

Panel

SystemC and SystemVerilog: Where do they fit? Where are they going?
Organiser: Donatella Sciuto

Departimento di Elettronica e Informazione
Politecnico di Milano

Milano, Italy
+39-02-2399-3662

sciuto@elet.polimi.it

Organiser and Moderator: Grant Martin
Cadence Berkeley Labs

1995 University Avenue, Suite 460
Berkeley, CA 94704 U.S.A.

+1-510-647-2804
gmartin@cadence.com

Panelists

Wolfgang Rosenstiel
University of Tübingen

Germany

Stuart Swan
Cadence Design Systems

U.S.A.

Frank Ghenassia
ST Microelectronics

France

Peter Flake
Synopsys
U.S.A.

Johny Srouji
Intel
Israel

Abstract
 There is tremendous interest in design languages these days -
and more particularly, SystemC and SystemVerilog. Sometimes
the truth about design languages can be obscured by marketing
and the press. This panel is meant to deepen the technical
understanding of the DATE audience on the issue of design
languages. It contains five technical experts - an academic
expert in design languages and SystemC and SystemVerilog in
particular; a language expert for each of SystemC and
SystemVerilog; and a user expert for these two languages.
The language experts have been heavily involved in the
specification and evolution of their respective languages. The
user experts have been heavily involved in developing use
methodologies for these languages within their own design
communities, and in applying them to real design problems.
The panelists will consider the questions:

- what are the key capabilities of these languages and what
do they offer to users?

- which design problems are they best used for? what is
their scope?

- how has application of these languages to real design
problems improved the productivity of designers and the
quality of the design results?

- where should the languages develop further capabilities?

1. Introduction: Grant Martin, Cadence
Berkeley Labs

 The world of design languages has certainly evolved at a rapid
rate in the last year or two. The ominous clouds pointing to a
language war have indeed been blown away by harmonious
winds of co-operation and peaceful coexistence. Accellera and
IEEE 1364 have announced plans for working together in
evolving the future of Verilog. Progress is being made in
standardising SystemC via the IEEE process.
 There is a growing realisation among researchers, design users
and EDA developers that design languages may both have their
own unique application niches and some overlap in concepts and
constructs; and that indeed, such overlap may be beneficial.
This is because conceptual and semantic overlap may allow the
construction of more integrated design flows, in which models
created in one notation and design environment can be re-used in
another, either directly in some cases, through encapsulation in
others, or via synthesis and translation processes. Semantics
which are common, or at least translatable, between languages,
may actually contribute to reusable models and better design
flows.
 What is most important about the new and evolved design
languages is to ensure a common basis of understanding of the

1530-1591/04 $20.00 (c) 2004 IEEE

languages, their features and capabilities. The panel position
statements offered here all help to contribute to this goal:

• Wolfgang Rosenstiel surveys key capabilities of
SystemC and SystemVerilog and answers the key
questions from the abstract, also providing a number of
useful references.

• Stuart Swan brings a perspective on interoperability
between SystemC and SystemVerilog.

• Frank Ghenassia discusses in particular the importance
of transaction-level modelling and the key language
requirements to support this.

• Peter Flake surveys SystemVerilog in particular in
answering the key panel questions.

• Johny Srouji discusses from a user perspective the
most important contributions of SystemVerilog.

 We trust that the panel presentations and responses to user
questions will contribute to the design language education of the
user community in general.

2. Wolfgang Rosenstiel, University of
Tübingen

 There is tremendous interest in design languages these days,
especially in SystemC and SystemVerilog. This position
statement is my personal opinion based on some experiences of
our own research group at the University of Tübingen and the
Computer Science Research Centre FZI. I hope this view will
deepen the technical understanding of the DATE audience on the
issue of design languages in general and SystemC and
SystemVerilog in detail. For further readings I recommend the
enclosed list of references.
 In the following I want to comment on the questions for the
panelists with respect to SystemC and SystemVerilog.

