I mproved Symoblic Smulation By Dynamic Funtional Space Partitioning

Tao Feng, Li-C.Wang, Kwang-Ting Cheng
Department of ECE, UC-Santa Barbara, U.S.A

{tfeng,licwang, timcheng} @ece.ucsb.edu

Abstract

In this paper, we provide a flexible and automatic method to
partition the functional space for efficient symbolic simula-
tion. We utilize a 2-tuple list representation as the basis for
partitioning the functional space. The partitioning is car-
ried out dynamically during the symbolic simulation based
on the sizes of OBDDs. We develop heuristics for choosing
the optimal partitioning points. These heuristics intend to
balance the tradeoff between the time and space complexity.
We demonstrate the effectiveness of our new symbolic sim-
ulation approach through experiments based on a floating
point adder and a memory management unit.

1. Introduction

Symbolic simulation based on Ordered Binary Decision
Diagram(OBDD) [1] has been shown various successes in
formal verification. However, a traditional symbolic sim-
ulation approach may easily suffer from the memory size
explosion problem. Even worse, a little modification of the
circuit or the initial variable ordering can result in order-of-
magnitude difference in run-time and memory usage.

The limited and unstable behavior of a symbolic simu-
lator often leads to tremendous frustration for verification
engineers. Many attempts have been done to reduce/control
the OBDD sizes in symbolic simulation [2]. The partition of
functional space (case split) is one promising approach. In
the paper [3], the authors split the verification task into sub-
cases based on the understanding of the design. The para-
metric constrains have been applied to verify each subcase.
The authors in [4] decompose the monolithic OBDD into
some partitioned-OBDDs based on the control conditions
which is the combination of primary inputs or internal vari-
ables.

In this paper, we provide a different way to partition
the functional space. The contribution of this paper comes
from two aspects. First, we provide a 2-tuple list symbolic
simulation engine which can represent the boolean func-
tion in control and datapath domains separately. During the
course of the simulation, the functional space in control do-
main can be partitioned into subspaces and the correspond-
ing data for each subspace is evaluated in the datapath do-
main. Second, the paper discusses in detail on how to find

1530-1591/04 $20.00 (c) 2004 IEEE

Andy C-C. Lin
Cadence Design Systems, Inc. U.SA
cclin@verplex.com

the good points for functional space partitioning. For the
“hard-to-verify” circuits, we observe the dramatic changes
of memory usage during the course of symbolic simulation.
These dramatic changes provide hints to find the key parti-
tioning points where OBDD size reduction methods should
be applied.

2. Motivations and the basdline study

The curve 1 of Figure 4 in our experiments shows the
level-by-level total OBDD sizes by simulating a floating
point adder whose netlist is levelized. The monolithic
OBDD is built from input to output in the ordinary sym-
bolic simulation. We observe the following aspects:

e The floating point adder is a typical example hard for a
traditional symbolic simulator to simulate [9]. Notice
that the OBDD sizes does not increase linearly as the
circuit level increases. The size may sharply increase
at certain levels although the dynamic variable order-
ing was enabled.

e The points where OBDD size change dramatically can
be in any place of the circuit, not necessarily only at the
place where symbolic simulation aborts. This may ex-
plain the “unpredictable” OBDD performance for the
symbolic simulation. To find out the problem source,
it would be good to know the earliest point where the
sudden change of OBDD sizes occur.

e Past experiences indicate that these points where
OBDD sizes change significantly often locate along
the boundary between the datapath and the control part
of a design. For example, a comparator output from
the datapath is often considered as a control signal.
This output represents the result of “merging” multi-
ple word-level data and can be a place for OBDD size
to blow up. Large circuits usually have complex con-
trol and datapath logic. When they converge at the
control-datapath interface, it often causes OBDD sizes
to change dramatically.

2.1. The optimal partition points inside the circuit

The boundary of the datapath and control part can usu-
ally be modeled explicitly or implicitly using the MUX

primitives. The MUX inputs and outputs stay on the dat-
apath while the MUX select lines stay on the control. It
provides a natural partitioning point at which we can sepa-
rate the logic.

A simple heuristic is to choose all MUX primitives as
the space partition point. Unfortunately it may generate too
many trivial subspaces and increase the time complexity of
the problem. Thus we need to use the heuristics to find the
key points for functional space partition.

Our baseline study on monitoring the OBDD perfor-
mance during the symbolic simulation above gives some
hints to the solution. The points where the OBDD size
change dramatically have the high influence of the simu-
lation performance. The MUX primitives related to these
points will have the higher priority to be selected.

