
Re-configurable Bus Encoding Scheme for Reducing Power Consumption of the
Cross Coupling Capacitance for Deep Sub-micron Instruction Bus

Siu-Kei Wong, Chi-Ying Tsui
Department of Electrical and Electronic Engineering
The Hong Kong University of Science and Technology

Abstract

In very deep sub-micron designs, cross coupling
capacitances become the dominant factor of the total bus
loading and have a significant impact on the power
consumption. In this paper, we propose two re-
configurable bus encoding schemes, which are based on
the correlation among the bit lines, to reduce the power
consumption at the cross coupling capacitances of the
instruction buses. The instruction is encoded by flipping
and reordering the bit lines during compilation time to
reduce the total switching capacitances. A crossbar is
used to map back the data to the original instruction code
before sending to the instruction decoder. The reordering
can be re-configured during run-time by using different
configurations in the crossbar. We propose two types of
re-configuration, static and dynamic. Static coding uses a
fix fl ipping and re-configuring pattern after the
corresponding program is compiled. Dynamic coding
allows different re-configuring patterns during program
execution. Experimental results show that by using the
proposed schemes, significant energy reduction, 17-23%,
can be achieved. Comparisons with existing bit lines
reordering encoding scheme have also been made and on
average more than 15% reduction can be obtained using
our method.

1. Introduction
1

In very deep sub-micron era, energy consumption at
the cross coupling and stand-alone capacitances of the
long buses become the dominant factors on the overall
power consumption of the system-on-chip designs.
Previous works were done to minimize the stand-alone
switching capacitances. The Bus-Invert code [1] and its
modification [2] have been proposed, where a great
reduction in power consumption can be achieved. The

 *This work was supported in part by Hong Kong RGC CERG under
Grant HKUST6214/03E and HKUST HIA02/03.EG03

Gray code [3] and T0 code [4] have been designed to
reduce the power consumptions at the address buses.
Recently research works [5] [6] have been done on
reducing the energy consumption at the cross coupling
capacitances. Switching statistics of the buses, which are
obtained by tracing the data sequences of a number of
real-world applications, are exploited for the encoding.
The major advantage of statistic based encoding scheme
is that further minimization of power can always be
achieved. Macchiarulo et al. [7] have proposed the idea of
rearranging the physical ordering of the bit lines based on
the statistic of the data sequences to reduce the cross
coupling switching activity of the address bus. However,
these methods do not work efficiently on the instruction
bus because the correlations of the instruction bits are
usually lower than that of the address bus. Another
disadvantage is that the reordering pattern is fixed for all
different program applications because it is implemented
directly during the physical design. In this work, we
propose a novel method to reduce the power consumption
of the instruction bus by dynamically re-configuring the
order of the bit of the bus. It enhances the approach
proposed in [7] in the following ways:
• Select a set of bit lines to flip before rearranging the

bit lines order
• For each program application, there is a dedicate set

of flipping and reordering pattern which is
determined during compilation time. Re-configurable
crossbar is used as the hardware decoder to get back
the original instruction code during runtime.

• Instead of having a fixed reordering pattern for an
application, we also develop a dynamic method in
which multiple reordering patterns are allowed
during the program execution.

Inverting a set of bit lines before rearranging the order
increases the flexibility and enhances the efficiency of the
bit lines reordering. Therefore, we propose a two-phase
algorithm to generate the optimal flipping and reordering
pattern. Phase one is responsible for flipping the bit lines.
An algorithm is proposed to find the optimum set of bit
lines to be inverted. Phase two rearranges the physical

1530-1591/04 $20.00 (c) 2004 IEEE

order of the bit lines so that the cross coupling switching
is minimized. A heuristic algorithm is proposed to find an
optimal order of the bit l ines. These two optimization
steps are then carried out iteratively until no improvement
is obtained.

The static encoding we proposed includes the whole
two-phase algorithm and the encoding is done during the
compilation time. The dynamic encoding we proposed
includes only the reordering phase since we want to
reduce the overhead required for storing the flipping
pattern. By doing so, a smaller look-up-table is needed for
the decoding during execution.

