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Abstract

The main contribution of this paper is a novel hierarchi-
cal scheme for adaptive dynamic power management (DPM)
under nonstationary service requests. We model the non-
stationary arrival process of service requests as a Markov-
modulated stochastic process in which the stochastic process
for eachmodulation statemodels a particular stationarymode
of the arrival process. The bottom layer of our hierarchical ar-
chitecture is a set of stationary optimal DPM policies, pre-
calculated off-line for selected modes from policy optimization
in Markov decision processes. The supervisory power man-
ager at the top layer adaptively and optimally switches among
these stationary policies on-line to accommodate the actual
mode-switching arrival dynamics. Simulation results show
that our approach, under highly nonstationary requests, can
lead to significant power savings compared to previously pro-
posed heuristic approaches.

Keywords: low-power design, hierarchical adaptive dy-
namic power management, nonstationary service requests.

1. Introduction

Dynamicpowermanagement (DPM)hasemergedasanef-
fectivemeans of savingpower and enabling theuse of portable
devices (laptops, PDAs, etc.). At the very heart of this ap-
proach, lies the ability of exploiting thevariability in the oper-
ation conditions that portable devices normally have to deal
with. Indeed, many computing devices offer multiple oper-
ating states with different levels of power consumption and
performance. DPM saves power by selectively switching a de-
vice into lower power states when there is no activity to re-
duce power consumption without severely affecting the over-
all performance of the device [3][8].

The framework illustrated inFig. 1 iswidelyused (e.g., see
[2]) to study theDPMoptimizationproblem.Service requests
arrive at the device according to a probabilistic model (that
is, the probability distribution of the inter-arrival times) and
are serviced by the device with another probabilistic model
(the probability distribution of the service times). As shown
in Fig. 1, the device serves one request at a time, and a buffer
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Figure 1. DPM of a device with two power states

holds the service requests that cannot be serviced immedi-
ately. The power manager can command the device tran-
sit into different power states. Now, depending on the ac-
tual DPM policy, the power state transitions take random
amounts of time that follow some probability distributions.
If these arrival, service and transition processes are station-
ary random processes, then the DPM problem can be formu-
lated as a Markov decision process (MDP) [1, 7, 10]. For this
problem, a stationary optimal DPM policy can be computed
to minimize the power consumption under performance (i.e.,
waiting time and loss probability) constraints.

In most cases, however, the service request arrival pro-
cess is not stationary. For example, the service requests to a
hard disk drive (HDD) can vary significantly, as the pattern
of application accessing the disk changes. Figure 2(a) shows
a two-hour long trace of service requests in which five ap-
plications (Windows Explorer, Internet Explorer, Microsoft
Outlook, Adobe Photoshop and Windows Media Player), in a
Windows2000environment, access theHDDalternatively for
read/writeoperations (transfers).Aswecansee, the statistics
of the arrival times of the transfers vary dramatically among
these applications. As it turns out, this wide variation gives
us ample opportunities for power savings.

The contribution of this paper is a novel hierarchical
scheme for adaptive DPM under nonstationary service re-
quests. We model the nonstationary arrival process of service
requests as a Markov-modulated stochastic process, a multi-
mode model in which each mode corresponds to a given work-
load (a stationary arrival process),whilemode transitions are
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Figure 2. A two-hour HDD trace: a) read/write
per second b) application (mode) switching

modeled as a discrete-time Markov chain. From the multi-
mode model of the service request arrival process, the two-
level hierarchical scheme forDPMproposed in this paper is as
follows. The lower level comprises a set of pre-computed sta-
tionary optimal DPM policies: each (randomized) policy se-
lects the device operating state according to the current sys-
tem state. The upper level selects the DPM policy to be ap-
plied at any time according to the current system state and
the currentmode of the arrival process (if themode is known).
The big advantages of this hierarchical DPM algorithm is its
adaptiveness to changes in the pattern of the service requests
and the easiness in practical implementation (as part of the
OS, for instance) since it does not assume any prior knowl-
edge of the parameters in the Markov-modulated model.

