Using BDDs and ZBDDs for Efficient Identification
of Testable Path Delay Faults

Saravanan Padmanaban
CSEE Department

University of Maryland Baltimore County

Baltimore, MD 21250
padmanab@umbc.edu

ABSTRACT

We present a novel framework to identify all the robustly
testable and untestable path delay faults in a circuit. The
method uses a combination of decision diagrams for manip-
ulating path delay faults and boolean functions. The ap-
proach benefits from processing partial paths or fanout free
segments in the circuit rather than the entire path. The
effectiveness of the proposed framework is demonstrated ex-
perimentally. It is observed that the methodology identi-
fies 350% more testable faults in the ISCAS’85 benchmark
C6288 than any existing technique by utilizing only a frac-
tion of the time compared to earlier work.

1 INTRODUCTION

One of the most fundamental problem studied in the field
of testability and verification is automatic test pattern gen-
eration (ATPG) under a given fault model. Here we study
the problem of identifying testable and untestable for path
delay faults (PDF). There are several sub-problems involved
with any test generation (T'G) problem, such as identifying
untestable or redundant faults, fault simulation, etc., All the
above said problems have been studied in detail as isolated
problems and enumerative techniques are employed to in-
tegrate the techniques together into a common framework.
There exists no technique where the information about the
untestable faults could be non-enumeratively used for TG so
as to enhance its performance.

The main problem faced by the test generation techniques
under the path delay fault model, is the exponential number
of faults. However it has been observed in [2] that more than
90% of the PDFs in most of the practical circuits are robustly
untestable. The terms robustly untestable faults, untestable
faults and untestable PDF's are used interchangeably in this
paper. All the explanations provided in this paper are with
respect to robustly testable and robustly untestable path de-
lay faults. However all the concepts presented are directly
applicable for the other classifications of the path delay fault
model. The untestable faults do not have to be targeted for
TG which can greatly enhance the time performance of the
test generator. There exists various techniques to identify
a lower bound on the untestable faults using static implica-
tions. See [4], [5], [11] for more details. The existing tech-
niques identify pairs of lines in the circuit or segments of

1530-1591/04 $20.00 (c) 2004 IEEE

Spyros Tragoudas
ECE department
Southern lllinois University
Carbondale, IL 62901
spyros@engr.siu.edu

a path, through which all the PDFs are untestable. They
also use a linear time algorithm to count the approximate
number of untestable PDFs after identifying all the pairs of
lines or segments.

The approach proposed here to deal with this problem is
to exactly identify the set of faults (non-enumeratively) that
constitute the lower bound on the untestable faults using
static implication and eliminate it from the set of all pos-
sible faults in the circuit. The method takes advantage of
the ability of the zero-suppressed binary decision diagram
(ZBDD) [7] to represent PDFs and also to identify the set
of untestable PDFs (lower bound) using static implication
techniques. The remaining faults are potentially testable
and needs to be targeted by the test generator. The test
generator is built to process partial paths or fanout free seg-
ments iteratively using reduced ordered binary decision di-
agrams (BDD) thereby identifying all the testable faults in
the circuit. A similar idea has been proposed in [8], how-
ever the approach only selects a subset of the potentially
testable faults (based on the longest path criteria) due to
the lack of efficient data structures for path representation
and manipulation.

Section 2 outlines certain conditions based on static im-
plications, to identify a lower bound to the set of untestable
PDFs. We also show how these conditions can be imple-
mented non-enumeratively using ZBDDs. Section 3 dis-
cusses certain key features about fanout free segments in cir-
cuits and their use in identifying testable faults. A method
to represent each fanout free segment in a circuit by a unique
number is also introduced. Section 4 introduces an iterative
approach to identify robustly testable PDFs from the set of
potentially testable PDFs and implicitly identify more ro-
bustly untestable PDFs. The experimental results and con-
clusions are presented in Sections 5 and 6 respectively.

