache size is increased, addresses
100 and 010 are mapped to the cache block indexed at 0. After the
cache size is increased, the address 100 will be mapped to index
00, and the address 010 will be mapped to index 10, so there may
be an extra miss. However, no write back is necessary in this case,
and we thus avoid flushing.

For associativity, increasing associativity is preferable over
decreasing, as shown in Figure 5(a) and (b). When associativity is
increased, there will be no extra misses or errors incurred, because
more ways are activated to read the data. For example, if addresses
000 and 010 are both hits before the increase of the associativity,
then both addresses will still be hits after the associativity is
increased. However, decreasing the associativity may turn a hit
into a miss, increasing the miss rate. In either case, the cache does
not need to flush the data and no errors will occur if we design the
configurable cache to always check the full tag, instead of reducing
the tag to one bit in the direct mapped case. Furthermore, reducing
the cache’s tag to two bits when configured as a direct mapped
cache yields no significant power advantage, and therefore,
checking the full tag is reasonable.

In determining the best line size, increasing or decreasing the
line size will result in the same behavior, since we use a physical
line size of 16 bytes. Therefore, no extra misses will occur and no
flushing is needed.

We only use way prediction in a set associative cache. The
accuracy of way prediction depends on each application.
Generally, prediction accuracy for a set associative instruction
cache is around 90% and around 70% for a data cache [8]. An
incorrect prediction will incur extra energy dissipation and an extra
cycle to read the data.

3.4 Search Heuristic
Based on the above analyses, we use a heuristic to search for the
best cache parameters. The inputs to the heuristic are:

• Cache size: C[i], 1≤ i ≤ n, n is the number of possible
cache size; n=3 in our configurable cache, where C[1] =
2 Kbyte, C[2] = 4 Kbyte, and C[3] = 8 Kbyte;

• Cache associativity: A[j], 1 ≤ j ≤ m, m is the number of
possible cache associativities; m=3 in our configurable
cache, where A[1] = 1 way, A[2] = 2 ways, and A[3] =
4 ways;

• Cache line size: L[k], 1 ≤ k ≤ p, p is the number of
possible cache line sizes; p=3 in our configurable cache,
where L[1] = 16 bytes, L[2] = 32 bytes, and L[3] = 64
bytes; and

• Way prediction: W[1] = off, W[2]= on.
Figure 6 provides psuedocode for our search heuristic, which

we use to determine the best cache configuration. Our heuristic
starts with a 2 Kbyte direct-mapped cache where the line size is 16
bytes. We then gradually increase the total cache size to our largest
possible size of 8 Kbytes as long as increasing the size of the cache
results in a decrease in total energy. After determining the best
cache size, we begin increasing the line size from 16 bytes to 32
bytes and finally 64 bytes. Once again, as we increase the line size
of the cache, if we do not notice a decrease in energy consumption,
we choose the best line size configuration we have seen so far.
Similarly, we then determine the best associativity by gradually
increasing the associativity until we see no further improvement in
energy consumption. Finally, we determine if enabling way
prediction results in any energy savings.

While our search heuristic is scalable to larger caches, which
have more possible settings for cache size, line size, and
associativity, we have not analyzed the accuracy of our heuristic
with larger caches but plan to do so as future work.

We can describe the efficiency of our search heuristic as
follows. Suppose there are n configurable parameters, and each
parameter has m values, then there are a total of mn different
combinations, assuming the m values of the n parameters are
independent. However, our heuristic only searches m*n
combinations at most. Suppose we have 10 parameters of which
each has 10 values. Brute force searching searches 10,000,000,000
combinations, while the heuristic searches 100 instead.

We can also use the heuristic to search through a multilevel
cache memory system. Suppose we have 16 Kbyte 8-way
instruction and data caches with line sizes of 8, 16, 32, and 64
bytes. Suppose there is also a second level unified L2 cache, which
is a 256 Kbyte 8-way cache with a line size of 64, 128, 256, and

Figure 5: Cache flush analysis when changing cache
associativity and cache size. Tag is always two-bits wide.

Address space in memory will be mapped to the cache with
the same pattern.

Cache Tuning Heuristic Algorithm
Input: cache size: C[i], cache associativity: A[i], cache
line size: L[j], way prediction: W[1] = off ,W[2]= on
Output: the best Cache size C, associativity A, line size L
and way prediction status

begin: A = A[1], L = L[1], W = W[1], E[0] = 0
 for i =1 to n do
 energy calculation using Equation 1:
 E[i] = f(C[i],A,L,W)
 if E[i]<E[i-1] break
 end
 Cbest= C[i],E[1] = E[i]
 for j =2 to p do
 energy calculation using Equation 1:
 E [j] = f (Cbest , A, L[j], W)
 if E [j]<E [j-1] break
 end
 Lbest= L[j],E[i] = E[j]
 for k = 2 to m do
 energy calculation using Equation 1:
 E[k] = f(Cbest, A[k] , Lbest , W)
 if E[k]<E[k-1] break
 end
 Abest= A[k], E[0]=E[k]
 if Abest = 1 then
 Wbest = W[1]
 else
 W = W[2]
 if E[1] = f(Cbest, Abest , Lbest , W) <E[0] then

Wbest = W[2]
output: Cbest, Abest , Lbest, Wbest.