A previous approach of DPM for nonstationary requests
is proposed in [4], in which the power manager directly esti-
mates the arrival statistics and calculates the DPM policy by
interpolating a set of pre-characterized policies designed for
a set of statistical values. The approach in [4] is similar to our
approach in that it uses pre-calculated policies. The funda-
mental difference between the approach in [4] and ours is that
the authors in [4] rely on “identifying the mode and then ap-
ply the stationaryoptimalpolicycorresponding to themode if
there is one available” (this is called mode-matching). In con-
trast, ourapproachenables amore complicatedpolicy switch-
ing. More precisely, mode-matching is optimal only when the
mode evolution process is slow enough because the station-
ary optimal policies are designed under the assumption that
the mode remains constant. As we will see later in the pa-
per, when the mode switching dynamics is taken into consid-
eration, it may be better to use one of the policies designed for
a different mode. This is the intuition behind the power sav-
ings that we observe compared to the approach in [4].

To fully validate our approach, we provide simulations of
DPM in HDDs for which the service request arrivals are mod-
eled as a Markov modulated Poisson process [5]. We compare
our optimal switching to the sub-optimal mode-matching,
and demonstrate that, indeed, our approach can lead to sig-
nificant power savings.

The following section presents the formulation of DPM
problem as an MDP when the service request is stationary,

which serves as a starting point for our hierarchical formu-
lation for the nonstationary case. Section 3 presents hierar-
chical adaptive DPM scheme and Sect. 4 presents results of
several simulation studies applying our scheme to the HDD
problem. The concluding section summarizes the contribu-
tion of this paper.

2. Stationary DPM Policies

Conventionalpowermanagement isbasedona simple time
out policy [6]. The weakness of this approach is that the time-
out value does not use any models of the service request ar-
rival process (called the usage pattern in this paper) for the
device. A more formal approach in [1] based on stochastic op-
timization overcomes the shortcomings of the time-out ap-
proach, where the power manager solves an MDP problem to
achieve the optimization.

To get a better intuition about power management, we
simulate DPM on an HDD with the power states in Fig. 1
and a buffer of length one. The HDD parameters used in our
simulation are as follows: Pa = 2.1W ; Pi = 0.65W ; Pai =
Pia = 1.4W . Tai = Tia = 0.4s are expected values of the ran-
dom power state transition times with exponential distribu-
tions. The service rate is 1.0 request/second (r/s) for the ac-
tive HDD modeled as an exponential server1.

In a more formal sense, when the service request ar-
rives as a Poisson process, the system shown in Fig. 1 can
be modeled as a continuous-time MDP, which can be dis-
cretized by sampling the continuous-time system at times
when request-arrival, service-completion and power-state
transition-completion events occur (see Fig. 1).

The discrete-time MDP is built on a discrete-time con-
trolled Markov chain denoted as S = {Sn, n ≥ 0}. The
state space of the Markov chain is Σ = {(nhq, nps), nhq =
0, 1, 2, nps = 1, 2}, where nhq is the total number of re-
quests in the buffer and HDD, and nps is the power state
of the HDD (1 for active and 2 for idle). The action space is
A = {GO−ACTIV E, GO−IDLE}.At eachdecision epoch
n ≥ 0, a power state transition action Un is taken fromA and
applied to the Markov chain. If an action Un = α ∈ A is
taken at state Sn = σ, a power consumption of f(σ, α) incurs
with two performance measurements fw(σ, α) (waiting-time
related), f l(σ, α) (loss-probability related); the system then
transits to state Sn+1 = σ′ ∈ Σ with probability pα(σ, σ′).
A policy c is a mapping c : Σ → P(A), where P(A) denotes
the set of all the probability distributions over a given finite
set A. Under a policy c, action α ∈ A(σ) is applied to the sys-
tem with probability [c(σ)]α when the system state is σ ∈ Σ.

The objective is to minimize the average power consump-
tion under two performance constraints: the average waiting-
time limit of service requests in the buffer bw and the loss-
probability limit of incoming service requests bl; that is, to

1 The power-specific parameters are chosen to be comparable to
those from [11] for an HDD. Note that the active power state in
this paper is in fact the combination of active and performance
idle states in [11]; the idle state in this paper is the low power
idle state in [11].



solve the following constrained optimization problem

min
c

Jf (c)

s.t. Jfw (c) ≤ b
w; Jfl(c) ≤ b

l
, (1)

where Jf (c), Jfw (c) and Jfl(c) are averages of power, waiting
time and loss probability respectively, under policy c.

