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Abstract 
 
In very deep sub-micron designs, cross coupling 
capacitances become the dominant factor of the total bus 
loading and have a significant impact on the power 
consumption. In this paper, we propose two re-
configurable bus encoding schemes, which are based on 
the correlation among the bit lines, to reduce the power 
consumption at the cross coupling capacitances of the 
instruction buses. The instruction is encoded by flipping 
and reordering the bit lines during compilation time to 
reduce the total switching capacitances. A crossbar is 
used to map back the data to the original instruction code 
before sending to the instruction decoder. The reordering 
can be re-configured during run-time by using different 
configurations in the crossbar. We propose two types of 
re-configuration, static and dynamic. Static coding uses a 
fix fl ipping and re-configuring pattern after the 
corresponding program is compiled. Dynamic coding 
allows different re-configuring patterns during program 
execution. Experimental results show that by using the 
proposed schemes, significant energy reduction, 17-23%, 
can be achieved. Comparisons with existing bit lines 
reordering encoding scheme have also been made and on 
average more than 15% reduction can be obtained using 
our method. 
 
 
1. Introduction  
1 

In very deep sub-micron era, energy consumption at 
the cross coupling and stand-alone capacitances of the 
long buses become the dominant factors on the overall 
power consumption of the system-on-chip designs.  
Previous works were done to minimize the stand-alone 
switching capacitances.  The Bus-Invert code [1] and its 
modification [2] have been proposed, where a great 
reduction in power consumption can be achieved. The 
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Gray code [3] and T0 code [4] have been designed to 
reduce the power consumptions at the address buses. 
Recently research works [5] [6] have been done on 
reducing the energy consumption at the cross coupling 
capacitances. Switching statistics of the buses, which are 
obtained by tracing the data sequences of a number of 
real-world applications, are exploited for the encoding. 
The major advantage of statistic based encoding scheme 
is that further minimization of power can always be 
achieved. Macchiarulo et al. [7] have proposed the idea of 
rearranging the physical ordering of the bit lines based on 
the statistic of the data sequences to reduce the cross 
coupling switching activity of the address bus. However, 
these methods do not work efficiently on the instruction 
bus because the correlations of the instruction bits are 
usually lower than that of the address bus. Another 
disadvantage is that the reordering pattern is fixed for all 
different program applications because it is implemented 
directly during the physical design. In this work, we 
propose a novel method to reduce the power consumption 
of the instruction bus by dynamically re-configuring the 
order of the bit of the bus. It enhances the approach 
proposed in [7] in the following ways: 
• Select a set of bit lines to flip before rearranging the 

bit lines order 
• For each program application, there is a dedicate set 

of flipping and reordering pattern which is 
determined during compilation time. Re-configurable 
crossbar is used as the hardware decoder to get back 
the original instruction code during runtime.  

• Instead of having a fixed reordering pattern for an 
application, we also develop a dynamic method in 
which multiple reordering patterns are allowed 
during the program execution.  

Inverting a set of bit lines before rearranging the order 
increases the flexibility and enhances the efficiency of the 
bit lines reordering. Therefore, we propose a two-phase 
algorithm to generate the optimal flipping and reordering 
pattern. Phase one is responsible for flipping the bit lines. 
An algorithm is proposed to find the optimum set of bit 
lines to be inverted. Phase two rearranges the physical 
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order of the bit lines so that the cross coupling switching 
is minimized. A heuristic algorithm is proposed to find an 
optimal order of the bit l ines. These two optimization 
steps are then carried out iteratively until no improvement 
is obtained.  

The static encoding we proposed includes the whole 
two-phase algorithm and the encoding is done during the 
compilation time. The dynamic encoding we proposed 
includes only the reordering phase since we want to 
reduce the overhead required for storing the flipping 
pattern. By doing so, a smaller look-up-table is needed for 
the decoding during execution.   

In next section, we will first describe the bus model 
and the architecture of our targeted system. Then, the 
overview of the basic encoding scheme will be given in 
section 3. The static and dynamic encoding scheme will 
be described in section 4 and 5, respectively. In section 6, 
experimental results will be presented. Finally, 
conclusions will be given in section 7. 
 