2 IDENTIFYING UNTESTABLE FA-
ULTS USING STATIC IMPLICA-
TIONS

The ZBDD is a canonical data structure which is suited to-
wards efficiently storing sets of product terms rather than
the sum of product terms as in the case of the binary deci-
sion diagrams (BDD). In a ZBDD, the absence of a variable
v is interpreted as v = 0 unlike the BDDs where the vari-

able v is interpreted as a don’t-care. This property makes
the ZBDD to effectively represent sets of PDFs as sets of
minterms [9]. Figure 1(b) shows a ZBDD representing all
the PDFs in the circuit shown in Figure 1(a)?.

Next we show how ZBDDs are used to non-enumeratively
identify a lower bound on the untestable faults in two phases.
The first phase implicitly enumerates all the possible PDFs
in the circuit as a single ZBDD. The second phase identifies
the untestable PDF's using static implications and eliminates
the untestable PDF's from the ZBDD representing the PDF's
in the circuit. The resulting ZBDD represents the set of
potentially testable PDFs.

We list below the conditions based on static implications
that we use to identify a lower bound on the untestable faults
[4], [5], [11]. Each of the condition was found to have an
impact in improving the former quantity.

Condition 1 Let fi, f2,- -+, fm be the fanins of gate g. If
line l =0 (resp. 1) implies fi be a controlling value for gate
g, then all path delay faults through | with a falling transition
on 1 and through fz(x # 1) are robustly untestable.

Condition 2 Let fi, f2, -+, fm be the fanins of the gate f.
Let g1,92,++,gn be the fanins of the gate g. If linel = 0
implies fi to be the controlling value of f and l = 1 implies
gj to be the controlling value of g, then all physical paths
through 1, fz(z #1) and gy(y # j) are robustly untestable.

Next we discuss how the static implication based
conditions described earlier can be implemented non-
enumeratively using fundamental ZBDD operators intro-
duced in [7]. An illustration describing the implementation
of the Condition 1 is outlined by the following example.

a

Gl d
bD— g| G4

G3
o>

(a) Circuit Under Test

(b)ZBDD representing all PDFs

(c)Reduced ZBDD

Figure 1: Illustration of Untestable Fault Elimination

Let the circuit shown in Figure 1(a) be the circuit under
test. The circuit contains 10 PDFs. Each line is assigned

2In the ZBDD, the solid lines corresponds to the 1-edges
and the dotted lines correspond to the 0-edges.

an variable with a subscript r (resp. f) representing a ris-
ing transition on the line (resp. falling transition). All the
PDFs in the circuit can be implicitly represented by single
ZBDD (¢), as shown in Figure 1(b). Each path in the ZBDD
(from the root node to the terminal 1 node) corresponds to
a PDF in the circuit. This ZBDD can be derived by a single
topological traversal on the circuit. Let us now illustrate
Condition 1 by means of an example and its implementa-
tion using ZBDDs. Assume, d be assigned logic 1. It can
be observed that when d = 1, it is a controlling value of
gate G4. It also implies a logic 0 at gate G3, which is a
non-controlling value for gate G4. As discussed in Condi-
tion 1, it can be observed that all PDFs originating from
any primary input, that induces a rising transition on line
d and also propagates the signal through line g are robustly
untestable.

For this purpose of representing the signal transition on
each line in the circuit, we use two ZBDD variables for each
line in the circuit. Each variable corresponding to a line [
either corresponds to the odd or even parity of PDF's origi-
nating at the primary inputs and passing through line {. In
the example, all PDFs containing both the variables, d, and
gy are robustly untestable (by Condition 1) and can be elim-
inated from the ZBDD &. These PDFs are {] b.d.e.g} and
{1 a.d.e.g}. Let (S|y,=1) denote the Subset operation, that
identifies the subset of a set S whose elements contain vari-
able v. The untestable PDFs are identified from £ using this
Subset operation. The process of identifying the untestable
PDF is simply

(€lar—1)lg; =1

Once the untestable faults are identified, they can be elim-
inated from & using a set difference operation to obtain the
set of potentially testable PDFs (¢).

¢=¢\ ((Ela=1)lg;=1)

Similar operation can also be used to eliminate untestable
faults through a set of lines or a sub-path rather than a pair
of lines, by invoking the Subset operation recursively. For
the example described, Figure 1(c) shows the representation
of the set of potentially testable PDFs.