The five applications in the trace shown in Fig. 2 gener-
ate five stationary workloads to the hard disk. Each workload
is associated with an application accessing the disk alone in-
definitely. We model each workload as a Poisson process with
rates λi, i = 1, 2, · · · , 5, given in the last column of Table 1.

By solving the MDP problem in (1) for each station-
ary case, we obtain five stationary optimal policies ci, i =
1, 2, · · · , 5 (which corresponds to Windows Explorer, Inter-
net Explorer, Microsoft Outlook, Adobe Photoshop and Win-
dows Media Player, respectively). Table 1 illustrates the five
stationary optimal policies designed under limits bw = 0.2s
and bl = 0.02. Each entry in Table 1 specifies probabilities for
choosing actions GO −ACTIV E and GO − IDLE at a par-
ticular system-state. For instance, under the second station-
ary case corresponding to application Internet Explorer (c2),
when the buffer is empty and the HDD is idle, (i.e. at state
(0,2)), the policy activates the HDD with probability 0.14.

The table only shows the actions for states (0,1) and (0,2),
i.e., when there is no service request in the system, because all
five policies agree on GO −ACTIV E action for other states.
The second column from right in Table 1 gives the power con-
sumption under the five stationary cases.

State (0,1) (0,2) Power λ (r/s)

c1 (0.67 0.33) (0.06 0.94) 1.69W 0.0989

c2 (0.54 0.46) (0.14 0.86) 1.51W 0.0336

c3 (0.61 0.39) (0.25 0.75) 1.67W 0.0881

c4 (0.45 0.55) (0.68 0.32) 1.73W 0.1158

c5 (0.43 0.57) (0.75 0.25) 1.77W 0.1344

Table 1. Optimal policies for five stationary cases

The assumption on the stationary request-arrival process
can be invalidated, and this is particularly the case when the
applications are accessing the HDD alternatively as shown in
Fig. 2(b); in such cases, the statistics of the accessing vary
dramatically among the applications. Next, we address this
issue and propose an hierarchical algorithm to solve it.

3. Hierarchical DPM

In this section, we introduce our hierarchical DPM scheme
for the HDD operating under nonstationary service requests.
We model the nonstationary request arrival process as a
Markov-modulated stochastic process. This is a multi-mode
model in which each mode corresponds to a given workload
(a stationary arrival process) and mode transitions are mod-
eled as a discrete-time Markov chain. In the HDD scenario,
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Figure 3.Our hierarchical adaptiveDPMscheme

a mode is associated with a particular pattern of applica-
tion accessing the HDD, and this is assumed to produce a
stationary process of service request arrivals. Specifically in
our simulations, we use Markov-modulated Poisson process
to model the stochastic process illustrated in Fig. 2(a), us-
ing five workloads λi, i = 1, 2, · · · , 5. The modulated process
is the result of a jumping process among the five workloads
shown in Fig. 2(b). We assume the workload at the sampling
times (when request-arrival, service-completion and power-
state transition completion events occur) forms a discrete-
time Markov chain with transition probability matrix Q. We
call the modulated process with a matrix Q a usage pattern.
When Q is an identity matrix, we have the stationary case.

The multi-mode arrival dynamics results in a multi-mode
MDP model. The state of a controlled Markov process X

has two variables, the system state S, defined in the pre-
vious section, and the mode M assuming values in a set
M = {µ1, µ2, · · · , µ5} corresponding, for instance, to the
five applications at hand. At the nth decision epoch, if a
power state transition action Un = α ∈ A(σ) is taken at
state Sn = σ, the incurred power is now fµ(σ, α) and the per-
formance measurements are fw

µ (σ, α) (waiting-time related),
f l

µ(σ, α) (loss-probability limited); and the system transits
to state Sn+1 = σ′ ∈ Σ with probability pα

µ(σ, σ′), where
Mn = µ is the mode at time n. The mode transits from
Mn = µ to Mn+1 = µ′ with probability qα

σσ′(µ, µ′).
Anobservablemode corresponds to anapplicationdeemed

important enough for the operating system to inform the
powermanagerwhensuchanapplication isaccessing thedisk.
Otherwise, the power manager faces an unobservable mode.