2. Bus model and embedded system model 

 
In the bus model, Cc is the cross coupling capacitances 

between two adjacent wires and Cs is the stand-alone 
capacitances between the wire and the substrate. The total 
bus capacitances is equal to the sum of the cross coupling 
capacitances and the stand-alone capacitances. The total 
energy consumption of the bus is thus equal to: 

( ) 2VddCsXCcYEnergy ⋅⋅+⋅=  ,                  (1) 

where Y is the total number of cross coupling switching 
for the data transfer and X is the corresponding total 
number of bit lines switching. X can be calculated by 
summing up X ij, which represents the transition of bit line 
i from cycle j to cycle j+1. It will be equal to one if there 
is a 0 to 1 transition. Otherwise, X ij will be equal to zero. 

Thus, X is given by � �
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total number of clock cycles needed for the data transfer 
and m is the bit-width of the bus.  

Y can be calculated by the summation of Y(i,i+1),j , 
which represents the cross coupling transition from cycle j 
to cycle j+1 between bit line i and its adjacent line i+1.  
Table 1 shows the values of Y(i,i+1) in different cases, 
which is the same bus model used  in [7]. Therefore, Y is 
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The architecture of the embedded system that we target 
is shown in Figure 1. It includes three main components, 
the main program memory, the instruction cache and the 
CPU core. 

We assume that the main program memory is 
organized into n blocks and there are m blocks inside the 
instruction cache. The block sizes of the main memory 
and the cache are the same. Direct mapping is used as the 
block allocation scheme from the memory to the cache 
although other mapping schemes can also be used.  

 
3. Overview of the encoding scheme 

 
The main idea of the proposed encoding schemes is to 

reduce the instruction bus energy during program 
execution, by encoding the instructions during 
compilation time, which is done off-line. The following 
gives an overview on how the static and dynamic 
encoding schemes work: 
• First the compiler generates the statistical 

information of the program during compilation 
• The instructions will be encoded during compilation 

by using one of the following schemes: 
a) For static encoding scheme, the instructions 

are encoded by fl ipping and reordering the 
bit lines. Only one flipping and reordering 
configuration is generated for each program. 

b) For dynamic encoding scheme, the 
instructions are encoded by only reordering 
the bit lines. Multiple reordering 
configurations are generated for each 
program. 

• The decoding information for each configuration are 
attached as the header of the program. 

• The program is then loaded into the main program 
memory. 

• When a program is called, the decoding information 
stored in the header are loaded from the main 
memory to the CPU core and stored inside a look-up 
table before execution. 

.

.

.

.

MEM

B1

B2

Bn

Mem_bus

Processing Element

.

.

B1

Bm

CACHE

CPU Core

Cache_bus
Cross_bar

Look-Up
Table

Address_bus

.

.

.

.

MEM

B1

B2

Bn

Mem_bus

Processing Element

.

.

B1

Bm

CACHE

CPU Core

Cache_bus
Cross_bar

Look-Up
Table

Address_bus

 
Figure 1. System model 

 

Table 1. The value of Y(i,i+1) 

Y(i,i+1) bit line i at time j-> j+1 
 0->0 0->1 1->0 1->1 

0->0 0 1 0 0 
0->1 1 0 2 0 
1->0 0 2 0 1 

bit line i+1 at 
time j-> j+1 

1->1 0 0 1 0 

 



• During execution, instructions will be decoded by 
getting the configuration information from the look-
up table and re-configuring the crossbar to get back 
the original order before sending to the instruction 
decoder. This is illustrated in Figure 1. 

Using the proposed schemes, we can reduce the cross 
coupling switching in both the main program memory and 
the instruction cache buses during program execution.  
 