The main advantage of the proposed approach to identify
the set of potentially testable faults is its non-enumerative
nature. Let a circuit C' contain P PDFs. Let n pairs of
lines be identified by static implications such that all PDF's
through the n pairs of lines are untestable. Even though
P can be exponential (in the worst case) to the number of
nodes in the circuit, the proposed ZBDD based approach
requires only 3 * n ZBDD operations (2 operations for the
subset and 1 operation for the set difference) to identify the
set of potentially testable faults.

The Conditions 1 and 2 are only a subset of conditions
that can be used to identify untestable PDFs. Additional
conditions to identify untestable PDFs and their proofs can
be found in [4]. However it has to be noted that, only a
lower bound on the robustly untestable PDFs are identified
using the static implication based techniques and further
processing is required to identify the set of all testable and
untestable PDFs. We discuss such a procedure in Section 4.

3 FANOUT FREE SEGMENTS

In this section we discuss certain key properties of fanout
free segments in a circuit and their use in the process of
identifying testable faults. We also present a method to
represent each fanout free segments in a circuit by an unique
number and the need for such a representation. Though
the algorithm describing the framework to identify testable
faults is presented in Section 4, one of the key component
to the algorithm is the representation and manipulation of
fanout free segments which is discussed in this section. A
fanout free segment can be defined as follow:

Definition 1 (Fanout Free Segment [11]) A partial
path or a fanout free segment is a sub-path in the circuit
between a primary input and a fanout stem or between
two fanout stems or between a fanout stem and a primary
output.

Here in this paper, without loss of generality we refer to
the fanout free segment as a segment. The number of seg-
ments in a circuit is linear to the number of nodes in a cir-
cuit. Each segment is associated with two sub-faults, one
for a rising transition at the start of the segment and one
for a falling transition at the start of the segment. Let R;
be a boolean function ® whose solutions are robust tests for
a given segment .

Theorem 1 Let P be a PDF constituted by n sub-faults
corresponding to the fanout free segments l1,la2,---,l, that
makes the physical path corresponding to P. Let Rp and
Ri; be the functions whose solutions correspond to the ro-
bust tests for the PDF P and the fanout free segment l;,

respectively. Then
Re = [\ R,
i=1

The Thoerem 1 physically signifies that Rp contains
cubes that are robust tests for each of the m sub-faults
li,l2,--+,l, that make up P. This condition ensures that
the transition at p is propagated to the primary output.

Theorem 2 Let p be a primary input. Let | be a fanout free
segment and R, be the function whose solutions correspond
to the robust tests forl. Lett; and t, be the transitions at the
start of the segment | and the primary input p respectively.
R is fized for all path delay faults through l, originating from
p with a transition t, and propagating with a transition t; at
the start of l.

From Theorem 2 it can be observed that for a given seg-
ment [and a primary input p, there are only four possible
values for R; based on the values of the transition ¢; at the
start of the segment and the transition ¢, at the primary in-
put p. This is true for all the PDFs that originate at p and
pass through I. Hence the maximum number of functions
needed to generate tests for all PDF's in the circuit is

4 x4 of Primary Inputs x Number of Segments

3In this paper when we refer to boolean or algebraic func-
tions, they are internally represented by BDDs

which is strictly a polynomial quantity for any possible
circuit. This property makes the proposed technique very
effective even for large and path intensive circuits. Based
on this observation, the functions R; derived for a segment
l for a given value of t; and ¢, can be stored and be used for
all the paths originating from p and passing through I. This
prevents the function from being recalculated for every PDF
through [, there by improving the computational efficiency.
For this purpose we need an efficient way to represent the
segments and their associated signal transition. In this sec-
tion, we show a segment representation scheme that assigns
a unique integer to each segment for the purpose of storing
and retrieving the function corresponding to the segment.
The unique number can be used as the index to store R; in
a lookup array or hash table.