2.1 What are the key capabilities of these
languages and what do they offer to users?

 SystemC is not a new language. It is basically a class library
built with standard C++ together with an event-driven simulation
kernel. The class library enables the modelling of
hardware/software systems by particularly including means for
describing concurrent behaviour, a notion of time, and special
hardware data types. Above this SystemC core language, further
design libraries have been developed for special use by
individual users. The event-driven simulator works with events
and processes. The SystemC methodology relies on modules and
ports for representing structure. Interfaces together with
primitive or hierarchical channels are used to describe
communication.
 It took SystemC less than two years to emerge as a widely used
language. In my opinion, this is due to the fact that SystemC
adopted object-oriented system-level design - the most promising
method already applied by the majority of firms during the last
couple of years. In addition, SystemC added numerous tools
already in use at many EDA firms. Even before the introduction

of SystemC, many system designers had attempted to develop
executable specifications in C++.
 SystemVerilog is a new language. It is an extension of the well
known and widespread hardware description language Verilog in
order to support higher levels of abstraction for modelling and
verification. The current version 3.1 of SystemVerilog is an
extension of SystemVerilog 3.0. SystemVerilog 3.0 adds several
new constructs to Verilog-2001 to particularly improve
productivity and readability as well as modular design. I
especially want to stress interfaces to encapsulate
communication in more communication-centric modular designs.
 SystemVerilog 3.1 added special verification support including
test bench capabilities. Also interesting are new object-oriented
constructs including classes. Built-in synchronisation primitives
such as semaphores and mailboxes and mechanisms for dynamic
process creation, process control, and inter-process
communication support the construction of higher level models.
It also includes dynamic memory management in a re-entrant
environment to support automatic garbage collection. Last, but
not least, assertion mechanisms for verification and functional
coverage have been added.

2.2 Which design problems are they best used
for?

 Due to its C++ compatibility, SystemC supports software
compatibility and is an ideal candidate to improve the design
process at the software/hardware interface. In a hierarchical top-
down design flow the user can start with executable functional
specifications without any timing information, to be further
refined to the well-known transaction level, in order to model the
communication of system-level processes. Transactions are non-
atomic communications, normally with bidirectional data
transfer, and consist of a set of messages that are usually
modelled as atomic communications. The messages have
unidirectional data transfer, but often bidirectional control flow.
Finally these transactions are implemented at a cycle-true and
bit-accurate signal level.
 SystemVerilog has strong roots in designing and describing
hardware and provides full compatibility with Verilog.
SystemVerilog therefore still contains all the features necessary
for a complete path to implementation including synthesis and
simulation with back-annotation. The SystemVerilog
methodology can be described as a bottom up oriented approach,
providing new means of abstracting hardware descriptions up to
the transaction level and providing additional test bench and
verification capabilities like assertions, constraints,
randomization etc.
 On the other hand, the new interface constructs and object-
oriented features of SystemVerilog such as classes, together with
communication and synchronisation primitives like mailboxes
and semaphores as well as dynamic processes, several new data
types, direct programming interface to C, passing function call
arguments by reference etc. also supports a top down design flow
from a transaction level oriented and communication-centric
description to the register transfer level and further down to a
gate level implementation.

2.3 What is their Scope?

 Both languages stress the importance of verification support for
complex SOCs including improvements for hardware
verification as well as for the verification of hardware-dependent
software. In today’s design flows the software development can
often only start after the hardware is available. This causes
unacceptable delays for the software development. The idea of
transaction level modelling (TLM) is to provide in an early phase
of the hardware development transaction level models of the
hardware, especially of the microprocessor and DSP cores of the
SOCs to be developed. Based on these TLMs a fast enough
simulation environment is the basis for the software
development. The presumption is to run these transaction level
models at several tens or some hundreds of thousand transactions
per second, which is fast enough for software test and
debugging.
 Most of the recent SystemC activities are oriented towards
transaction level modelling. The goal of this work can be
described as follows. In large systems-on-chips the software is
getting more and more complex and is in the overall
development process often on the critical path. Therefore many
activities try to shorten the software development cycle or at
least to start the software development as early as possible. First
standardisation proposals for SystemC TLM libraries as well as
the first SystemC TLMs of corresponding cores are available.
TLM in SystemC is quite mature and widely used. Several
examples are described in [1].
 In many references including [4], the scope of SystemVerilog is
defined as hardware design and verification including
simulation. Many SystemVerilog 3.1 extensions deal with test
bench support. Several language constructs have been added to
describe in SystemVerilog not only the design under test but as
well the test bench including the corresponding test bench
features like assertion mechanisms and coverage constructs. Also
the interface constructs of SystemVerilog 3.0 as well as the
object-oriented constructs of SystemVerilog 3.1 support
integrated design and verification in one language, i.e. in
SystemVerilog. In particular, the interface refinement
possibilities allow the re-use of test benches on different levels
of detail. In addition, hardware design, simulation, and synthesis
are of course also in the scope of SystemVerilog.
 In addition SystemVerilog has the very same potential as
SystemC to support transaction level design and transaction level
abstraction and refinement. TLMs in SystemVerilog - if
available - could serve the same purposes with respect of
improving the software development, test, and debugging cycle
of hardware-dependent software.
 On the other hand, recently the SystemC verification (SCV)
library has been added to SystemC in order to add test bench
functionality to SystemC.