In next section, we will first describe the bus model
and the architecture of our targeted system. Then, the
overview of the basic encoding scheme will be given in
section 3. The static and dynamic encoding scheme will
be described in section 4 and 5, respectively. In section 6,
experimental results will be presented. Finally,
conclusions will be given in section 7.

2. Bus model and embedded system model

In the bus model, Cc is the cross coupling capacitances

between two adjacent wires and Cs is the stand-alone
capacitances between the wire and the substrate. The total
bus capacitances is equal to the sum of the cross coupling
capacitances and the stand-alone capacitances. The total
energy consumption of the bus is thus equal to:

() 2VddCsXCcYEnergy ⋅⋅+⋅= , (1)

where Y is the total number of cross coupling switching
for the data transfer and X is the corresponding total
number of bit lines switching. X can be calculated by
summing up X ij, which represents the transition of bit line
i from cycle j to cycle j+1. It will be equal to one if there
is a 0 to 1 transition. Otherwise, X ij will be equal to zero.

Thus, X is given by � �
−

=

−

=

=
1

0

1

1

m

i

n

j
jiXX , where n is the

total number of clock cycles needed for the data transfer
and m is the bit-width of the bus.

Y can be calculated by the summation of Y(i,i+1),j ,
which represents the cross coupling transition from cycle j
to cycle j+1 between bit line i and its adjacent line i+1.
Table 1 shows the values of Y(i,i+1) in different cases,
which is the same bus model used in [7]. Therefore, Y is

given by � �
−

=

−

=
+=

2

0

1

1
),1,(

m

i

n

j
jiiYY .

The architecture of the embedded system that we target
is shown in Figure 1. It includes three main components,
the main program memory, the instruction cache and the
CPU core.

We assume that the main program memory is
organized into n blocks and there are m blocks inside the
instruction cache. The block sizes of the main memory
and the cache are the same. Direct mapping is used as the
block allocation scheme from the memory to the cache
although other mapping schemes can also be used.

3. Overview of the encoding scheme

The main idea of the proposed encoding schemes is to

reduce the instruction bus energy during program
execution, by encoding the instructions during
compilation time, which is done off-line. The following
gives an overview on how the static and dynamic
encoding schemes work:
• First the compiler generates the statistical

information of the program during compilation
• The instructions will be encoded during compilation

by using one of the following schemes:
a) For static encoding scheme, the instructions

are encoded by fl ipping and reordering the
bit lines. Only one flipping and reordering
configuration is generated for each program.

b) For dynamic encoding scheme, the
instructions are encoded by only reordering
the bit lines. Multiple reordering
configurations are generated for each
program.

• The decoding information for each configuration are
attached as the header of the program.

• The program is then loaded into the main program
memory.

• When a program is called, the decoding information
stored in the header are loaded from the main
memory to the CPU core and stored inside a look-up
table before execution.

.

.

.

.

MEM

B1

B2

Bn

Mem_bus

Processing Element

.

.

B1

Bm

CACHE

CPU Core

Cache_bus
Cross_bar

Look-Up
Table

Address_bus

.

.

.

.

MEM

B1

B2

Bn

Mem_bus

Processing Element

.

.

B1

Bm

CACHE

CPU Core

Cache_bus
Cross_bar

Look-Up
Table

Address_bus

Figure 1. System model

Table 1. The value of Y(i,i+1)

Y(i,i+1) bit line i at time j-> j+1
 0->0 0->1 1->0 1->1

0->0 0 1 0 0
0->1 1 0 2 0
1->0 0 2 0 1

bit line i+1 at
time j-> j+1

1->1 0 0 1 0

• During execution, instructions will be decoded by
getting the configuration information from the look-
up table and re-configuring the crossbar to get back
the original order before sending to the instruction
decoder. This is illustrated in Figure 1.

Using the proposed schemes, we can reduce the cross
coupling switching in both the main program memory and
the instruction cache buses during program execution.

4. Static bus encoding scheme

In static encoding, only one configuration will be
generated for each program. The configuration will not
change during the program execution. A two-phase
algorithm is used to generate the configuration based on
the switching statistics obtained from the statistical trace
of the program. In the following, we will describe the
two-phase algorithm in more details. The energy overhead
required for the static encoding scheme will also be
described.