4. Static bus encoding scheme 
 

In static encoding, only one configuration will be 
generated for each program. The configuration will not 
change during the program execution. A two-phase 
algorithm is used to generate the configuration based on 
the switching statistics obtained from the statistical trace 
of the program. In the following, we will describe the 
two-phase algorithm in more details. The energy overhead 
required for the static encoding scheme will also be 
described.   
 

4.1 Phase one encoding 
 

 The main idea of the phase one encoding is to invert a 
set of bit lines such that the total cross coupling switching 
is reduced. If the adjacent bit l ines are always switching 
in opposite direction, the cross coupling switching is very 
large. We can achieve a great reduction by simply 
inverting either one of the bit l ines. However, additional 
cross coupling switching will be created if both bit lines 
are switching in a similar fashion and one of them is 
flipped. Therefore, we need to find the optimal set of bit 
lines to flip in order to achieve the optimal result.  

 
Problem formulation This problem can be formulated as 
a graph optimization problem. The graph representation 
for m bit lines is shown on Figure 2. Each vertex 
represents a bit l ine. The upper vertices represent the 
original bit lines. The lower vertices represent the 
inverted state of the bit lines. The edges represent the 
number of cross coupling switching between two bit lines.  

Bit lines 0 and m-1, are the boundaries of the bus and 
we can treat them as the start and end points of the graph. 
We need to traverse from the start point to the end point 
and only one of the vertices in each stage is visited in the 
traversal path.  Thus, the optimization problem is to find 
the shortest path (the highlighted path) from the start 
point to the end point.  

One of the important characteristic of cross coupling 
capacitances is that the cross coupling switching between 
two inverted bit lines is equal to that between two non-
inverted bit lines as shown in Figure 2. The top and 
bottom edges are always the same in each stage. If only 
one bit line among the two is inverted, the coupling 
switching is the same no matter which one is inverted. 
This is shown by the fact that the values of cross edges 
are always the same in each stage. Based on this 
characteristic, we solve this shortest path problem by 
using a greedy algorithm. The algorithm starts at vertex 0 
and the edge with the lowest cost is always selected.  
 
4.2 Phase two encoding  
 

Phase two reduces the cross coupling switching by 
rearranging the order of the bit l ines. We formulate this 
reordering problem as a graph optimization problem. The 
graph is a completely-connected undirected graph. Figure 
3 shows a simple example of the graph. The vertices 
represent the bit lines. The weight on the edges represents 
the cross coupling switching between two bit l ines. Our 
objective is to find a path such that every vertex is visited 
once and the total weight is minimized (the highlighted 
path). This problem is a variant of the well-known 
Traveling Salesman Problem (TSP) [8]. Here we employ 
a similar algorithm used in [7] to solve this problem.  

The optimization problems in phase one and phase two 
are actually dependent. By doing phase one and phase two 
iteratively, further optimization in energy consumption 
can be achieved. The iteration stops until no improvement 
can be obtained.  

 

4.3 Required overhead 
 
To implement the static encoding, two types of 

overhead are needed. The first one is the extra bus 
transition activity for sending the decoding information 
from the main memory to the CPU. If the bus width is 32 
bits, the decoding information contains 32log232+32 bits 
and 6 cycles are needed to transfer this information. The 
first 32log232 bits are the control bits for the 32-bits mux-
based crossbar. The remaining 32 bits are used for 
inverting back the flipped bit lines. In static encoding, 
only one configuration is generated so that only one set of 
6 cycles is sent before the execution of the program. Thus, 
the extra bus power and impact on the execution 

 

0 1 

1 

2 

2 

….. 
m - 1 

1 − m

3 

3 

8 

5 

10 

8 
3 

3 
11 

11 

9  

9  

4 
9  

9  

Stage 1 Stage 2 Stage 3 Stage m - 1 

0 1 

1 

2 

2 

….. 
m - 1 

1 − m

3 

3 

8 

5 

10 

8 
3 

3 
11 

11 

9  

9  

4 
9  

9  

Stage 1 Stage 2 Stage 3 Stage m - 1 

 
Figure 2. Graph representation in phase one 

 
Figure 3. Graph representation in phase two 



performance are small. The other overhead is the 
additional hardware for decoding the instructions before 
entering the CPU. A crossbar for rearranging back to the 
original order, a set of inverters for inverting back the bit 
lines and a set of registers for storing the decoding 
information are needed. The power consumption of these 
overheads will be analyzed and presented in the 
experimental results in section 6.  
 