2.4 How has application of these languages to
real design problems improved the productivity
of designers and the quality of design results?

 As far as SystemC is concerned there are plenty of success
stories. More examples can be found in [1] and [5]. In addition,
the European SystemC Users Group home page [7] lists special
reports including several real life industrial experiences which
have been presented during the eight previous meetings. All
these pages contain also further links to various SystemC
products, tools, courses etc.
 Success stories cover the full range of applications like
modelling on different levels, verification, and design. Most of
the users work with the powerful, robust, and quite efficient
reference implementation.
 SystemVerilog is a new language without a reference
implementation. Currently there is a very detailed, consistent,
and complete language reference manual available [4]. It
contains many examples as well as a full BNF definition. The
SystemVerilog Home Page [6] lists in addition several references
to further documentation as well as products, tools, tutorials etc.
Based on these descriptions we have had no problems in writing
SystemVerilog design and test bench examples on many
different abstraction levels from timed and untimed transaction
level down to the RT and gate level.

2.5 Where should the languages develop further
capabilities?

 From my point of view, SystemC 2.0 as well as SystemVerilog
3.1 are mature enough and ready to use. Further developments
should therefore especially concern two things, i.e.

- Corresponding products and tools including the necessary
vendor support for production use, and

- Corresponding IP-libraries and test bench libraries on
different levels of abstraction for the broad range of
applications to support cost effective, efficient, and
productive design and verification.

2.6 References

[1] W. Müller, W. Rosenstiel, J. Ruf (Eds.), SystemC - Methodologies

and Applications, Kluwer Academic Publishers, 2003.

[2] T. Grötker, S. Liao, G. Martin, S. Swan, System Design with
SystemC, Kluwer Academic Publishers, 2002.

[3] SystemC 2.0.1 Language Reference Manual, Revision 1.0,
http://www.systemc.org/projects/systemc/document/SystemC_v201
_LRM/

[4] SystemVerilog 3.1 - Accellera's Extensions to Verilog®,
http://www.eda.org/sv/SystemVerilog_3.1_final.pdf

[5] OSCI SystemC Home Page, http://www.systemc.org

[6] SystemVerilog Home Page, http://www.systemverilog.org

[7] European SystemC Users Group Home Page,
http://www-ti.informatik.uni-tuebingen.de/systemc.

3. Stuart Swan, Cadence Design Systems

 Is there a language war brewing between SystemC and
SystemVerilog? Probably not. While there is certainly some
overlap between the two languages, the similarities of the two
languages are outweighed by their significant differences.
SystemC excels at system design and verification. It cleanly
supports transaction level modelling and verification, HW/SW
co-design, and SOC architectural analysis and optimisation.
Because it is entirely based on C/C++, SystemC provides an
ideal environment for integrating verification and design
components that are written in C/C++, including embedded
software components. Its C/C++ basis also allows SystemC to
leverage the vast amount of tools, books, and expertise that exist
for C/C++.
 SystemVerilog excels at hardware design and verification from
the register transfer level to the gate level. SystemVerilog
retains Verilog's conciseness and ease of use for these modelling
levels, and it adds a wide array of features to support
verification. Because it is based on Verilog, SystemVerilog
leverages all of the tools, knowledge, and IP that already exist
for Verilog.
 There is certainly some overlap between the two languages, but
this overlap is desirable since it enables unified design flows
between SystemC and SystemVerilog to be constructed. In the
cases where designers could use either SystemC or
SystemVerilog for a particular design task, the choice will
probably not be determined solely by the technical features of
the languages. Other factors that must be considered include tool
and IP availability and cost, designers' existing knowledge of the
languages and willingness to learn new languages, organisational
considerations, and the amount of legacy design and IP in a
particular language.
 It is likely that in the future both SystemC and SystemVerilog
will be widely adopted and that they will both evolve further. It
is also likely that unified design flows and tools that support
both languages will be widely used.

4. Frank Ghenassia, STMicroelectronics

 A Transaction-Level Model (TLM) denotes an IP and SoC
VLSI hardware abstraction level. It is defined as follows:
 An SoC is composed of a set of communicating hardware
components.
 A component (IP) may be either programmable (i.e. a processor)
or hardwired (i.e. fixed behaviour). Each component is
composed of a finite set of possible states and a set of concurrent
threads of execution. Each thread is communicating with other
threads of its component and also with other (threads of)
components. Communication can be:

• Exchange of data
• Synchronisation to inform or be informed of some

change of the system state. A main usage of
synchronisation is to ensure data consistency,
preventing threads from reading data content with

unknown state (valid or invalid) or writing data to
(possibly temporarily) inaccessible memory areas.