(b) Segment Labelling

Segment 1D Segment 1D
G1.G10.G22 0 G7.G19.G23 5
G2.G16 1 G11.G16 6
G3.G10.G22 2 G11.G19.G23 7
G3.G11 3 G16.G22 8
G6.G11 4 G16.G23 9

(¢) Unique Segment Representation

Figure 2: Segment - Unique Representation

The segment representation scheme is based on a labeling
of the circuit. Every node z; is assigned a label Np(x;), that
represents the number of segments from node x; to all the
primary outputs. We use the following procedure to compute
the labels Ny(z;) and thereby computing the total number
of segments in the circuit. A similar procedure to label paths
is used in [10].

Procedure 1: Computing the label N, (z;)

(1) For each nodes z; set Np(z;) = 0.

(2) If node x; is a primary input of the circuit, set Np(x;)
= Number of fanout branches of x;.

(3) If node z; is an internal gate, set Np(z;) = Number of
fanout branches of z; if the number of fanout branches of
x; is greater than 1.

If the nodes in the circuit are 1, x2, - - -, Tn, the total num-
ber of segments in the circuit is X Np(z;). An illustrated
of Procedure 1 is shown using circuit ¢17 in Figure 2(a). The
N, (z;) labels are given next to the nodes. It can also be ob-
served that the total number of segments in the circuit is
10. Given the label Np(x;) for every node x;, we compute a
second label for each node z; with Np(x;) > 0, denoted as
Ni(z;). We use the following procedure to compute the label
N;(z;) and thereby computing a unique number to identify
each segment.

Procedure 2: Computing the labels N;(z;)
(1) For all the nodes z; set Ny(x;) = 0.

(2) If a node z; has fanout branches b1,bs,- -, by, each
branch is assigned a label 0,1, -+, k — 1.
(3) Set j = 0.

(4) For each node z;
(4.1) If Np(z;) > 0, set B(j) = Np(zi).
(4.2) Increment j.
(5) For each primary input node z1,z2,--,T, set
Ni(z1) = 0, Ni(z2) = B(1), Ni(z3) = B(1) + B(2),---.
(6) Set Count = N;(zy) and 7 = n.
(7) For each internal node z; with Ny(z;) > 0
(7.1) Set Count = Count + B(j), Increment j.
(7.2) Set Ni(zi) = Count.
This is also illustrated for the circuit c17 in Figure 2(b).
The label N;(z;) denotes the unique number of the first seg-
ment that originates from node z;. It can be observed from
Figures 2(a) and 2(b) that node G3 contains the labels
Ny (z;) and Ni(z;) labeled as 2 and 2, this implies that there
are 2 segments originating from node G3 and that the first
of the two segments has a unique identification number 2.
The unique number for any segment can be identified by
summing up the N;(x;) of the constituent nodes and their
respective fanout branch labels if present. For example, the
unique number corresponding to the segment G2.G16 is cal-
culated as 1 (IV;(G2) = 1 and it does not have any fanout
branch labels). The unique number for the segment G3.G11
is computed as 24+1 = 3 (IV;(G3) = 1 and its fanout branch
contains a label 1). The information about the segments and
their unique numbers for circuit ¢17 is shown in Figure 2(c).
If a circuit has L segments, then the two sub-faults asso-
ciated with a segment [can be assigned the unique numbers
i and ¢ + L. The same concept can be extended to assign
four unique numbers for each segment [based on the transi-
tions ¢; and ¢, as per the discussion presented in Theorem 2.
They can be assigned the unique numbers - ¢, ¢+ L, ¢+ 2L
and ¢ + 3L. These four indices are used to store the corre-
sponding function R; in a lookup array during the process
of identifying the testable faults. This process is explained
in detail in Section 4.

4 IDENTIFICATION OF TESTABLE
PATH DELAY FAULTS

In this section we introduce an iterative approach to identify
robustly testable PDFs. We start with the set of potentially
testable PDF's identified using static implications described
in Section 2. Given a PDF, methods proposed in [1] and
[6] can be used for deriving boolean functions that describe
all possible robust tests for the target fault. We use a very

similar approach for deriving the boolean functions.

We propose a method here to process segments rather
than the entire paths. Each sub-fault associated with a seg-
ment may be associated with any number of PDFs. If a
sub-fault associated with a segment is untestable, then all
PDF's through the segment are untestable. The two neces-
sary and sufficient conditions to be checked to guarantee a
PDF as untestable are:

e Nonexistence of a test for a segment [;

e Existence of a test for the segment [; and its successor
li+1, and nonexistence of a common test for [; and [;41.