4.1 Phase one encoding

 The main idea of the phase one encoding is to invert a
set of bit lines such that the total cross coupling switching
is reduced. If the adjacent bit l ines are always switching
in opposite direction, the cross coupling switching is very
large. We can achieve a great reduction by simply
inverting either one of the bit l ines. However, additional
cross coupling switching will be created if both bit lines
are switching in a similar fashion and one of them is
flipped. Therefore, we need to find the optimal set of bit
lines to flip in order to achieve the optimal result.

Problem formulation This problem can be formulated as
a graph optimization problem. The graph representation
for m bit lines is shown on Figure 2. Each vertex
represents a bit l ine. The upper vertices represent the
original bit lines. The lower vertices represent the
inverted state of the bit lines. The edges represent the
number of cross coupling switching between two bit lines.

Bit lines 0 and m-1, are the boundaries of the bus and
we can treat them as the start and end points of the graph.
We need to traverse from the start point to the end point
and only one of the vertices in each stage is visited in the
traversal path. Thus, the optimization problem is to find
the shortest path (the highlighted path) from the start
point to the end point.

One of the important characteristic of cross coupling
capacitances is that the cross coupling switching between
two inverted bit lines is equal to that between two non-
inverted bit lines as shown in Figure 2. The top and
bottom edges are always the same in each stage. If only
one bit line among the two is inverted, the coupling
switching is the same no matter which one is inverted.
This is shown by the fact that the values of cross edges
are always the same in each stage. Based on this
characteristic, we solve this shortest path problem by
using a greedy algorithm. The algorithm starts at vertex 0
and the edge with the lowest cost is always selected.

4.2 Phase two encoding

Phase two reduces the cross coupling switching by
rearranging the order of the bit l ines. We formulate this
reordering problem as a graph optimization problem. The
graph is a completely-connected undirected graph. Figure
3 shows a simple example of the graph. The vertices
represent the bit lines. The weight on the edges represents
the cross coupling switching between two bit l ines. Our
objective is to find a path such that every vertex is visited
once and the total weight is minimized (the highlighted
path). This problem is a variant of the well-known
Traveling Salesman Problem (TSP) [8]. Here we employ
a similar algorithm used in [7] to solve this problem.

The optimization problems in phase one and phase two
are actually dependent. By doing phase one and phase two
iteratively, further optimization in energy consumption
can be achieved. The iteration stops until no improvement
can be obtained.

4.3 Required overhead

To implement the static encoding, two types of

overhead are needed. The first one is the extra bus
transition activity for sending the decoding information
from the main memory to the CPU. If the bus width is 32
bits, the decoding information contains 32log232+32 bits
and 6 cycles are needed to transfer this information. The
first 32log232 bits are the control bits for the 32-bits mux-
based crossbar. The remaining 32 bits are used for
inverting back the flipped bit lines. In static encoding,
only one configuration is generated so that only one set of
6 cycles is sent before the execution of the program. Thus,
the extra bus power and impact on the execution

0 1

1

2

2

…..
m - 1

1 − m

3

3

8

5

10

8
3

3
11

11

9

9

4
9

9

Stage 1 Stage 2 Stage 3 Stage m - 1

0 1

1

2

2

…..
m - 1

1 − m

3

3

8

5

10

8
3

3
11

11

9

9

4
9

9

Stage 1 Stage 2 Stage 3 Stage m - 1

Figure 2. Graph representation in phase one

Figure 3. Graph representation in phase two

performance are small. The other overhead is the
additional hardware for decoding the instructions before
entering the CPU. A crossbar for rearranging back to the
original order, a set of inverters for inverting back the bit
lines and a set of registers for storing the decoding
information are needed. The power consumption of these
overheads will be analyzed and presented in the
experimental results in section 6.