Based on the above definition, untimed TLM models can be
developed to enable:

• Early (functional) embedded software development
• Development of functional verifications tests (and

associated output data) for the RTL
• Support the definition of the SoC (functional)

architecture
 Untimed TLM models can be annotated with timing delays to
enable:

• Early embedded software optimisation for real-time
constraints

• Development of performance verification tests for the
RTL

• Support the definition of the SoC (timing) micro-
architecture

 The timing annotations are kept separate from the TLM untimed
model. This modelling approach (separation of the untimed TLM
model from the timing module) has the following benefits:

• Functional correctness of the TLM specification
cannot rely on some timing behaviour of the
implementation

• Complete separation of behaviour and timing issues
• Unique description of functional behaviour (as

opposed for example to a solution where an untimed
TLM is refined to add timing)

• Ability to dynamically enable and disable timing
modules during the simulation

 At STMicroelectronics, the TLM modelling approach was
initiated in early 2000. At that time, we needed an open standard
language with appropriate modelling support. SystemC2.0 was
the only solution. In 2004, it seems that a new language,
SystemVerilog3.1 is emerging as a language with potential
appropriate support for TLM modelling. More important than
the choice of the language, the usage of the appropriate TLM
abstraction level is the concept we need to promote. It is the key
enabler for early embedded software development, usage of a
golden reference model for functional verification and also
(micro-) architecture specification.

5. Peter Flake, Synopsys

5.1 Introduction

 SystemVerilog is the evolution of Verilog, the widely used
hardware description language. Verilog began by providing high
performance, high accuracy gate level models coupled to an
intuitive behavioural modelling language. It has now become a
popular design language for RTL synthesis.

5.2 Key Capabilities

 SystemVerilog offers both hardware design and verification
capabilities in a single language. It includes many of the
advanced design features proven in VHDL, but also provides
further extensions in terms of data types, encapsulation
mechanisms and assertions. In particular, the interface construct
encapsulates communication both at the netlist level, as a wire
bundle, and at the transaction level, as method calls. An
assertion can apply not only to a Boolean expression, as in
VHDL, but also to a sequential property. The property can be a
regular expression, which represents a checker automaton very
concisely.
 SystemVerilog also has the features of hardware verification, or
testbench, languages: constrained random pattern generation,
classes, and dynamic processes. The syntax for specifying
constraints allows a solver to relieve the user of the burden of
writing a constrained random generation algorithm.
 Scheduling extensions provide a clear mapping between event-
driven and cycle-based semantics, ensuring consistent results
across simulation, synthesis and formal verification tools.
Formal property checkers can therefore easily be incorporated
into a simulation-based verification methodology.
 SystemVerilog has a high performance Direct Programming
Interface to C, as well as the Verilog Programming Interface for
traversing the design and interacting with simulation. These
support the integration of third party tools and custom packages
into the design and verification flow.

5.3 Scope

 SystemVerilog provides the features required for the design of
complete complex chips, such as leading-edge microprocessors,
from the transaction-level model to the gate level netlist. Having
a single language allows the testbench to be re-used at various
modelling levels and the simulation results compared.
 It also supports system-on-chip design using IP from multiple
vendors, by allowing verification features, such as assertions to
monitor bus protocols, to be included with the design. These can
be conveniently encapsulated in interfaces to simplify system
integration.
 The C interface simplifies hardware/software co-verification for
platform-based designs, whether via an instruction set simulator
or via a directly driven bus functional model.

5.4 Productivity

 The application of SystemVerilog to real design problems has
demonstrated a substantial productivity gain due to the reduced
amount of code needed to get the same quality of results from
synthesis. Less code means not only less time for entry and
updating, but also fewer bugs. In addition to a reduced amount
of design code, less verification code is needed for the same
functionality, which means that more thorough verification is
possible at an early stage of the design. Furthermore, the ability
to use the same language for design and testbench eases use and
debug, and hence improves productivity.

5.5 Future Capabilities

At present, SystemVerilog is targeted at the digital domain. The
analogue/mixed signal area is growing in importance, and there
is an existing Accellera Verilog-AMS standard. This is therefore
a possible future direction for SystemVerilog evolution.

