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Abstract
Bounded model checking (BMC) has gained widespread indus-

trial use due to its relative scalability. Its exhaustiveness over all
valid input vectors allows it to expose arbitrarily complex design
flaws. However, BMC is limited to analyzing only a specific time
window, hence will only expose those flaws which manifest within
that window and thus cannot readily prove correctness. The diame-
ter of a design has thus become an important concept — a bounded
check of depth equal to the diameter constitutes a complete proof.
While the diameter of a design may be exponential in the num-
ber of its state elements, in practice it often ranges from tens to a
few hundred regardless of design size. Therefore, a powerful di-
ameter overapproximation technique may enable automatic proofs
that otherwise would be infeasible. Unfortunately, exact diameter
calculation requires exponential resources, and overapproximation
techniques may yield exponentially loose bounds. In this paper,
we provide a general approach for enabling the use of structural
transformations, such as redundancy removal, retiming, and target
enlargement, to tighten the bounds obtained by arbitrary diame-
ter approximation techniques. Numerous experiments demonstrate
that this approach may significantly increase the set of designs for
which practically useful diameter bounds may be obtained.

1 Introduction
Due to the complexity of modern hardware designs, formal

verification methods are gaining widespread use to augment the
coverage shortcomings of simulation-based validation approaches.
Unfortunately, formal methods generally require exponential re-
sources with respect to design size. General unbounded ap-
proaches, such as symbolic reachability analysis, are PSPACE-
complete whereas bounded approaches are NP-complete for a
given bound [1]. Due to the lower resource requirements, and
the wider variety of available algorithms for discharging a bounded
verification problem, BMC has gained significant industrial utiliza-
tion in recent years. BMC [2] attempts to find a property violation
within k time-steps from the initial state(s) of a design. Though ex-
haustive, the bounded nature of this approach implies incomplete-
ness; performing a check of depth 0 through k does not necessarily
imply that no violation will occur at depths greater than k.

The incompleteness of BMC has resulted in a set of research
activities to discern a minimal k for which a bounded check is com-
plete. The diameter [2] of a design is typically defined as the max-
imum distance between any two of its states si and s j such that
s j is reachable from si. The distance from si to s j is the mini-
mum number of time-steps to transition the design from si to s j.
Clearly a bounded check of depth greater or equal to the diameter
of the design is complete. However, a general diameter calculation

relies upon quantified Boolean formulae (QBF) thus is PSPACE-
complete [2]. Sufficient heuristics for solving such problems are
not yet available, though some are beginning to emerge [3, 4].

Due to the computational complexity of diameter calculation,
various overapproximate techniques have been proposed. For ex-
ample, the recurrence diameter [2] of a design is its maximum-
length irredundant state sequence, and may be calculated by a se-
ries of propositional satisfiability problems. This approach is NP-
complete as long as the depth is polynomial with respect to design
size. However, the recurrence diameter may be exponentially larger
than the diameter, hence it is of limited practical utility and may
require exorbitant resources to compute.

�
The technique of [7] per-

forms a fast diameter overapproximation based upon purely struc-
tural analysis, and enables compositional diameter bounding. This
approach may yield tight bounds for certain designs (primarily
acyclic and memory-based) for which the recurrence diameter is
loose, though may also result in exponentially-loose bounds for
other designs. Other approaches, such as [8], have proposed the
use of incomplete algorithms to estimate diameter, though are not
guaranteed to yield an upper-bound.

In some cases the use of diameter to bound BMC depth is more
conservative than necessary; i.e., a smaller bound is sufficient for
completeness. For example, we may ignore any vertices outside
of the cone of influence of the property, which may decrease the
diameter [7]. Additionally, a BMC application for the maximum
distance from any initial state, rather than from any reachable state,
suffices for property checking [6]. Furthermore, to assess if a given
design signal t may ever be asserted, we need to perform a search
only deep enough to assess whether signal t may toggle from 0 to 1
relative to an initial state; the amount of time necessary to toggle t
from a 1 to a 0 from any state may be exponentially greater. These
concepts are revisited in Definition 3, which generalizes the tradi-
tional state-based diameter definition, and are used in Theorem 4.

In this paper we demonstrate how structural transformations
may be used to enhance arbitrary diameter approximation tech-
niques. This research enables the use of a diameter bound obtained
upon a transformed design to yield a tight bound for the original,
untransformed design via a constant-time calculation. Due to the
reduction potential of these transformations, this theory may enable
overapproximate techniques to yield exponentially tighter diameter
bounds. Furthermore, the diameter bounding process itself may at-
tain significant speedups by operating on the smaller, transformed
designs. Numerous experimental results are provided for bench-
mark and industrial designs to illustrate our approach.

There are several motivations for this research.
�
A hybrid between a QBF and a recurrence diameter approach is proposed in [5]

to partially alleviate the respective shortcomings of these techniques. Bounded cone-
of-influence analysis is proposed in [6] to tighten recurrence-diameter-based bounds.
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1. To our knowledge, this paper is the first to discuss the theoret-
ical impact of these transformations upon design diameter.