This is used as the basis of the algorithm used for classi-
fying the PDF's as either testable or untestable. The main
feature behind using such an approach is from the observa-
tion from [2] that most of the PDFs in the practical circuits
are robustly untestable. If a circuit contains a large percent-
age of untestable faults it tends to have a large number of
untestable segments. This is the key idea of the proposed
approach.

Identify the Set of Potentially Testable PDFs (¢)
For Each i € Primary Inputs
¢; = Subset of ¢ originating at ¢
While ¢; # 6
Pick PDF P by DFS
Split P into segments
For each segment p € P
If R, present in lookup array
Extract R, from lookup array
Else
Generate R,
If R, is Satisfiable
Add R, to lookup array
Tr = TR AN Ry
If TR is Not Satisfiable
Eliminate PDF's in ¢; through the segment
from i to p
¢; = ¢;\ Tested PDFs
Tr = ¢
Break
Else
Eliminate PDFs in {; through p
¢; = ¢;\ Tested PDFs
Tp = ¢
Break
/*Same procedure is followed for R ;*/
If Tp # ¢
Tested PDFs = Tested PDFs UP
Tested PDF Count = Tested PDF Count + 1
Untestable PDFs = ¢ \ Tested PDFs

Table 1: Identification of Testable Path Delay Faults

Structural ATPG techniques like [3] also process segments
rather than paths to improve the computational efficiency.
We note that structural techniques can store the implications
derived for a given segment and the signal transitions on the
on-input and off-input lines. Thus the implication proce-
dure does not have to be repeated for different paths that
pass through the same segment. However the justification
phase which involves backtracking to assign values to all the
primary inputs will have to be repeated for every path that
passes through the segment. However the boolean function
based method presented here does not have this drawback,
which results in enormous saving of computational effort.

The basic methodology used to check if a PDF is testable
or untestable is described below:

Let ¢ be the set of potentially testable PDF's identified
from Section 2. The set of PDFs which is a subset of (¢) and

originating from an input p be denoted as (,. The ZBDD
representing (, is traversed using depth first search algo-
rithm. Traversing the ZBDD and not the circuit, improves
the computation efficiency because traversing through un-
necessary lines are avoided. A segment [; is picked and its
unique identification number is computed using the signal
transitions ¢;; and ¢,. The function R, (respectively Ry) is
generated only if it is not present in the lookup array cor-
responding to the unique identification number of the seg-
ment [;. Once R, is obtained, the satisfiability of R, can
be checked in constant time (because the boolean functions
are represented using BDDs). We distinguish between two
cases:

e If R, is not satisfiable, all PDFs in the ZBDD (¢,
through segment [; are eliminated and the ZBDD is thus
restructured. At this point, all PDFs that have been
identified as testable by earlier processing is also elimi-
nated from (,. This is done so as to prevent processing
the tested PDF's again after the ZBDD is restructured
and reduced in size.

e If the functions corresponding to segments l; and [;41
are individually satisfiable, however if the conjunction
of the two functions is not satisfiable it implies that
there exists no solution that can excite both the seg-
ments together. Hence all PDF's in ¢, through segments
l; and ;41 are eliminated together with the PDF's iden-
tified as testable in earlier steps.

This iterative improvement process is performed till the
ZBDD (; becomes ¢. The algorithm describing the proce-
dure to identify testable and untestable faults is briefed in
Table 1.

5 EXPERIMENTAL RESULTS

We implemented the proposed approach in C. We call the
proposed tool OSIRIS. The performance of the tool was ex-
perimented on the ISCAS’85 and ISCAS’89 benchmarks us-
ing a Sun Blade workstation. The results of the experi-
mentation is presented in Table 2. We compare our results
to the method of [12] due to its effectiveness in identifying
all possible testable faults. [12] has another similarity with
the proposed technique in terms of the graph based data
structures used for the problem studied. [12] uses an im-
plication graph for the purpose of test generation and the
proposed approach uses boolean functions implemented by
BDDs, which also implicitly contains all possible implica-
tions. Hence both techniques implicitly identifies all possible
solutions for a given fault.