Figure 6: Search heuristic for determining the best cache

configuration.

8 byte
Memory

2-way
 4 byte cache

1-way
 4 byte cache

1-way
 2 byte cache

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0 1

1-bit index

00

01

10

11
 2-bit index 0 1

1-bit index

cache size increases associativity increases

sh
ut

do
w

n

(a) (b) (c)

cache size decreasesassociativity decreases

512 bytes. The total solution space is 40*40*40 = 64000.
However, by using our heuristic, we search 10+10+10 = 30
combinations at most.

3.5 Implementing the Heuristic in Hardware
We could implement our cache tuning heuristic in either software
or hardware. In a software-based approach, the system processor
would execute the search heuristic. Executing the heuristic on the
system processor would not only change the runtime behavior of
the application but also affect the cache behavior, possibly
resulting in the search heuristic choosing a non-optimal cache
configuration. Therefore, we prefer a hardware-based approach
that does not significantly impact overall area or power.

Implementing the search heuristic in hardware is achieved
using a simple state machine controlling a simple datapath, shown
in Figure 7. In the datapath, there are eighteen registers. We use
three of the registers to collect runtime information, the total
number of cache hits and misses, and the total cycles. Six
additional registers store the cache hit energy per cache access,
which correspond to 8 Kbytes 4-way, 2-way, and 1-way; 4 Kbytes
2-way and 1-way; and 2 Kbytes 1-way configurations. The
physical line size is 16 bytes, so the cache hit energy for different
cache line sizes is the same. We use three registers to store the
miss energy, which corresponds to line sizes of 16 bytes, 32 bytes,
and 64 bytes respectively. Because static power dissipation
depends on the cache size only, we use three more registers to
store the static power dissipation corresponding to 8 Kbyte, 4
Kbyte, and 2 Kbyte caches, respectively. All fifteen registers are
16 bits wide. We also need one register to hold the result of energy
calculations and another register to hold the lowest energy of the
cache configuration tested. Both of these registers are 32 bits wide.
The last register is the configure register that is used to configure
the cache. We have four cache parameters to configure, where
cache size, line size and associativity have three possible values,
and prediction can either be on or off. Therefore, the configure
register is seven bits wide. The FSM controls the datapath using
the signal “control” and the output of the comparator within the
datapath is an input to the FSM.

Figure 8 shows the FSM of the cache tuner composed of three
smaller state machines. The first state machine is for cache
parameters, which we will refer to as the parameter state machine
(PSM). The first state of the PSM is the start state, which has to
wait for the start signal to start the cache tuning. The second state,
state P1, is for tuning the cache size, where the best cache size is
determined in this state. The other states P2, P3, and P4 are for

cache line size, cache associativity, and way prediction,
respectively. The second state machine determines the energy
dissipation for the many possible values of each cache parameter.
We will refer to this state machine as the value state machine
(VSM). The highest possible value of these cache parameters is
three, so we use four states in the VSM. If the current state of PSM
is P1, corresponding to determining the best cache size, the second
state of the VSM will determine the energy of a 2 Kbyte cache; the
third state, V2, is for a 4 Kbyte cache, and V3 is for an 8 Kbyte
cache. The first state, V0, is an interface state between PSM and
VSM. If the PSM is P2, which is for line size tuning, then the
second state of the VSM, V1, is for a line size of 16 bytes, the third
state of VSM, V2, is for a line size of 32 bytes, and the last state,
V3, is for a line size of 64 bytes. We also need the third state
machine to control the calculation of the energy. Because we have
three multiplications, and only one multiplier, we use a state
machine that has four states to compute the energy. We call this
state machine the calculate state machine (CSM). The first state is
also an interface state between VSM and CSM.

In Figure 8, the solid lines show state transitions in the three
state machines, respectively. The PSM states, P1, P2, P3, and P4
depend on VSM, although only P2 to V0 is drawn. In the same
way, VSM states, V1, V2, and V3 depend on CSM, but only
dependence of V2 on C0 is drawn.