2. These transformations often reduce design size, hence often
reduce verification resource requirements as demonstrated by
the cited papers. Therefore, one may question the utility of
back-translating a diameter to the original design vs. attempt-
ing a proof solely upon the transformed design. However, note
that in some cases, such a transformation may actually hurt
verification. E.g., retiming may increase input count while re-
ducing register count [9]; retiming and phase-abstraction [10]
may increase the size of next-state functions. These trans-
formations may vary both resource requirements and tight-
ness of the obtained approximation using diameter approx-
imation techniques; this variance may not correlate to their
impact upon verification. Therefore, this research constitutes
yet another practical mechanism which may be attempted to
discharge difficult verification problems.

2 Design Semantics: The Netlist
Definition 1. A netlist is a tuple N � ���

V � E ��� G � Z � comprising a
directed graph with vertices V and edges E � V 	 V . Function
G : V 
� types represents a semantic mapping from vertices to gate
types, including constants, primary inputs (i.e., nondeterministic
bits), registers (denoted as R), and combinational gates with various
functions. A state is a mapping from registers to 0 � 1 values; Z
represents the set of initial states.

Definition 2. The semantics of a netlist N are defined in terms
of semantic traces: 0 � 1 valuations to gates over time. We denote
the set of all legal traces associated with a netlist by P ��V 	���
��
0 � 1 ��� , defining P as the subset of all possible functions from V 	��

to
�
0 � 1 � which are consistent with G. The value of gate v at time i

in trace p is denoted by p � v� i � .
Our verification problem consists of a set of targets T � V cor-

relating to a set of properties AG ��� t ����� t � T . We say that target t is
hit in trace p at time i iff p � t � i ��� 1. Due to the ability to synthesize
safety properties into automata [11], this invariant-checking model
is rarely a practical limitation.

Definition 3. The diameter d � U � of vertex set U is the minimum
number such that for any trace p and any increasing succession†

k1 ��������� kc, there exists another trace p  and another increasing suc-
cession l1 ��������� lc such that ! c

j " 1 � l j # k j � and $ lc # lc % 1 & d � U ��' ,
taking l0 �)( 1, which satisfies � u � U �*! c

j " 1 $ p � u � k j �+� p  � u � l j � ' .
Note that our definition of diameter is generally one greater than

the standard definition for graphs; this matches the number of time-
steps necessary to ensure completeness of BMC, and is always
greater than zero. Definition 3 may be viewed as a generalization
of a traditional state-based diameter definition because the diame-
ter of vertices U actually need not correlate to that of coi � U �-, R.
This definition provides an opportunity to bound diameter without
a need to analyze the underlying state space representation. For
example, if a vertex u encodes an XOR function of a primary in-
put and a sequentially-driven signal A, then d � u �.� 1 regardless of
d � A � since any valuation to u will be producible at any time-step.
From this example, one may be tempted to view this definition as
using a set of vertices U as a filter through which the state space
of the netlist is observed; while this is an intuitive interpretation,

†An increasing succession is an ordered set of natural numbers k1 /1020203/ kc for c 4 1
which satisfies the relation ki 5 ki 6 1 / 7 i 8:9 1 / c % 1 ; .

the following example provides a distinction. Consider a netlist
comprising a primary input i0, which fans out to register r1 (whose
initial value is primary input i1), which in turn fans out to regis-
ter r2 (whose initial value is primary input i2). The diameter of
� r1 � r2 � is two, since it will take two time-steps to view � 1 � 1 � after
� 0 � 0 � . However, the diameter of � r2 � is one since r2 may produce
any valuation at any time-step independently of other time-steps,
being trace-equivalent (refer to Definition 4) to any primary input.

3 Diameter Bounding Transformed Netlists
In this section, we discuss the impact of various types of trans-

formations upon the diameter of a design. This theory will enable a
diameter bound d̂ � U  � obtained upon vertex set U  of a transformed
netlist N  to immediately imply a diameter bound d̂ � U � on the cor-
responding vertex set of the original, untransformed netlist N via a
constant-time calculation. In many cases, this theory enables that a
tight d̂ � U  � can yield a tight d̂ � U � . In the worst case, for all of the
semantics-preserving transformations to be discussed, the resultant
d̂ � U � will be at most a linear factor of d̂ � U  � with respect to <R < .
Recall that diameter overapproximation techniques may yield ex-
ponentially loose bounds with respect to register count, and may
require exponential resources with respect to design size. Struc-
tural transformations are capable of yielding arbitrarily large reduc-
tions in design size, and often require polynomial resources. This
collectively implies that the theory of this section may enhance
both the resource requirements and the tightness of the diameter
overapproximation obtained via any technique. We also discuss
how diameter bounds obtained through approximate transforma-
tions (which are not both sound and complete) cannot be used in
general to bound the diameter of the original netlist.

3.1 Trace-Equivalence-Preserving Transformations
The following definition and theorem illustrates that trace-

equivalence-preserving transformations do not alter diameter.