The policy switching scheme is a triplet (C,Mt, SR),
where: C = {c1, c2, · · · , c|C|} is a set of available policies;
Mt ⊆ M is the set of observable modes; and SR : Σ×Mt →
P(C) is a (non-deterministic) switching rule. The scheme op-
erates as follows. Each time the system mode is in Mt, the
switching rule SR chooses a policy from C and applies it to
the system. This chosen policy stays applied until the next
time the system mode is in Mt again. For a given SR, policy
c ∈ C is applied to the system with probability [SR(σ, µ)]c
when the system state is σ ∈ Σ and the mode is µ ∈ Mt.

The hierarchical scheme is illustrated in Fig. 3 with the
observable mode set Mt = {µ1, µ2, µ5} and the policy set
C = {c2, c5}. Thus, for this example, when Windows Ex-



plorer, Internet Explorer and Windows Media Player are ac-
cessing the disk (modes µ1, µ2, µ5 above), the power man-
ager has to choose between the stationary optimal policies de-
signed for Internet Explorer or Windows Media Player (poli-
cies c2orc5 above). When Microsoft Outlook and Adobe Pho-
toshop are accessing the disk, no policy switching decision is
made, previously selected policies stay applied.

For the higher-level policy switching, the power manager
solves an optimal switching rule problem: given the policy set
C and the mode set Mt, find an SR with minimum long run
average power under the performance constraints; that is:

min
SR

Jf (SR)

s.t. Jfw (SR) ≤ b
w; Jfl(SR) ≤ b

l
, (2)

where Jf (SR), Jfw (SR) and Jfl(SR) are averages of power,
waiting time and loss probability under switching rule SR.

The process X running under an SR is not generally
Markovian since knowing the current system mode and state
does not imply knowing the current policy. The process Y

embedded in the switching epochs (times when the system
mode is in Mt) is Markovian, however. For a sample path
of X: ω = {X0, X1, X2, · · · , } running under a particular
SR, {Yi = XTi , i = 0, 1, 2, · · · } forms an embedded Markov
chain with stationary transition probabilities, where T0 = 0
and Ti = mint{t > Ti−1, Mt ∈ Mt}, i = 1, 2, · · · . A new
MDP can be formulated on process Y, where at each state
(σ, µ) ∈ Σ × Mt an action is the selection of a policy in C.
Whenpolicy c is selectedandapplied to the system,Y transits
to state (σ′, µ′) ∈ Σ×Mt withprobability p̃c [(σ, µ), (σ′, µ′)].
(See [9] for further details.)

For the new MDP, the transition and cost pa-
rameters p̃ and h can be estimated along the sam-
ple path of the system. Let {Y0, Y1, · · · , YN} =
{(ST0

, MT0
), (ST1

, MT1
), · · · , (STN

, MTN
)} be the full-state

observations at switching times and let {C0, C1, · · · , CN−1}
be the policies chosen at switching times. We use capi-
talized notations for the policies because they are ran-
dom variables assuming values in C. We have the following
maximum-likelihood estimation for the p̃-quantities,

ˆ̃pc[(σ, µ), (σ′
, µ

′)] =
1

∑N−1
n=0 1{Yn=(σ,µ)}1{Cn=c}

×

N−1
∑

n=0

[

1{Yn=(σ,µ)}1{Cn=c}1{Yn+1=(σ′,µ′)}

]

, (3)

where indicator function 1{·} is one when the condition in {·}
is true, zero otherwise. For a (power or performance) func-
tion g, let the observed power or performance along the sam-
ple path be {FT0

, FT0+1, · · · , FT1
, FT1+1, · · · , FTN

}.Wehave
the maximum-likelihood estimation for the h-quantities,

ĥg[(σ, µ), c] =
1

∑N−1
n=0 1{Yn=(σ,µ)}1{Cn=c}

×



1{Yn=(σ,µ)}1{Cn=c}

Tn+1−1
∑

m=Tn

Fm



 . (4)

There are many ways to generate a good sample path for
the estimation. The basic requirement is to use each state-

policy pair [(σ, µ), c] a sufficient number of times along the
sample path so that the parameter estimates are adequate.
Using these estimates, the power manager uses the following
algorithm to compute the adaptive optimal switching rule.