5. Dynamic bus encoding scheme

5.1 Encoding strategy

In the dynamic encoding scheme, multiple
permutations are generated for a single program.
However, overhead will become significant on the overall
power consumption. To reduce the overhead, two
strategies are proposed. The first one is that only the
phase two of the two-phase algorithm, which is the
rearranging of bit lines order, will be adopted so that the
decoding information can be reduced. The second strategy
is that the number of permutations generated is based on
the number of blocks in the cache. As shown in Figure 1,
only m permutations will be generated. The encoding
scheme will first locate all the blocks in the main
memory, which will be mapped to the same cache block
by using direct mapping method. For example, memory
blocks B1, Bm+1 and B2m+1 will be mapped to cache block
B1 by using direct mapping. The encoding scheme will
analyze these memory blocks and generate a permutation
by running the phase-two algorithm mentioned in section
4.2. These memory blocks will have the same
permutation. The instructions inside these memory blocks
are rearranged with the bit lines order according to this
permutation and then loaded into the memory.

To further enhance the performance of the encoding
scheme, the permutation will bias to the memory blocks
with higher miss rate and frequent execution, i.e. we put
more weight on the switching statistics on these memory
blocks. For example, assume B1, Bm+1 and B2m+1 share the
same permutation and we know B1 will always be loaded
to the cache, then the permutation will bias to B1. In other
words, the permutation is suited better for B1. Miss rate
and execution frequency statistics of the memory block
are obtained by analyzing the dynamic trace during the
benchmarking of the program.

5.2 Decoding strategy

Before execution, all the decoding information
(attached in the header file) will be sent from the main
program memory to the CPU and stored in a look-up
table. Because there are m permutations according to the
number of blocks in cache, m set of different decoding
information will be stored.

During program execution, when the CPU fetches
instructions from a particular cache block, the same
instruction cache address will also be sent to the look-up
table to get the corresponding decoding information. This
information is sent to reconfigure the crossbar for
rearranging the instruction bits before sending to the
instruction decoder (Figure 1).

5.3 Overhead required

The overhead in the dynamic encoding scheme is
higher than that in the static encoding scheme. There are
two main types of overhead, the extra bus power for
sending m sets of decoding information and additional
hardware for decoding. Here, one set of decoding
information contains 32log232 bits. Thus, we need 5m
cycles for sending the decoding information before the
program execution. In addition, a look-up table is needed
for storing this decoding information. The number of
entries in the look-up table is equal to the number of
blocks in the cache. A crossbar is also needed for
rearranging the instruction bit lines back to the original
order. No extra inverters are needed, as phase one
algorithm is not used. The power consumption and timing
overhead of these extra hardware will be analyzed and
discussed in the next section.

The decoding overhead has a significant impact on the
energy consumptions of the dynamic encoding scheme.
To reduce the required overhead, we introduce a limited
reordering scheme. The limited reordering divides the 32
bits into n m-bits groups, where m is equal to 32/n and the
reordering is done within the m-bits group only. The
reduction in cross-coupling switching is decreased with
the size of the group, but the size of the look-up table and
the crossbar also become smaller and the energy
consumptions of the overhead are reduced. So there is a
trade-off between the reduction in cross-coupling
switching and the decoding overhead. For a specific bus
length, there are optimal values for n and m.

6. Experimental results and comparison

In order to examine the effectiveness and the
efficiency of the proposed static and dynamic encoding
schemes, we carried out experiments using 10 real world
benchmarks. We used the ARM processor architecture in
our experiments. Armulator [9] is used to analyze the
execution of the benchmark programs. The bit width of
the instruction is equal to 32 bits. The lengths of the
memory bus and the cache bus are assumed to be 20mm
and 15mm, respectively, in the analysis. The impact of the
bus length on the overall energy reduction scheme will be
analyzed at section 6.5. We used a 0.07µm technology
and the corresponding values of the cross coupling
capacitance and stand-alone capacitance are obtained

Table 2. Results of static encoding scheme
1Kb (eng. In nJ) Energy Overhead Block size = 16 instructions Block size = 32 instructions Block size = 64 instructions