Column 2 shows the total number of PDFs in the cor-
responding circuit. Columns 3 shows the number of PDF's
identified as robustly testable by [12]. Column 4 shows the
number of aborted faults for the method. Column 5 shows
the execution time for approach [12].

Column 6 shows the number of PDFs identified as
untestable during the preprocessing step, using the static
implications discussed in Section 2. The difference between
the total number of PDFs (Column 2) and the lower bound of
untestable faults (Column 6) is the set of potentially testable
PDFs and is reported in Column 7. This set of potentially

testable PDF's indicates the number of faults targeted by
the iterative procedure discussed in Section 4. Column 8
shows the total number robustly testable PDFs identified
by OSIRIS. Column 9 reports the number of PDFs yet to
be processed. The total execution time for each circuit is
reported in Column 10.

It can be observed from Columns 5 and 10 that the time
required for execution is only 50% on an average when com-
pared to [12], to identify the number of robustly testable and
untestable PDFs. [12] contains aborted faults for the circuits
C1908, C3540, C5315 and C7552. We note that a major ad-
vantage of the proposed framework is the ability to process
path intensive circuits without aborting any faults. This can
be observed in Column 10 of Table 2. The only exception
is the circuit C6288, which contains 2.01-10"* undetermined
faults. However these are the faults present in the fanout
cones for which we were unable to build the BDDs.

The proposed method identifies more testable faults for
C6288 than any existing technique. [12] fails to report any
result for C6288 due to the difficulty in building the im-
plication graph for the circuit. The only other technique
to identify large number of testable faults for C6288 is
[3]. Still [3] identifies only 12,592 faults as testable in 40
hours(interpolated CPU time) and aborts for 10'® faults.
It is observed here that the number of potentially testable
faults identified for C6288 by the proposed technique is much
less when compared to the number of faults aborted in [3].
This clearly indicates efficiency of the proposed approach.

It can be observed from Column 6 that more than 90%
of the PDF's are identified as untestable using the static im-
plications. However it cannot be concluded that the static
implications have more impact in identifying the untestable
faults. It can be observed from Columns 7 and 8 that the
number of testable faults are only a small fraction of the up-
per bound of testable faults. Hence the iterative approach is
an equally important step in the identification of untestable
faults.

— Undetermined
= - Testable

Path Delay Faults
o

100¢ 500 2500 3000
Number of Segments Processed

Figure 3: Performance of OSIRIS on s713

Figure 3 shows a plot depicting the performance of
OSIRIS on the ISCAS’89 benchmark s713. The x-axis repre-
sents the number of segments processed and the y-axis rep-
resents the number of PDFs. The solid line in the plot shows
the decrease in the number of undetermined faults (due to
the elimination of untestable faults) with the increase in the

TIP [12] OSTRIS
Circuit Total Testable Aborted time (s) Untestable Potentially Testable Undetermined time (s)
Name Faults PDFs PDFs Testable PDFs
c880 17,284 16,083 0 2.94 163 17,121 16,083 0 2.8
1355 3,346,432 22,784 0 29.92 1,086,222 371,892 22,784 0 18.2
c1908 1,458,114 97,588 51,942 3735.17 8,031,072 315,360 97,589 0 1281.4
2670 1,359,920 15,370 0 11.8 1,146,841 213,079 15,370 0 11.6
c3540 57,353,342 88,408 481 4821.43 53,489,826 3,863,516 88,408 0 1456.0
c5315 2,682,610 81,435 926 A4774.77 2,078,400 604,210 81,435 0 544.7
6288 1.98-1020 * * * 1.98-1029 1.09-1017 40,323 2.01-10M%F 18,987.4
c7552 1,452,988 86,251 326 2860.29 1,003,938 449,050 86,251 0 680.1
59234 489,708 21,389 0 13.96 443,926 45,782 21,389 0 9.83
513207 2,690,738 27,603 0 80.24 2,302,098 388,640 27,603 0 46.77
515850 329,476,092 182,673 0 510.85 322,624,671 6,851,421 182,673 0 357.21
535932 394,282 21,783 0 360.18 355,201 39,081 21,783 0 147.76
838417 2,783,158 598,062 0 2698.11 1,675,920 1,107,238 598,062 0 923.91
538584 2,161,446 92,239 0 590.54 1,623,878 537,568 92,239 0 390.36