We call this method a dynamic heuristic for selecting
partitioning points because it is based on the OBDD per-
formance during the course of the simulation. On the con-
trary, static heuristics can be based on the circuit topological
structure to determine which MUX primitives are for parti-
tioning (discussed in section 4.2).

The dynamic functional space partitioning concept, in
essence, follows the same principle as that makes the dy-
namic variable ordering successful. In both approaches, the
adjustment of OBDD size occurs only when a problem has
been observed.

As an analogy, a fixed initial variable ordering is a static
ordering before the symbolic simulation. They are based on
the circuit topological structure to estimate the best initial
variable ordering. Alternatively, dynamic variable ordering
could be more efficient to reduce the OBDD sizes, but it is
quite time consuming. Hence, the heuristic needs to invoke
the dynamic ordering as few times as possible with the re-
duction of the total OBDD size as much as possible. This is
similar to our dynamic heuristic for choosing MUX prim-
itives to partition the functional space. We want to invoke
the partitioning only at the key points with the reduction of
total OBDD size as much as possible.

3. Basic concept of 2-tuplelist representation

[Definition 1: 2-tuple]

The simulated result on each signal line a is stored as a
2-tuple that is of the form (C?,D?), where the first tuple
C? is called a control and the second tuple D? is called a
data. (C?,D?) is read as “node a has the data D when
the control C? is true, otherwise the value on node a is
unknown X.” C2 and D? could be a single variable or a
boolean expression. Intuitively, D? simulates the results for
a site on the datapath while the corresponding C2 tells the
control signal’s combinations for it to happen.

[Definition 2: 2-tuple list]
Initially, each input port a of the circuit will be assigned

with the 2-tuple (control,data) = (1,D?). The data part
is assigned a new variable Dy, and the control part is de-
noted as 1 which represents the whole functional space.
During the course of symbolic simulation, the whole func-
tional space in the control domain can be split into several
subspaces. The internal wire a is represented as a list of
2-tuples that is of the form

L%(n) = {(C§,DY),....(CR.DD} = [(CA.Df) (1)

i€[1,n]

where n is the number of the split subspaces for the wire
a. If the circuit has no unknown states, then the union of
the control parts in the 2-tuple list is the whole functional
space:

CivCs...vC2 = ci=1 (2)

i€[Ln]

Here we use the symbol |4 to represent the concatenate of
multiple 2-tuplesand for multiple boolean OR operations.

[Definition 3: mutually exclusive in 2-tuple list]

In the 2-tuple list L(n) = {(C1,D1),...,(Cn,Dn)}, if
CiAC; =0(i # j,1 < (i,]) <n), each 2-tuple in the list is
called mutually exclusive with other 2-tuples.

[Theorem 1: 2-tuples list merge rule]
In the list L = {(C1,D1),...,(Cn,Dn)} which contains n 2-
tuples. We can merge multiple 2-tuples (in the same list)
into a single 2-tuple. If L is a mutually exclusive 2-tuple
list, the following rule can be applied.

L"_i'J (Ci7Di) = {(ClaD1)7(027D2)7---(CH;DI‘1)}
i€e[1,n]

=(C1VCy..VCi, C1D1VCyD,..VCrDy)

= (ie%n]Ci’i%n]CiDi) @)

Here C;D; represents (C; A Dj).

3.1. The 2-tuple list construction rule

When the signals go through the gates such as AND or
OR, the output result can be obtained by exploring the data
values under the intersection of the control domains from
the fanin wires. The following is the algorithm for the 2-
input OR gate.

Construction Rulel: for 2-inputs OR gate

Input: L"jl C% D% ,(C2,D3)
= (C7,D7) ,(cB,Db)
OUtpUt Lot = U |e[:L,n]7Je[17m])(C /\Cjba DiaVD?)