5. Dynamic bus encoding scheme 
 
5.1 Encoding strategy 
 

In the dynamic encoding scheme, multiple 
permutations are generated for a single program. 
However, overhead will become significant on the overall 
power consumption. To reduce the overhead, two 
strategies are proposed. The first one is that only the 
phase two of the two-phase algorithm, which is the 
rearranging of bit lines order, will be adopted so that the 
decoding information can be reduced. The second strategy 
is that the number of permutations generated is based on 
the number of blocks in the cache. As shown in Figure 1, 
only m permutations will be generated. The encoding 
scheme will first locate all the blocks in the main 
memory, which will be mapped to the same cache block 
by using direct mapping method. For example, memory 
blocks B1, Bm+1 and B2m+1 will be mapped to cache block 
B1 by using direct mapping. The encoding scheme will 
analyze these memory blocks and generate a permutation 
by running the phase-two algorithm mentioned in section 
4.2. These memory blocks will have the same 
permutation. The instructions inside these memory blocks 
are rearranged with the bit lines order according to this 
permutation and then loaded into the memory.  

To further enhance the performance of the encoding 
scheme, the permutation will bias to the memory blocks 
with higher miss rate and frequent execution, i.e. we put 
more weight on the switching statistics on these memory 
blocks. For example, assume B1, Bm+1 and B2m+1 share the 
same permutation and we know B1 will always be loaded 
to the cache, then the permutation will bias to B1. In other 
words, the permutation is suited better for B1. Miss rate 
and execution frequency statistics of the memory block 
are obtained by analyzing the dynamic trace during the 
benchmarking of the program. 
 
5.2 Decoding strategy  
 

Before execution, all the decoding information 
(attached in the header file) will be sent from the main 
program memory to the CPU and stored in a look-up 
table. Because there are m permutations according to the 
number of blocks in cache, m set of different decoding 
information will be stored.  

During program execution, when the CPU fetches 
instructions from a particular cache block, the same 
instruction cache address will also be sent to the look-up 
table to get the corresponding decoding information. This 
information is sent to reconfigure the crossbar for 
rearranging the instruction bits before sending to the 
instruction decoder (Figure 1). 
 
5.3 Overhead required 
 

The overhead in the dynamic encoding scheme is 
higher than that in the static encoding scheme. There are 
two main types of overhead, the extra bus power for 
sending m sets of decoding information and additional 
hardware for decoding. Here, one set of decoding 
information contains 32log232 bits. Thus, we need 5m 
cycles for sending the decoding information before the 
program execution. In addition, a look-up table is needed 
for storing this decoding information. The number of 
entries in the look-up table is equal to the number of 
blocks in the cache. A crossbar is also needed for 
rearranging the instruction bit lines back to the original 
order. No extra inverters are needed, as phase one 
algorithm is not used. The power consumption and timing 
overhead of these extra hardware will be analyzed and 
discussed in the next section.  

The decoding overhead has a significant impact on the 
energy consumptions of the dynamic encoding scheme. 
To reduce the required overhead, we introduce a limited 
reordering scheme. The limited reordering divides the 32 
bits into n m-bits groups, where m is equal to 32/n and the 
reordering is done within the m-bits group only. The 
reduction in cross-coupling switching is decreased with 
the size of the group, but the size of the look-up table and 
the crossbar also become smaller and the energy 
consumptions of the overhead are reduced. So there is a 
trade-off between the reduction in cross-coupling 
switching and the decoding overhead. For a specific bus 
length, there are optimal values for  n and m. 
 