Algorithm 1 (Adaptive Optimal Switching Rule)

1. Estimate |C||Σ × Mt|
2 p̃-quantities and (I + 2)|C||Σ ×

Mt| h-quantities in (5) from a sample path of the system
by using (3) and (4).

2. Choose δ > 0. Choose r0 > 0 and set k:=0;

3. At the kth step, solve

max
∑

σ,µ,c

{

ĥf [(σ, µ), c] − rkĥt[(σ, µ), c]
}

z[(σ, µ), c],

s.t.
∑

σ,µ,c

{

δ[(σ,µ)(σ′,µ′)] − ˆ̃c
p[(σ, µ), (σ′

, µ
′)]

}

z[(σ, µ), c] = 0,

for every (σ′
, µ

′) ∈ Σ ×Mt,
∑

σ,µ,c

z[(σ, µ), c] = 1, (5)

∑

σ,µ,c

{

ĥfi [(σ, µ), c] − b
i
ĥt[(σ, µ), c]

}

z[(σ, µ), c] ≤ −B,

i = 1, 2, · · · , I,

z[(σ, µ), c] ≥ 0, for every σ ∈ Σ, µ ∈ Mt, c ∈ C,

where−B < 0 is a margin introduced to ensure the feasi-
bility of the switching rule to the original inequality con-
straints.

4. With the solution z∗ to (5), an SR∗
k can be constructed

as follows: at state (σ, µ) ∈ Σ ×Mt, policy ci is applied

with probability z∗[(σ,µ),ci]
∑

c∈C z∗[(σ,µ),c]
. Also with z∗, calculate

rk+1 =
∑

σ,µ,c hf [(σ,µ),c]z∗[(σ,µ),c]
∑

σ,µ,c ht[(σ,µ),c]z∗[(σ,µ),c]
.

5. If |rk+1 − rk| ≤ δ, exit; otherwise, set rk := rk+1 and
k := k + 1, go to step 3.

To give a little bit of intuition behind the Algorithm 1
above, we should say that the constrained MDP optimiza-
tion problem in (1) has a fractional objective function. That
is, the objective function is a ratio of two long run average
costs. This constrained MDP optimization problem is equiv-
alent to a fractional programming problem in which the ob-
jective function is a ratio of two linear functions and con-
straints are all linear. Algorithm 1 solves this fractional pro-
gramming problem through iterations, and a linear program
is solved in each iteration (step 3 above). In step 4, the op-
timal switching rule is constructed from the solution to the
fractional programming problem.

Referring to Algorithm 1, it is important to note that we
do not assume that the arrival statistics under these modes
are known. Also, we do not directly estimate these statistics
in our scheme. In our adaptive algorithm, only an agreement
on what modes are observable is needed. This contrasts to the
approach in [4] where the arrival statistics need to be directly
estimated, although this may be problematic.

4. Experimental Results

In this section, we show that our hierarchical adaptive
DPM approach performs better than the approach proposed



in [4]. When comparing the two approaches, we focus on
the intrinsic difference of the two switching methodologies,
i.e., the optimal switching vs. non-optimal mode-matching.
When calculating the optimal switching rule, we estimate
statistics along a sample path long enough to achieve high
confidence and accuracy. On the other hand, when imple-
menting the approach in [4], we assume perfect knowledge
of arrival rates for the policy interpolations.

Through statistical analysis, the trace in Fig. 2 gives the
following mode transition probability matrix

Q =













0.9791 0.0028 0.0084 0.0076 0.0021
0.0011 0.9930 0.0048 0.0004 0.0007
0.0071 0.0086 0.9800 0.0021 0.0022
0.0100 0 0.0008 0.9875 0.0017
0.0111 0.0044 0.0067 0 0.9778













.