[Proof of construction rulel:] We prove the above 2-tuple
list construction rule can evaluate the same function as the
ordinary symbolic method. The difference between them

is that the function space in the control domain is always
1 in the ordinary symbolic method, while in our construc-
tion rule the control space of input signals has been mu-
tual exclusively partitioned and represented in a 2-tuple list.
The 2-tuples in a list can be merged with the equation 3
and becomes the representation of the ordinary method.
(5iCPl=153;CP=1)
The ordinary symbolic simulation evaluates the OR
function as:
LavLb =

(L, D) v (L, Y CfDY)
I]

=(1, Y Cfofvy ciph) @)
I]

Our 2-tuple list construction rulel evaluates function as:
W ©ohv 1 (.0

i€[L,n] jefy,m

= | (CPaC), DPvDP)
(ie[Ln),je[1,m])

=(Y (CrAC),
(ie[L,n,j€[1,m) (ie[L,n],j€[1,m)

=(1, yCapAv 5 CPDY) (5)

IZ | | ;]]

LavLP =

By applying the equation 2 and 3, we derive that given
the same inputs, our construction rule evaluates the same
function as the ordinary symbolic simulation in equation 4.
The above construction rule can be extended to the other
gates such as XOR and AND gates. In the above rule,
the variables in the control and data domains are handled
independently, thus the control variables do not go into the
data domain and vice versa.

For the MUX primitive, the variables in the control and
date domains can be exchanged with the following con-
struction rule.

Construction Rule2: for 2:1 MUX gate

Input: La C]Z D% ,(C3,D3)

= (C2.09).....,(Ch, Dby

o2 <c5,D°> (C5,D8)
Output:

L = { Wenjernp) CFADFACE, DJ),
Wieium, jewp) (CSA (IDS) ACP, DP) }

The 2:1 MUX has two data-input signals (L2 and LP) and
one select-input signal(L®). The output signal L will have
the value of L2 if the value of the select-input signal L€ is
true, otherwise, L°® will have the value of L°. We note that
the variables in the data domain of L® will be moved to the
control domain in the L°. For the space of the paper, we
omit the proof of the construction rule2. A demonstration

(CEACP)A(DEVDY)

example on hidden weighted function has been shown in
[6].
3.2. The 2-tuple list in the verification flow

Our symbolic simulator consists of the following three
steps: (1) extraction of the MUX primitives from a gate-
level circuit, (2) symbolic simulation with the 2-tuple list
construction rules, and (3) consistency checking of the out-
put result in the 2-tuple list.

A gate-level netlist can usually be synthesized from its
high-level (RTL) model. The RTL statements such as “if”,
“case” are the decision points, and are usually synthesized
as MUXes in the low level circuit. In addition to the high-
level information, the MUX can also be extracted in a low-
level circuit where the signal and its negated signal have
re-convergent fanout. In our symbolic simulator, we dis-
tinguish the MUX primitive with other primitives such as
AND/OR gates, because on the MUX primitive the vari-
ables in the control and data domains can be interchanged
and adjusted in our 2-tuple list representation(according to
its construction rule).

When the symbolic simulation finishes, an out-
put signal is represented by a 2-tuple list L?(n) =
{(C&,D3),...,(C5,D3)}. If we want to verify this re-
sult by comparing it with the result obtained by simulat-
ing another model (another gate-level model or an asser-
tion), we need to perform consistency checking. In consis-
tency checking, we compare L2(n) to another list LP(m) =
{(Cb,DY),...,(CB,DB)}. We first check if the union of
their control domain covers the whole functional space:
(C3vC3V...vC?) = (CPVCHV...vCB) = 1. We further
check, under the intersection of control domains between
the 2-tuple lists, their values are the same: D? = Db when

CAACP#0(1<i<n1<j<m).

4. Heuristics for selecting partition point

As the partitioning is based on the input-select signals
of the MUXes, different values of the input-select signals
will partition the control space in different ways. When the
signals go through AND/OR gates, the control space can
be further partitioned by the intersection of the subspaces
from the fanin wires (by applying the 2-tuple construction
rules). Although the OBDD size for each subspace becomes
smaller, it may take more time to handle all of the subcases
if the number of the partitioned subspaces is very large. To
control the size of 2-tuple lists, we need to carefully select
the MUX primitives for partitioning.

4.1. Remodel the MUX primitives

Instead of partitioning all MUX primitives in a circuit,
our method selects some of the MUXes as the partitioning
points based on the objective to control both the OBDD size
and the simulation run time.

For those MUX primitives which is not chosen for par-
tition, we implicitly remodel the MUX primitives using
AND/OR gates (see Figure 1). Hence, instead of applying
the construction rule2 to interchange the control and data
variables, we apply the construction rulel for the AND/OR
gates so that the output of the MUX would keep the orig-
inal partitioned subspaces as those given at its fanin wires.
In this way, the control space will not be partitioned into too
many diverse subspaces.