6. Experimental results and comparison 
 

In order to examine the effectiveness and the 
efficiency of the proposed static and dynamic encoding 
schemes, we carried out experiments using 10 real world 
benchmarks. We used the ARM processor architecture in 
our experiments. Armulator [9] is used to analyze the 
execution of the benchmark programs. The bit width of 
the instruction is equal to 32 bits. The lengths of the 
memory bus and the cache bus are assumed to be 20mm 
and 15mm, respectively, in the analysis. The impact of the 
bus length on the overall energy reduction scheme will be 
analyzed at section 6.5. We used a 0.07µm technology 
and the corresponding values of the cross coupling 
capacitance and stand-alone capacitance are obtained 



Table 2. Results of static encoding scheme 
1Kb (eng. In nJ) Energy Overhead Block size = 16 instructions Block size = 32 instructions Block size = 64 instructions

Sheme LUT Crossbar org_eng enc_eng  % red. org_eng enc_eng  % red. org_eng enc_eng  % red.  
arrayinc 4  163  2846  2519  11.51 4574  3909  14.54 6854  5833  14.90 

bitfieldeasy 3  120  1978  1785  9.77 2718  2428  10.69 4701  4198  10.70 
bytedemo 8  329  5003  4444  11.17 7683  6712  12.65 15074  12831  14.88 

dhry 116  4897  60533  59319  2.00 92959  87277  6.11 153508  138815  9.57 
dowhilelv 1  34  525  470  10.39 691  607  12.15 1367  1186  13.26 
globalvar 0.2  10  161  146  9.69 299  262  12.33 456  397  12.83 

init 10  404  5676  5116  9.86 7506  6693  10.84 16173  13983  13.54 
qsort 5  218  3119  2809  9.93 5530  4828  12.70 8686  7481  13.88 

randtest 1  41  603  541  10.35 1012  890  12.12 1515  1305  13.91 
regPromote 7  279  5299  4666  11.94 7810  6841  12.40 12971  11415  12.00 

   Avg. % red. 9.66 Avg. % red. 11.65 Avg. % red. 12.95 

 
Table 3. Results of dynamic encoding scheme 

1Kb (eng. In nJ) 32 bits reordering  Limited reordering 

Block Size LUT energy 
Crossbar 
Energy org_eng enc_eng  avg. % red. max % red. among 10 benchmarks avg. % red. 

16 289  659  8574  7035  18.10 23.09 15.27  
32 135  657  13078  10741  18.83 20.44 15.28  
64 64  655  22130  18482  17.13 18.54 13.68  

from [10]. 1V was used as the supply voltage. The 
instruction cache size is assumed to be 1K byte and the 
embedded system is assumed to run at 500MHz. Three 
different cache block sizes were simulated in our 
experiments. They are 16 instructions per block (64bytes), 
32 instructions per block (128bytes) and 64 instructions 
per block (256bytes). All the additional hardware, 
including the look-up table and the crossbar are designed 
using Cadence and simulated using Hspice. SRAM is 
used for the look-up table deign and mux-based design is 
used for the crossbar.  
 

6.1 Results of the static encoding scheme  
 

Table 2 shows the simulation results of 10 benchmarks 
with different cache block sizes.  The second and third 
columns show the energy consumption of the look-up 
table and the crossbar when executing the benchmarks. 
Org_eng and enc_eng are the total energy consumption at 
the memory bus and cache bus for the original scheme 
(i.e. no encoding) and the proposed static encoding 
scheme, respectively. The energy consumptions of the 
overhead are the same for different block sizes since one 
configuration is used for the whole program. The extra 
bus energy, energy consumption of the look-up table and 
the crossbar are included in the enc_eng. It can be seen 
that on average about 10% energy reduction is achieved 
and in some benchmarks, more than 14% energy 
reduction is achieved. It can also be seen that the energy 
reduction is increased with the cache block size. It is 
because the energy per miss is increased with the cache 
block size.  