Table 2: Robustly Testable and Untestable Path Delay Faults

© CPU Time has been interpolated based on the hardware used, for comparison purposes.

number of segments and the dashed line shows the number of
faults identified as testable with the increase in the number
of segments. The pre-processing step where untestable faults
are identified using static implications is not performed for
this circuit. This is done to show the advantage of process-
ing segments rather than processing the entire set of paths in
the circuit. The circuit s713 contains a total of 43,624 faults
among which only 1,184 are testable. However the nature
of the proposed algorithm makes it easy to identify all the
testable and untestable faults by processing only 2,597 seg-
ments.

The method has been observed to perform better for cir-
cuits with more reconvergences, because of the property of
not having to recalculate the functions R, and Ry for the
segments involved. This can be clearly observed from the re-
sults presented for the circuits C3540 and C6288 which are
quite path intensive and contain a lot of reconvergences in
them.

6 CONCLUSIONS

We present a novel and efficient framework to classify the
PDFs in a circuit as either testable or untestable. We use
a combination of data structures, the ZBDDs and BDDs to
classify the PDFs. We introduce an iterative approach to
perform the classification. The framework performs effec-
tively even for large and path intensive circuits. The experi-
mental results demonstrates the effectiveness of the approach
when compared to existing methods. The future direction is
to modify this framework is to generate compact tests after
identifying the set of testable faults.

REFERENCES

[1] Bhattacharya D., Agrawal P. and Agrawal V.D., Test
Generation for Path Delay Faults using Binary Decision
Diagrams, IEEE Trans. on Computers, vol. 44, no. 3,
Mar. 1995, pp. 434-447.

[2] Cheng K.T and Chen H.C., Classification and Identifi-
cation of Nonrobust Untestable Path Delay Faults, IEEE
Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, Aug. 1996, pp. 845-853.

[3] Fuchs K., Pabst M. and Rossel T., RESIST: A Recur-
sive TestPattern Generation Algorithm for Path Delay

Faults considering Various Test Classes, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 13, no. 12, Dec. 1994, pp. 1550-1561.

[4] Heragu K., Patel J.H. and Agrawal V.D., Fast identifica-
tion of untestable delay faults using implications, Proc.
International Conference on CAD, 1997, pp. 642-647.

[5] Li Z.C. , Brayton R.K., Min Y., Efficient Identification
of Non-Robustly Untestable Path Delay Faults, Proc. In-
ternation Test Conference, 1997, pp. 992-997.

[6] McGeer P.C., Saldanha A., Stephan P.R., Brayton R.K
and Sangiovanni-Vincentelli A.L., Timing Analysis and
Delay Fault Test Generation using Path Recursive Func-
tions, Proc. of International Conference on Computer
Design, 1991, pp.180-183.

[7] Minato S.I, Zero-Suppressed Binary Decision Diagrams,
Proc. Design Autoamtion Conference, 1995.

[8] Murakami A., Kajihara S., Sasao,T., Pomeranz I., Reddy
S.M., Selection of Potentially Testable Path Delay Faults
for Test Generation Proc. International Test Conference,
2000, pp. 376 -384.

[9] Padmanaban S., Michael M. and Tragoudas S., Fz-
act Path Delay Fault Coverage with Fundamental Zero-
Suppressed BDD Operations, IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, Mar.
2003, pp. 305-316.

[10] Pomeranz I. and Reddy S.M., SPACES-ACE: Simulator
for Path Delay Faults, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 13, no.2,
Feb. 1994, pp. 254-263.

[11] Shao Y., Reddy S.M., Kajihara S. and Pomeranz I.,
An Efficient Method to Identify Untestable Path Delay
Faults, Proc. Asian Test Sympoisum, 2001.

[12] Tafertshofer P., Ganz A., Antreich K.J., IGRAINE -
An Implication GRaph bAsed engINE for Fast Impli-
cation, Justification, and Propagation, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Sys-
tems, August 2000.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