Le=(Lo) Le=(1,c)
La=(1, a Lout={ (c,a), La=(1, a)
(c'b)} Lout={ (1, (ca)|(c'b))
Lb=(1,b) Lb=(1, b)
(@) (b)

Figure 1: Remodel the MUX primitives

4.2. Static heuristic to choose the MUX primitives

Our static heuristic is based on the structure of a circuit
[6]. If the logic cones of the data-input signals of a MUX
overlap significantly with the logic cones of the select-input
signal, OBDD could have trouble in finding a good order-
ing. We select the MUX primitive as a partitioning point to
separate these variables in control and data domains.

4.3. Dynamic heuristic to choose the MUX primitives

Trace back to search for MUX

+ (5 BDD size increase >
1 i DT_THRESHOLD
i i
1 1 1
1 1 1
1 1
|] 1 i
TRACE_LEVEL _LIMIT 3 . 2 1 Back_traced Level
Fan-in cone

within search windows

Figure 2: Dynamic heuristic to choose MUX primitives

The dynamic heuristic is embedded in our 2-tuple list
symbolic simulation engine. We levelize a given circuit
and symbolically simulate the gates level by level. For
MUX primitives, originally all of them are reset with the
“mux_nosplit” flag. This means that they will be evalu-
ated using the construction rulel. We then use the dynamic
heuristic to select some MUX primitives as the partition-
ing points by setting their “mux_split” flags. These MUX
primitives will be evaluated using the construction rule2.

During the course of constructing OBDD for the gate
output, we record the total OBDD size obtained so far. Once
we find that the total OBDD size is beyond a given thresh-
old “DT_THRESHOLD”, we trace back from this point to

search for the MUX partitioning points. The procedure
“trace_back” will mask the “mux_split” flag for the MUX
primitives in the search window. The symbolic simulation
then goes back to these masked MUX primitives and re-
evaluate them using the construction rule2 to partition the
functional space.

The “trace_back” procedure searches the MUX primi-
tives backward level by level within the fanin cone from
the point where the explosion of OBDD size was ob-
served. The search window is restricted with the parameter
“LEVEL_LIMIT” and the search will stop when the back-
ward traced level goes beyond the “LEVEL _LIMIT”. In our
experiments, we set the search window range be 4 levels.

The MUX primitives in the search window will be
marked with “mux_split” flag. Meanwhile, all the other
MUX primitives which share the same select-input wire
with them will also be marked. Usually, these shared input-
select signals of the MUX primitives are the global control
variables in a circuit. ldentifying these variables ensures
that the partitioning can be done systematically across the
entire circuit. This usually helps to reduce the sizes of the
2-tuple lists in the simulation [6].

5. Applications and experimental results

All experiments were run on a Pentium 4 1.5G machines
with 512M memory.

5.1. Experimental Example I: Floating Point Adder

fi -
adder sum| Lseigg
2 Kgy
\l\ point
‘exponent (e1) ‘ mantissa (f1) ‘
1 left- i
+ [exponent(e2) | mantissa(f2) || <hifter adjust
Adjust Add

mantissa mantissa Denormalize

Figure 3: FADD implementations

5.1.1 The procedure of symbolic simulation

The FP adder is described in a hierarchical manner[7] and
synthesized into flattened netlist. Figure 3 shows how two
floating point numbers are added together. Each floating
number is represented in the form of exponent(el/e2) and
mantissa(f1/f2). At first, the two exponents el and e2 are
compared, the difference el — e2 is the amount number to
right shift(align) the smaller mantissa. After alignment, the
two aligned mantissas are added together as the sum result.
It should be normalized by left shifting the sum result.

In our experiments, we first symbolically simulate the
circuit without using the 2-tuple list partition. We lev-
elize the circuit and monitor the total OBDD size at each
level. As shown in figure 4(curve 1), the total OBDD
size would exponentially increase even with dynamic order-
ing enabled. Actually the symbolic simulation could abort
when it reaches the recourse limitation at the last level when
the exponent bits is large enough.

At the level of 142 in the circuit, the significant incre-
ment of OBDD size corresponds to the places where nor-
malization of the sum result is done (marked as key pointin
figure 3). The amount of left shift in the shifter depends on
the most significant non-sign bit of the input data which is
to be shifted.

x10°

Curve 1:Ordinary method

3r { Curve 2: 2-tuple list method

with dynamic partition

Total BDD size

%key point

0 20 40 60 80 100 120 140 160 180
Levels in Circuits

Figure 4: Total OBDD sizefor simulation
FADD(fadd_e5_m24) with exponent(5bits), mantissa(24bits)

Figure 4(curve 2) shows the total OBDD size at each
level using our 2-tuple list method with dynamic heuristic
for selecting the partition points. We notice that the curve
becomes flat as they reach the primary outputs (large level
numbers). The dynamic heuristic successfully found the
MUX primitives which influence the key points of figure
3. The curves indicate that our method has effectively de-
composed the functional space to avoid the OBDD blow-up
problem.