Under this usage pattern, observable mode set
Mt = {µ1, µ2, µ5} and policy set C = {c2, c5}, Ta-
ble 2 gives the optimal switching rule for waiting-time
and loss-probability limits bw = 0.2s, bl = 0.02. Each en-
try in Table 2 gives the mode, system-state and the prob-
abilities for choosing policies c2 and c5 for that mode and
system-state pair. For instance, when Internet Explorer ac-
cesses the hard disk (that is, mode µ2) and the disk buffer be-
comes empty (that is, the system-state (0, 1) which is the
first bold entry in the µ2 row in Table 2), the power man-
ager applies the policy c5 (instead of the mode-matching
c2) which puts the disk to idle with a probability of 0.57 ac-
cording to Table 1. The optimal switching rule consumes
a power of 1.46W . The mode matching rule based on ap-
proach in [4] in this case chooses controller c2 for mode
µ2, c5 for µ5, and c2 with an interpolated probabil-
ity 0.65 for µ1. The mode matching rule consumes a power of
1.54W , and cannot satisfy the waiting time limit of 0.2s.

The asterisks in Table 2 indicate switching decisions that
do not correspond to a simple mode-matching policy; that
is, the policies selected by the optimal switching rule for the
caseswith anasterisk arenot the stationarypolicies thatwere
designed for those modes even though those stationary poli-
cies are available for policy switching.This demonstrates that
mode-matching is not always the best thing to do. The rea-
son is that the policies are designed for stationary processes,
i.e., under the assumption that the mode will remain con-
stant. When the mode switching dynamics are taken into ac-
count, it turns out that for some cases it is better to use one
of the policies designed for a different mode.

For the usage pattern in the HDD trace, Fig. 4 shows
the power consumption of different optimal switching rules
obtained for different loss probability and waiting time lim-
its. Figure 4(a) shows that, with looser performance bounds,
more power can be saved by the optimal rule. For a com-
parison, Fig. 4(b) also shows the power consumption of the
mode-matching power management scheme. The power con-
sumption of the mode-matching switching rule is a constant
because it does not change under different performance lim-
its. Note that the mode-matching cannot achieve loss proba-
bility limits in the range in Fig. 4(a), and waiting time limits
less than 0.2s in Fig. 4(b).

Mode µ1 µ1 µ1 µ1 µ1 µ1

State (0,1) (0,2) (1 1) (1 2) (2 1) (2 2)

Prob. (0 1) (0.57 0.43) (0 1) (0 1) (0 1) (0 1)

Mode µ2 µ2 µ2 µ2 µ2 µ2

State (0,1) (0,2) (1 1) (1 2) (2 1) (2 2)

Prob. (0 1)* (1 0) (0 1)* (0 1)* (0 1)* (0 1)*

Mode µ5 µ5 µ5 µ5 µ5 µ5

State (0,1) (0,2) (1 1) (1 2) (2 1) (2 2)

Prob. (0 1) (0 1) (0 1) (0 1) (0 1) (0 1)

Table 2. Optimal switching rule
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Figure 4. Power consumption under different (a)
loss probability limits (b) waiting time limits

To further demonstrate the effectiveness of our hierarchi-
cal switching scheme, Fig. 5 gives the power consumption of
the optimal switching and mode matching for 50 Q matrices
that were generated randomly. For 9 out of the 50 patterns
considered in this experiment, the mode-matching scheme
cannot achieve the 0.2s waiting time or the 0.02 loss probabil-
ity limits (these are the infeasible cases identified in Fig. 5).
For theother41patterns, thepowersavingsofoptimal switch-
ing from mode matching is around 10%.

0 10 20 30 40 50
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8
Mode−matching vs optimal switching under 50 usage patterns

usage pattern #

P
ow

er
 (

W
)

mode matching 

optimal switching 

infeasible cases 

Figure 5. DPM under 50 nonstationary cases

We also consider the effect of different observable mode
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Figure 6. Power consumption under different (a)
observable mode sets (b) policy sets

setsMt’s and policy sets C’s on the performance of our adap-
tive switching rule. Intuitively, the optimal switching rule can
achievemore power savingswhenmore observablemodes and
more policies are used. On the other hand, more observable
modes and more policies result in more computations for ob-
taining the optimal switching rule. Therefore, the selection
of these two has to take both power savings and computa-
tion burden into account. One idea is to start with coarse sets
and introduce more modes and policies into the sets gradu-
ally until a desired level of power consumption is achieved.
The following simulations demonstrate this idea.