4. Experiments
Table 1 show the results of our search heuristic, for instruction and
data cache configurations. Our search heuristic only searches on
average 5.8 configurations compared to 27 configurations that an
exhaustive approach would analyze, and involves no cache
flushing. Furthermore, the heuristic finds the optimal configuration
in nearly all cases. For the two data cache configurations where the
heuristic doesn’t find the optimal, pjpeg and mpeg2, the
configuration found is only 5% and 12% worse than the optimal,
respectively. Additionally, our results demonstrate that way
prediction is only beneficial for instruction caches and that only a
4-way set associative instruction cache has lower energy
consumption when way prediction is used. In general, way
prediction is beneficial when considering a set associative cache.
However, for the benchmarks we examined, the cache
configurations with the lowest energy dissipation were mostly
direct mapped caches where way prediction is not applicable.

For the benchmarks mpeg2 and pjpeg, our heuristic search
does not choose the optimal cache configuration. The optimal data
cache configuration of mpeg2 is an 8 Kbyte 2-way set associative
cache with a line size of 16 bytes. However, the heuristic selects a
4 Kbyte 2-way set associative cache with a line size of 16 bytes.
For a direct mapped cache with a line size of 16 bytes, the miss
rate of the data cache for mpeg2 is 3.29% using a 2 Kbyte cache,
0.82% using a 4 Kbyte cache, and 0.58% using a 8 Kbyte cache.
By increasing the cache size from 2 Kbytes to 4 Kbytes, we
achieve a 4X miss rate reduction. By increasing the cache size
further to 8 Kbytes, we only achieve a further reduction in miss
rate of 1.4X. Larger caches consume more dynamic and static
energy. Hence, a larger cache is only preferable if the improved
miss rate results in large enough reduction in energy consumption
in the off-chip memory to overcome the increased energy
consumption of the larger cache. For mpeg2, the reduced miss rate
achieved using an 8 Kbyte cache is not large enough to overcome
the added energy consumed by the cache itself and we therefore
select a cache size of 4 Kbytes. When cache associativity is
considered, the miss rate of the 8 Kbyte cache is significantly
reduced when the associativity is increased from direct mapped to
2 way set associative, which results in a 5X reduction in miss rate.

Figure 7: FSMD of the cache tuner

Figure 8: FSM of the cache tuner.

com_out

 hit energies
miss energies
 static energies

hit num
miss num
total cycle

multiplier

mux mux

adder

register

FS
M

comparator

lowest energy
control

configure register

Parameter state machine
PSM

Start P0

P1

P2

P4 P3

Calculation state machine
CSM

Value state machine
VSM

V0

V1

V2

V3

C0

C1

C2

C3

When our heuristic is determining the best cache size, the heuristic
does not predict what will happen when associativity is increased.
Therefore, the heuristic did not choose the optimal cache
configurations in the cases of mpeg2 and pjpeg.

We also developed and compared several other search
heuristics. One particular search heuristic searched in the order of
line size, associativity, way prediction and cache size. This
heuristic did not find the optimal configuration in 11 out of 18
examples for the instruction cache and in 7 out of 18 examples for
the data cache. For both caches, the sub-optimal configurations
consumed up to 7% more energy.

We sought to develop tuning hardware that imposes little area
and power overhead. The cache tuner consists of a few registers, a
small custom circuit implementing the state machine (synthesized
to hardware), an arithmetic unit capable of performing addition, a
slow multiplier (fast multipliers are not necessary since the
equations are only occasionally computed), a small control circuit
that uses the arithmetic unit to compute energy, and a comparator.
We designed the cache tuner hardware using VHDL and
synthesized the tuner using Synopsys Design Compiler. The total
tuner size was about 4,000 gates, or 0.039 mm2 in 0.18 µm CMOS
technology. Compared to the reported size of the MIPS 4Kp with
caches [7], this represents an increase in area of just over 3%. The
power consumption of the cache tuner is 2.69 mW at 200 MHz,
which is only 0.5% of the power consumed by a MIPS processor.
Furthermore, we only use the tuning hardware during the tuning
stage; the hardware can be shutdown after the best configuration is
determined.

From gate level simulations of the cache tuner, we determined
the total number of cycles used to finish one cache configuration is
164 cycles. Executing at 200 MHz, where the average number of
cache configurations searched is 5.4, the average energy
consumption of the cache tuner is only 11.9 nJ. Compared with the
total energy dissipation of the benchmarks, which ranged from
0.16 mJ to 3.03 J with an average of 2.34 J, the energy dissipation
of the cache tuner is negligible.

In order to show the impact that data cache flushing would
have had (recall we avoided flushing by careful ordering of the
search), we computed the energy consumption of the benchmarks
when cache size is configured in the order of 8 Kbytes down to 2
Kbytes. The average energy consumption due to writing back dirty

data ranges from 9.48 µJ to 21 mJ with an average 5.38 mJ. Thus,
if we search the possible cache size configurations from largest to
smallest, the additional energy dissipation due to cache flushes
would be 480,000 times larger than that of our cache tuner.