Table 1 summarizes the run-time and OBDD size of each
method. We did the experiments on the adder of floating
point numbers with 24 bits mantissa and different bits (from
3to 7 bits) in exponent.

Table 1: Run time and OBDD size comparison results

Circuits Run time(s) | Total OBDD size Max split subspaces
-ord | -tp -ord -tp |-tp(dynamic)| -tp(static)

fadd_e3_m24*| 288s | 154s | 969878 | 442255 18 137
fadd_e4_m24 |5129s(1434s|6079878|2001076 27 185
fadd_e5_m24 |7931s(1779s|6358884(2145178 27 257
fadd_e6_m24 |abort [1984s| abort |2825484 27 313
fadd_e7_m24 |abort [2714s| abort [2994318 27 345
-ord: ordinary method, -tp: our 2-tuple list method with dynamic partition

fadd_e3_m24* is with 3bits exponent and 24bits mantissa

Table 2 compares the run-time and OBDD size with dif-

ferent partitioning heuristics. The Max OBDD size in the
table is the max OBDD nodes used to represent the func-
tion of a signal. The total OBDD size is the total OBDD
nodes allocated. The “all split” heuristic selects all MUXes
for partitioning.

Figure 5 shows the max number of subspaces split by the
2-tuple list at each level during the simulation. First, with
the “all split” heuristic, although the OBDD size might be
reduced much, the 2-tuple list size will increase dramati-
cally (the upper curve in the figure 5). In this case, each
signal could have a large-size 2-tuple list to be processed by
the simulator. As a result, the run time can be slow.

The static heuristic for partitioning, as explained before,
is based on circuit structure. Only the MUX primitives with
overlapping logic cones are chosen. The number of parti-
tioned subspaces is reduced but could still grow dramati-
cally. The dynamic heuristic only chooses the MUX primi-
tives which could greatly influence the OBDD performance.
As aresult, it could limit the partition points and at the same
time, reduce the total OBDD size.

Table 2: Comparison of partition heuristics for fadd_e3.m24

Heuristic|Run time(s)| Total OBDD size|Max OBDD size|MUXs for partition
all split 337s 410303 8415 528
static 209s 445441 8415 399
dynamic 154s 442252 48522 97

140

120} all split heuristic
100 |-
80

60

Max split subspaces

a0t static|heuristic

/‘dy
0@

0 20 40 60 80 100 120 140 16
Levels in circuits

Figure 5: Thenumber of subspaces split at each level for
fadd_e3.m24 by different heuristics

20

nanpic heuristic
0 180

5.1.2 The procedure of consistency checking

When the symbolic simulation finishes, the consistency
checking needs to be performed to compare the output sig-
nal with other model. Due to the different partition strategy
and the circuit implementation, the 2-tuple list representa-
tion of output signal in each circuit model can be different.
One method for equivalence checking is to use the merge
rule(Theorem 1) to convert the 2-tuple list into one mono-
lithic OBDD. In some cases, the final merge of the 2-tuple
list at the output can avoid the intermediate OBDD peak size
in the middle of the simulation compared with the ordinary

symbolic simulation which builds the monolithic OBDD for
every internal signal.

For the complex circuits, the output signal could be too
complex to be represented by a monolithic OBDD. Hence,
we keep the output signal in 2-tuple list format and use
the method proposed in section 3.2 for equivalence check-
ing. In out experiments, the implementation of the circuit
has been modified as the revised model. Table 3 shows
the result of equivalence checking by using our 2-tuple list
method and the ordinary method respectively.