 
 

6.2 Results of the dynamic encoding scheme 
 

Table 3 summarizes the simulation results of the 
dynamic encoding scheme. The same set of benchmarks 
is simulated. The values in table 3 are the average energy 
reduction of the 10 benchmarks. It can be seen that the 
energy consumption of the look-up table is much larger 
than in static one. The seventh column shows the result of 
the benchmark with maximum energy reduction among 
10 benchmarks. It can be seen that on average 17 to 18% 
reduction are achieved for different cache block size and 
the maximum reduction can be as high as 23%. The last 
column shows the average energy reduction of the limited 
reordering in dynamic encoding scheme. Here we divided 
the 32-bits bus into 4  8-bits groups. 
 

6.3 Comparison with previous work 

 
Comparisons with previous work [7] have also been 

made. This scheme rearranges the physical bit lines order 
based on the statistic of the dynamic trace of instructions 
sequences obtained by running a larger set of 
benchmarks. Then the permutation is implemented 
directly during physical design so that no additional 
hardware is needed. Table 4 shows the comparison among 
the static, dynamic schemes and  the method proposed in 

Table 4. Comparison between different schemes  

1KB 
Comparison (% in further 

reduction) 
Table 4. 

Avg. % red by 
[7] static vs [7] dynamic vs [7]  

16 5.60 4.30 13.24 
32 3.67 8.28 15.73 
64 2.12 11.06 15.33 



[7] for different block sizes. For dynamic encoding 
scheme, an extra 15% improvement can be obtained over 
that of [7]. 
 

6.4 Power, timing and area overhead 
 
We simulated the delay and power overhead of the 

extra hardware. The average energy per access of the 320 
bytes (for block size 16) look-up table, 160 bytes (for 
block size 32) look-up table and 80 bytes (for block size 
64) look-up table is about 1.49pJ, 0.74pJ and 0.37pJ 
respectively. The average energy per access of the 32-bits 
crossbar is about 1.76pJ. 

The delay of the cache is greater than that of the look-
up table, and hence the look-up table is not on the critical 
path. However, the delay of 32-bits crossbar needs to be 
included in the critical path. The delay of the mux-based 
crossbar is about 0.4ns from the simulation results. Note 
that a straight simple implementation was used and no 
special delay and energy optimization technique has been 
used. If timing is a critical constraint in the embedded 
system, the limited reordering can be used. 4 sets of 8-bits 
crossbar are used instead of a large 32-bits crossbar. The 
delay of the crossbar is reduced to 45.2ps. The 
simulations on using 4 group of 8-bits configuration have 
been done for the dynamic encoding scheme by using the 
same set of benchmarks. The results are summarized in 
the last column of Table 3.  It can be shown that on 
average the energy reduction is about 3-4% less than that 
of using 32-bits reordering scheme.  

The area overhead is also considered. The layout area 
of 320 bytes (the largest one) look-up table is about 
25000µm2 and the area of the 32-bits crossbar is about 
15360µm2, which are relatively small compared to the 
area of the overall embedded system.  
 
6.5 Impact of the bus length  

 
The impact of the memory and cache bus length is also 

investigated. Because of the overhead, if the bus length is 

too short, the gain in the cross coupling switching 
capacitances reduction may not able to offset the 
overhead. So there is a minimum bus length requirement 
for this scheme. Figure 4 summarizes the simulation 
results for different encoding schemes for different bus 
lengths. For the dynamic encoding, we simulate both the 
32-bits reordering (dynamic_32) and the limited 
reordering (dynamic_8). As expected it is shown that the 
energy reduction decreases with the bus length. If the bus 
length is too short, the static encoding and dynamic_32 
encoding will not give good result since the energy 
consumptions of the overhead are relatively larger. Thus 
for shorter bus, it is better to use limited reordering 
instead of full 32-bits reordering. 
 
7. Conclusions 
 

In this paper, we propose both static and dynamic 
encoding schemes to reduce the cross coupling switching 
capacitances of the instruction buses. Both schemes are 
software-encoding schemes and encoding is carried out 
during compilation time. Experimental results show that, 
by using dynamic encoding scheme, 17-23% reduction 
can be obtained comparing with un-encoded instructions 
and on average 15% further reduction can be obtained 
compared to other existing work. 
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