5. Conclusions
A configurable cache enables tuning of the cache to a particular
program, which can significantly reduce memory access power
that often accounts for half a microprocessor system’s power. Our
self-tuning on-chip CAD method findings the best configuration
automatically, thus relieving designers from the burden of having
to perform simulations or manual physical measurements to
determine the best configuration. Our heuristic minimizes the
number of configurations examined during tuning, and minimizes
the need for cache flushing. Energy savings of such a cache
average 40% compared to a standard cache. The self-tuning cache
can be used in a variety of approaches tuning approches. Moving
traditional desktop CAD algorithms to on-chip hardware will likely
become increasingly common as chip transistor capacities continue
to increase.

6. Acknowledgements
This work was supported by the National Science Foundation
(CCR-0203829, CCR-9876006) and by the Semiconductor
Research Corporation (CSR 2002-RJ-1046G).

7. References
[1] D.H. Albonesi, “Selective Cache Way: On-Demand Cache Resource

Allocation,” Journal of Instruction Level Parallelism, 2000.

[2] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, “Memory Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor Architectures,” 33rd
International Symposium on Microarchitecture, 2000

[3] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version
2.0,” Univ. of Wisconsin-Madison Computer Sciences Dept,
Technical Report #1342, 1997.

[4] T. Givargis and F. Vahid, “Platune: A Tuning Framework for
System-on-a-Chip Platforms,” IEEE Transaction. on CAD, Vol. 21,
No. 11, 2002.

[5] C. Lee, M. Potkonjak and W. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communications Systems,” International Symposium on
Microarchitecture, 1997.

[6] A. Malik, B. Moyer, and D. Cermak, “A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility,”
International Symposium on Low Power Electronics and Design,
2000.

[7] http://www.mips.com/products/s2p3.html, 2003.
[8] M. Powell, A.Agaewal, T. Vijaykumar, Babak Falsafi, and K. Roy,

“Reducing Set-Associative Cache Energy via Way-Prediction and
Selective Direct Mapping,” 34th International Symposium on
Microarchitecture, 2001.

[9] G. Reinmann and N.P. Jouppi, “CACTI2.0: An Integrated Cache
Timing and Power Model,” COMPAQ Western Research Lab, 1999.

[10] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting
cache line size to application behavior,” International Conference on
Supercomputing, 1999.

[11] S. Segars, “Low Power Design Techniques for Microprocessors,”
IEEE International Solid-State Circuits Conference Tutorial, 2001.

[12] http://www.specbench.org
[13] C. Zhang, F. Vahid, W. Najjar. Energy Benefits of a Configurable

Line Size Cache for Embedded Systems. International Symposium on
VLSI Design, 2003.

[14] C. Zhang, F. Vahid, W. Najjar. A Highly Configurable Cache
Architecture for Embedded Systems. In the 30th ACM/IEEE
International Symposium on Computer Architecture, 2003.

Table 1: Results of search heuristic. Ben. is the benchmark
considered, cfg. is the cache configuration selected, No. is
the number of configurations examined by our heuristic,

and E% is the energy savings of both I-cache and D-cache
Ben. I-cache cfg. No. D-cache cfg. No. I-E% D-E%

padpcm 8K_1W_64B 7 8K_1W_32B 7 23% 77%
crc 2K_1W_32B 4 4K_1W_64B 6 70% 30%

auto 8K_2W_16B 7 4K_1W_32B 6 3% 97%
bcnt 2K_1W_32B 4 2K_1W_64B 4 70% 30%
bilv 4K_1W_64B 6 2K_1W_64B 4 64% 36%

binary 2K_1W_32B 4 2K_1W_64B 4 54% 46%
blit 2K_1W_32B 4 8K_2W_32B 8 60% 40%

brev 4K_1W_32B 6 2K_1W_64B 4 63% 37%
g3fax 4K_1W_32B 6 4K_1W_16B 5 60% 40%

fir 4K_1W_32B 6 2K_1W_64B 4 29% 71%
jpeg 8K_4W_32B 8 4K_2W_32B 7 6% 94%

pjepg 4K_1W_32B 6 4K_1W_16B 5 51% 49%
4K_2W_64B

ucbqsort 4K_1W_16B 6 4K_1W_64B 6 63% 37%
tv 8K_1W_16B 7 8K_2W_16B 7 37% 63%

adpcm 2K_1W_16B 5 4K_1W_16B 5 64% 36%
epic 2K_1W_64B 5 8K_1W_16B 6 39% 61%
g721 8K_4W_16B_P 8 2K_1W_16B 3 15% 85%

pegwit 4K_1W_16B 5 4K_1W_16B 5 37% 63%
mpeg2 4K_1W_32B 6 4k_2w_16B 6 40% 60%

8K_2W_16B
Average: 5.8 Average: 5.4 45% 55%

optimal

optimal

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