Sheme LUT Crossbar org_eng enc_eng % red. org_eng enc_eng % red. org_eng enc_eng % red.
arrayinc 4 163 2846 2519 11.51 4574 3909 14.54 6854 5833 14.90

bitfieldeasy 3 120 1978 1785 9.77 2718 2428 10.69 4701 4198 10.70
bytedemo 8 329 5003 4444 11.17 7683 6712 12.65 15074 12831 14.88

dhry 116 4897 60533 59319 2.00 92959 87277 6.11 153508 138815 9.57
dowhilelv 1 34 525 470 10.39 691 607 12.15 1367 1186 13.26
globalvar 0.2 10 161 146 9.69 299 262 12.33 456 397 12.83

init 10 404 5676 5116 9.86 7506 6693 10.84 16173 13983 13.54
qsort 5 218 3119 2809 9.93 5530 4828 12.70 8686 7481 13.88

randtest 1 41 603 541 10.35 1012 890 12.12 1515 1305 13.91
regPromote 7 279 5299 4666 11.94 7810 6841 12.40 12971 11415 12.00

 Avg. % red. 9.66 Avg. % red. 11.65 Avg. % red. 12.95

Table 3. Results of dynamic encoding scheme

1Kb (eng. In nJ) 32 bits reordering Limited reordering

Block Size LUT energy
Crossbar
Energy org_eng enc_eng avg. % red. max % red. among 10 benchmarks avg. % red.

16 289 659 8574 7035 18.10 23.09 15.27
32 135 657 13078 10741 18.83 20.44 15.28
64 64 655 22130 18482 17.13 18.54 13.68

from [10]. 1V was used as the supply voltage. The
instruction cache size is assumed to be 1K byte and the
embedded system is assumed to run at 500MHz. Three
different cache block sizes were simulated in our
experiments. They are 16 instructions per block (64bytes),
32 instructions per block (128bytes) and 64 instructions
per block (256bytes). All the additional hardware,
including the look-up table and the crossbar are designed
using Cadence and simulated using Hspice. SRAM is
used for the look-up table deign and mux-based design is
used for the crossbar.

6.1 Results of the static encoding scheme

Table 2 shows the simulation results of 10 benchmarks
with different cache block sizes. The second and third
columns show the energy consumption of the look-up
table and the crossbar when executing the benchmarks.
Org_eng and enc_eng are the total energy consumption at
the memory bus and cache bus for the original scheme
(i.e. no encoding) and the proposed static encoding
scheme, respectively. The energy consumptions of the
overhead are the same for different block sizes since one
configuration is used for the whole program. The extra
bus energy, energy consumption of the look-up table and
the crossbar are included in the enc_eng. It can be seen
that on average about 10% energy reduction is achieved
and in some benchmarks, more than 14% energy
reduction is achieved. It can also be seen that the energy
reduction is increased with the cache block size. It is
because the energy per miss is increased with the cache
block size.

6.2 Results of the dynamic encoding scheme

Table 3 summarizes the simulation results of the
dynamic encoding scheme. The same set of benchmarks
is simulated. The values in table 3 are the average energy
reduction of the 10 benchmarks. It can be seen that the
energy consumption of the look-up table is much larger
than in static one. The seventh column shows the result of
the benchmark with maximum energy reduction among
10 benchmarks. It can be seen that on average 17 to 18%
reduction are achieved for different cache block size and
the maximum reduction can be as high as 23%. The last
column shows the average energy reduction of the limited
reordering in dynamic encoding scheme. Here we divided
the 32-bits bus into 4 8-bits groups.

6.3 Comparison with previous work

Comparisons with previous work [7] have also been

made. This scheme rearranges the physical bit lines order
based on the statistic of the dynamic trace of instructions
sequences obtained by running a larger set of
benchmarks. Then the permutation is implemented
directly during physical design so that no additional
hardware is needed. Table 4 shows the comparison among
the static, dynamic schemes and the method proposed in

Table 4. Comparison between different schemes

1KB
Comparison (% in further

reduction)
Table 4.

Avg. % red by
[7] static vs [7] dynamic vs [7]

16 5.60 4.30 13.24
32 3.67 8.28 15.73
64 2.12 11.06 15.33

[7] for different block sizes. For dynamic encoding
scheme, an extra 15% improvement can be obtained over
that of [7].

6.4 Power, timing and area overhead

We simulated the delay and power overhead of the

extra hardware. The average energy per access of the 320
bytes (for block size 16) look-up table, 160 bytes (for
block size 32) look-up table and 80 bytes (for block size
64) look-up table is about 1.49pJ, 0.74pJ and 0.37pJ
respectively. The average energy per access of the 32-bits
crossbar is about 1.76pJ.