Figure 6(a) shows the power consumption of our scheme
under the usage patterns in Fig. 2 when the policy set is C =
{c2, c5} and there are five observable mode sets Mt’s:

{µ5}, {µ5, µ4}, {µ5, µ4, µ3}, · · · , {µ5, µ4, µ3, µ2, µ1}

(In Fig. 6(a), mode 1 corresponds to the observable mode
set {µ5}, mode 2 to {µ5, µ4}, etc.) More power savings are
achieved through introducing more modes into Mt. As we
can see, mode set 3 consisting ofMt = {µ5, µ4, µ3} is needed
to achieve a desired power level of less than 1.6W . The de-
sired power of about 1.55W is found by looking at the sta-
tionary case with the same arrival rate as the average arrival
rate of the nonstationary usage pattern.

Figure 6(b) shows the power consumption when the ob-
servable mode is Mt = {µ1, µ2, µ5} and there are five avail-
able optimal control policies C’s:

{c5}, {c5, c4}, {c5, c4, c3}, · · · , {c5, c4, c3, c2, c1}

As we can see, the policy set 3 (that is, C = {c5, c4 c3}) is
needed in order to achieve a desired power level of around
1.45W (which is below the threshold of 1.6W ). This shows
the possibility of deriving a ”feedback” mechanism to adap-
tively adjust the set of ”important” modes and policies based
on online optimization performance.

5. Conclusions

This paper presents a novel hierarchical scheme for adap-
tive dynamic power management under nonstationary ser-
vice requests. We derive a multi-mode approach based on a

model ofMarkov-modulated stochastic process of thenonsta-
tionary request arrival process. In this scheme each mode is
associated with a stationary arrival process. The power man-
ager adaptively switches among a set of stationary optimal
policies to accommodate the stochastic mode-switching ar-
rival dynamics. The simulation results show that our hierar-
chical scheme performs better than the mode matching based
approach proposed previously.

The mode switching paradigm illustrated for the HDD
application in this paper can be applied to many situa-
tions where the demand for power-consuming services is non-
stationary. Examples include voltage and frequency scaling
in embedded processors to accommodate different mixes of
tasks in a multi-tasking environment, and power manage-
ment strategies forwireless sensor networks based on the type
of network traffic generated by the current task (e.g., track-
ing versus monitoring).

For any application, the key to applying our hierarchi-
cal method is to associate sources of nonstationarity with
specific operating conditions identified as modes. In gen-
eral, the number of modes to be used is determined by
identifying a set of operating conditions that can be con-
veniently analyzed off-line to determine a set of station-
ary DPM policies. The online optimization then finds the
best way to use these polices for the actual nonstationary de-
mand.

Acknowledgments: The authors would like to thank Jing-
cao Hu of CMU for help in preparing the final version of the
manuscript.

References

[1] L. Benini, A. Bogliolo, G. Paleologo, and G.D. Micheli, Policy
optimization for dynamic power management, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 18, 813-833, 1999.

[2] L. Benini, A. Bogliolo, and G.D. Micheli, A survey of design
techniques for system-level dynamic power management, IEEE
Transactions on VLSI Systems, Vol. 8, 299-315, 2000.

[3] L. Benini and G.D. Micheli, Dynamic Power Management: De-
sign Techniques and CAD Tools, Norwell, MA: Kluwer, 1997.

[4] E. Y. Chung, L. Benini, A. Bogliolo, and G.D. Micheli, Dynamic
power management for nonstationary service requests, in Proc.
Design and Test in Europe (DATE), 77-81, 1999.

[5] W.Fischer andK.Meier-Hellstern,TheMarkov-modulatedPois-
sonprocess (mmpp)cookbook,PerformanceEvaluation, vol. 18,
pp. 149–171, 1992.

[6] P. Greenawalt, Modeling power management for hard disks, In-
ternat. Workshop on Modeling, Analysis, and Simulation for
Computer and Telecommunications Systems, pp. 62-65, 1994.

[7] Q. Qiu and M. Pedram, Dynamic power management based on
continuous-time Markov decision processes, in Proc. of Design
Automation Conference, pp. 555-561, June 1999.

[8] M. Pedram and J. Rabaey, Eds., Power Aware Design Method-
ologies, Norwell, MA: Kluwer, 2002.

[9] Z. Ren, Aggregation and multi-mode switching in Markov deci-
sion processes, Ph.D. Dissertation, Dept. of ECE, Carnegie Mel-
lon University, Pittsburgh, PA, April 2002.
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