Table 3: Runtimeand OBDD sizefor equivalence checking

Circuits -tp Vs. -tp -ord Vs. -ord

Time [Total OBDD size| Time Total OBDD size
fadd_e2_m24*| 47s 80738 78s 219084
fadd_e3_m24 | 495s 554946 1024s 2391480
fadd_e4_m24 [4007s 3199882 135925 14527730
-ord: ordinary method, -tp: our 2-tuple list method with dynamic partition

fadd_e2_m24* is with 2bits exponent and 24bits mantissa

5.2. Experimental Example Il: Memory Management
Unit

Another application is to verify the memory manage-
ment unit(MMU) in the high-performance microprocessors.
The MMU consists of two on-chip content addressable
memory blocks (BAT and TLB blocks) to support the vir-
tual memory address translation. BAT block contains four
entries with the tag Ti] and data DJ[i] (i € [0..3]) in each en-
try. If one tag T [i] matches the input effective address ea,
then match[i] = 1 and the corresponding data DJ[i] in this en-
try is placed at the output of MMU. The control switches be-
have similarly as a MUX select line. For the bus structures,
the 2-tuple list can be used to partition the functional space
based on the control switches. We can see that with our 2-
tuple list representation, the partitioning point is not strictly
limited to MUX primitives, it can be any place where the
concept of select control signal is applied.

The MMU example used in our experiments contains
practical custom-design modules at the transistor level. An
ordinary symbolic simulator could not handle the MMU due
to the interactions between the TLB and the BAT modules
[8]. The mixed-level nature of the MMU design (gates and
transistors) adds another dimension of difficulty for a sym-
bolic simulation. However, a transistor can be modeled as a
latch while the latch enable signal serves as a control signal.
Thus the 2-tuple list symbolic simulator can be applied in a
smooth way for the mixed-level MMU design.

In our experiments, we initialize the value of memory
cells with symbols. Then, symbolic simulation is carried
out on the MMU. Table 4 shows the results with our 2-
tuple list simulator. Note that an ordinary symbolic sim-
ulator could not simulate this design without encountering
OBDD size blow up.

There are many other applications which our proposed

Table 4. Comparison of time and OBDD for MM U blocks

Circuits|Run time(s)| Total OBDD size|Max OBDD size|Split subspaces
MMU 302s 265429 12657 67
BAT 173s 196085 7927 16
TLB 100s 39436 1054 35
SEG 3s 10897 1595 16

2-tuple list partition method can be applied. In the micro-
program controller, the instruction is encoded to generate
control signals and the multiplexer selects data from differ-
ent resources [7]. Greatest common divisor(GCD) is an-
other example in arithmetic unit [10]. Our next goal is to
extend our partition method into the sequential circuits.

6. Conclusion

In this paper, we present a functional-space partition-
ing method based on the construction of 2-tuple lists in the
symbolic simulation. The partitioning is done dynamically
by selecting MUX (or control points) using the proposed
heuristics. The dynamic heuristic monitors the OBDD per-
formance during the symbolic simulation in order to iden-
tify the key points where partitioning of the functional space
can improve the global OBDD performance greatly. We
demonstrate the effectiveness of our simulator by experi-
ments on two known circuit examples, the floating point
adder and the memory management unit, which both were
shown to be difficult for an ordinary symbolic simulator to
handle before.

References

[1] R.E.Bryant. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

[2] Alan. J. Hu. Formal hardware verification with BDDs: An introduc-
tion. IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, 1997

[3] Mark D.Aagaard, Robert B.Jones, Carl-Johan H.Seger. Formal Ver-
ification Using Parametric Representations of Boolean Constraints.
In 36th ACM/IEEE Design Automation Conference, 1999.

[4] Amit Narayan, Jawahar Jain, Fujita, Sangiovanni. Paritioned ROB-
DDs - A Compact, Canonical and Efficiently Manipulable Repre-
sentation for Boolean Functions. In ACM/IEEE Int. Conference on
Computer-Aided Design, 1996.

[5] R.E.Bryant. On the Complexity of VVLSI implementations and graph
representations of Boolean functions with application to integer mul-
tiplication. In |EEE Trans. on Computer, 1991.

[6] T.Feng, Li-C. Wang, Kwang-Ting Cheng Improved Symbolic Simu-
lation By Functional Space Decomposition. In Asiaand South Pacifi ¢
Design Automation Conference, 2004.

[7] K.C.Chang. Digital Systems Design with VHDL and Synthesis, An
integrated approach. In IEEE computer society press, 1999.

[8] T.Feng, Li-C. Wang, Kwang-Ting Cheng etc Enhanced Symbolic
Simulation for Efficient Verification of Embedded Array Systems. In
Asia and South Pacifi ¢ Design Automation Conference, 2003.

[9] Yirng-An Chen, Randal E. Bryant Verification of Floating Point
Adders In Proceeding of International Conference of Computer
Aided Verifi cation, 1998.

[10] D.J.Smith Practical Modeling Examples - HDL Chip Design In
Doone Publications, Chapter 12, 1996

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