6. Johny Srouji, Intel

6.1 Introduction

 With the increasing complexity of semiconductor design and
rising validation cost reaching levels of 60% of total efforts, the
trend in the design community is to implement designs at a
higher level of abstraction. The promise of a higher level design
is increasing design productivity as well as reducing validation
efforts. This is achieved through mechanisms of design capture,
exploration, and verification at a level of abstraction that is close
to human reasoning. One can assume that number of bugs found
in the RTL correlate to the number of lines of code. Ironically,
higher level design abstraction challenges the design process
itself when the current RTL design languages and EDA tools and
methodologies are used.
 Languages such as SystemC and SystemVerilog are rich in
behavioural and structural constructs which enable modelling
designs at different levels of abstraction while not imposing a
top-down, bottom-up or even middle-out design flow. In fact,
most design flows are expected to be iterative, and it is rare that
all modules within a system are modelled at the same level of
abstraction. Moreover, many of the new design projects
adopting higher level design are proliferation projects, where
new logic at various levels of abstraction are added to existing
hardware implementations which are at a lower level.
 Consequently, with the introduction and acceptance of higher
level design entry points, we witness several scenarios in the
design flow where different modelling levels need to co-exist.
For example, with a detailed implementation-level model as a
starting point, a designer might create a more abstract model in
order to increase simulation speed. Furthermore, bottom-up
abstractions can be useful for the formal verification of a detailed
low level Design-Under-Test (DUT). In order to specify
interesting formal properties that the DUT needs to hold, the
verification engineer must have a good understanding of the
functionality of the DUT.
 In the next two sections, I will describe the main capabilities of
SystemVerilog as a design entry modelling language for HLD, as
well as for verification and lower levels of abstractions.

6.2 Key Capabilities

 SystemVerilog introduces a unified Hardware Design and
Verification language with different levels of structural and
behavioural constructs. The language was designed to provide
good solutions starting from the simplest Verilog inconveniences
to enabling very sophisticated design and validation
methodologies.

 One of the simple issues in Verilog which is addressed by
SystemVerilog is variables and data types. Not only does it adopt
a similar variable and data type system as in C, but it also defines
additional types that are useful for system design and validation.
For example, SystemVerilog introduced char and int as well as
typedef constructs that are similar to C. Furthermore, it
introduces new data types such as bit, byte, logic, and more.
Logic data types can be used almost exclusively throughout the
design and remove much of the wire/reg usage issues. In
SystemVerilog variables can be used where only wires were
previously allowed: to connect ports of module instances and on
the left-hand side of continuous assignments. Another issue that
SystemVerilog addressed is array or variable copying. It is now
possible to copy all the elements of one array to another with a
simple assignment instead of looping through the dimensions
and copying each word. Other sensible enhancements include
the addition of always_comb, always_latch, always_ff and
single-driver semantics to more explicitly capture intent and
ensure correctness.
 Furthermore System Verilog added several useful constructs
into the language which are similar to C. Examples are
enumerated data types, structures, unions, control statements
such as break, jump and continue and enhancements to
assignment operators.
 System Verilog introduced several major constructs in the
language. One good example is the interface construct, which is
viewed as one of the major advantages of the language. An
interface construct encapsulates the communication between two
blocks, allowing a smooth migration from abstract high level
design down to lower RTL and structural views of the design.
Interfaces encapsulate communication similar to the way a struct
construct encapsulates data, and they facilitate design re-use,
through encapsulation. Additional power of the interface comes
from its ability to encapsulate functionality as well as
connectivity, making an interface at its highest level, as a class
template.

 Other than major constructs to the design language,
SystemVerilog introduces verification constructs which are
extremely efficient for test bench and formal properties
development. SystemVerilog adds assertions, process
synchronisation mechanisms, dynamic process control, object
oriented classes, associative arrays, direct programming
interface, and more.

6.3 Productivity

 Along with addressing many simple but productive RTL design
features, SystemVerilog provides a platform to model designs
from sophisticated, high-level systems all the way through to
implementation. With the addition of advanced data types such
as structures, unions and enumerations and advanced
communication encapsulation mechanisms via interfaces,
SystemVerilog enables proper capture of data flow as well as
enabling improved design and code organization and readability.
Behaviour can be expressed very abstractly at the beginning of a
project and refined to the proper implementation abstraction
level, RTL to gates. Assertions improve dynamic and formal
checking as well as speeding debug and enabling more complete
capture of the design constraints and assumptions. The addition
of classes and random constraints and programs create a very
powerful system for design within one simulation framework.
 In summary, SystemVerilog introduced many design and
validation constructs creating a unified language that can be used
by both design and validation, as well as being able to represent
a design at different levels of abstraction. It can be used to code a
behavioural model of the design, implementing a test bench and
formal properties as well as capturing structural models. These
capabilities combined, create a very powerful and useful
language framework.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