The delay of the cache is greater than that of the look-
up table, and hence the look-up table is not on the critical
path. However, the delay of 32-bits crossbar needs to be
included in the critical path. The delay of the mux-based
crossbar is about 0.4ns from the simulation results. Note
that a straight simple implementation was used and no
special delay and energy optimization technique has been
used. If timing is a critical constraint in the embedded
system, the limited reordering can be used. 4 sets of 8-bits
crossbar are used instead of a large 32-bits crossbar. The
delay of the crossbar is reduced to 45.2ps. The
simulations on using 4 group of 8-bits configuration have
been done for the dynamic encoding scheme by using the
same set of benchmarks. The results are summarized in
the last column of Table 3. It can be shown that on
average the energy reduction is about 3-4% less than that
of using 32-bits reordering scheme.

The area overhead is also considered. The layout area
of 320 bytes (the largest one) look-up table is about
25000µm2 and the area of the 32-bits crossbar is about
15360µm2, which are relatively small compared to the
area of the overall embedded system.

6.5 Impact of the bus length

The impact of the memory and cache bus length is also

investigated. Because of the overhead, if the bus length is

too short, the gain in the cross coupling switching
capacitances reduction may not able to offset the
overhead. So there is a minimum bus length requirement
for this scheme. Figure 4 summarizes the simulation
results for different encoding schemes for different bus
lengths. For the dynamic encoding, we simulate both the
32-bits reordering (dynamic_32) and the limited
reordering (dynamic_8). As expected it is shown that the
energy reduction decreases with the bus length. If the bus
length is too short, the static encoding and dynamic_32
encoding will not give good result since the energy
consumptions of the overhead are relatively larger. Thus
for shorter bus, it is better to use limited reordering
instead of full 32-bits reordering.

7. Conclusions

In this paper, we propose both static and dynamic
encoding schemes to reduce the cross coupling switching
capacitances of the instruction buses. Both schemes are
software-encoding schemes and encoding is carried out
during compilation time. Experimental results show that,
by using dynamic encoding scheme, 17-23% reduction
can be obtained comparing with un-encoded instructions
and on average 15% further reduction can be obtained
compared to other existing work.

References

[1] M. R. Stan and W. P. Burleson, “Bus-invert coding for

low-power I/O,” IEEE Trans. On VLSI Systems, vol. 3, pp.
49-58, Mar. 1995.

[2] Y. Shin, S. Chae and K. Choi, “Partial bus-invert coding
for power optimizations of system level bus,” Proc. of Int’ l
Symp. on Low Power Electronics and Design, pp.127-129,
1998.

[3] C. L. Su, C. Y. Tsui, “ Saving Power in the Control Path of
Embedded Processors,” IEEE Design & Test Magazine,
Vol. 11, No. 4, pp.24-31, Winter 1994

[4] L. Benini, et al., “Asymptotic zero-transition activity
encoding for address buses in low-power microprocessor-
based systems,” in Proc. the Great Lakes Symp. VLSI, pp.
77-82, 1997

[5] T. Lv, et al., “An Adaptive Dictionary Encoding Scheme
for SOC Data Buses,” Proc. of the 2002 Design,
Automation and Test in Europe Conference and Exhibition,
pp. 1059-1064, 2002

[6] J. Henkel, H. Lekatas, “A2BC: adaptive address bus coding
for low power deep sub-micron designs,” Proc. of Design
Automation Conference, pp. 744-749, 2001

[7] L. Macchiarulo, et al., “Low-Energy Encoding for Deep-
Submicron Address Buses,” ISLPED’01, pp. 176-181, Aug.
2001.

[8] Thomas H.Cormen, et al., “ Introduction to Algorithms,”
Second Edition: Cambridge, 2001.

[9] “Armulator,” , http://www.arm.com
[10] “Predictive Technology Model,”

http://www-device.eecs.berkeley.edu/~ptm

-10

-5

0

5

10

15

20

25

(20, 25) (15,20) (10,15) (5,10) (1,5)

Bus length (cache_bus, memory_bus) in mm

%
 in

 e
ng

. r
ed

.

dynamic_32

dynamic_8

method [7]

static

Figure 4. Energy reduction vs. buses length

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