Definition 4. Vertex sets A and A  of netlists N and N  , respectively,
are said to be trace equivalent iff there exists a bijective mapping
ψ : A 
� A  which satisfies the following conditions.
= � p � P� > p  � P  � � i �?�@� � a � A � p � a � i �.� p  $ ψ � a ��� i '
= � p  � P  � > p � P� � i �?�@� � a � A � p � a � i �.� p  $ ψ � a ��� i '

Theorem 1. Let N and N  be netlists which are trace-equivalent
with respect to vertex sets A and A  and bijective mapping ψ : A 
�
A  . The diameter of A is equal to that of A  .
Proof. This theorem follows immediately from Definitions 3 and 4.

It is well-known that bisimilarity, relating state transition graphs
of netlists, is more restrictive than trace equivalence – bisimilarity
implies trace equivalence, though the latter does not imply the for-
mer. Numerous approaches have been proposed for reducing the
size of a design while preserving bisimilarity (thus also preserving
trace equivalence); for example, those of [12, 13]. Such techniques
often require the analysis of the state space of the design, which is
computationally too expensive to consistently offer benefits for in-
variant checking as noted in [13]. However, the technique of redun-
dancy removal [14, 15] is widely applied for enhancing verification.
The idea of this approach is to attempt to identify two semantically-
equivalent vertices u and v; when two such vertices are found, all
fanout edges from v are moved to u and v is made a simple buffer
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(one-input AND gate) sourced by u. Clearly, redundancy removal
does not alter the semantics of any vertex. Such merging is benefi-
cial since it reduces the number of vertices in the cone of influence
of a target, and may enable further reductions of the fanout cone
of the merged vertex v. Identification of semantically-equivalent
vertices may be performed efficiently by structural analysis or by
BDD and SAT sweeping [14, 15] with no need to analyze the state
space of the netlist. Note also that a cone-of-influence reduction
preserves trace-equivalence of all vertices in the cone.

The technique of parametric re-encoding of a netlist [16, 17]
replaces the fanin cone C of a cut

�
C � C � V A C � of a netlist

with a trace-equivalent cone C  . Such re-encoding preserves trace-
equivalence of any vertex set in C .

3.2 Retiming
Leiserson and Saxe [18] proposed the technique of retiming as

a synthesis optimization for reducing the number of registers of a
design (and thereby its size), or for reducing the clock period of a
design by decreasing its longest purely-combinational path. More
recently, several researchers have proposed the use of retiming to
enhance verification [19, 20, 9].

Definition 5. A retiming of netlist N is a gate labeling r : V 
�CB ,
where r � v � is the lag of vertex v, denoting the number of registers
that are moved backward through v. A normalized retiming r  may
be obtained from an arbitrary retiming r, and is defined as r  �
r ( maxv 8 V r � v � .

In [9], the use of normalized retiming is proposed for enhanced
invariant checking. The retimed netlist Ñ has two components:
1) a sequential recurrence structure Ñ  which has a unique rep-
resentative in the original netlist N for each combinational vertex,
and whose registers are placed according to Definition 5, and 2) a
combinational retiming stump Ñ   obtained through unfolding, rep-
resenting retimed initial values as well as the functions of all gates
for prefix time-steps that were effectively discarded from the recur-
rence structure. It is demonstrated that each gate ũ  within Ñ  is
trace-equivalent to the corresponding u within N, modulo a tempo-
ral skew of ( r � ũ  2� time-steps. Furthermore, there will be ( r � ũ  2�
correspondents to this u within Ñ   , each being trace-equivalent to
ũ  for one time-step during this temporal skew.

Theorem 2. If the diameter of a set of vertices Ũ  of the re-
currence structure of a normalized-retimed netlist is d � Ũ  1� , and
> i � � ũ  +� Ũ  D�E( r � ũ  1�F� i, then the diameter of the original set of
vertices U satisfies d � U � # d � Ũ  � & i.

Proof. In [7], it is shown that for a given set of vertices u1 ��������� un
with diameter d, the diameter of a set of acyclic registers v1 ��������� vn
whose input edges are sourced by u1 ��������� un, respectively, will be
at most d & 1. Note that we may compose a series of i registers
to each ũ  , whose initial values are determined by corresponding
values from the retiming stump. This yields a set of vertices U  
which are trace-equivalent to U . Each stage of this pipeline is an
acyclic register, hence increments diameter by at most 1. This proof
therefore follows from Theorem 1 and the results of [9, 7].

Each lag will be between (G<R < and 0 for any optimal normalized
retiming, thus guaranteeing that d � U � is a linear factor of d � Ũ  � .
Retiming is potentially capable of eliminating all registers from a
netlist; e.g., for a pipeline with a primary input driving a set of reg-
isters connected in series. Because the diameter of a combinational
netlist is 1, the diameter of the i-th register of this pipeline will

be bounded at i & 1 by Theorem 2, which is likely to be exact. As
demonstrated in [9], redundancy removal plus retiming yields aver-
age reductions in register count of 27% for ISCAS89 benchmarks,
and of 62% for IBM Gigahertz processor netlists.

3.3 State-Folding Abstractions
In this section we discuss two structural transformations which

entail state folding: phase abstraction and c-slow abstraction.
Phase abstraction [10, 17] is a technique to yield a register-based
netlist from one composed of level-sensitive latches: gates with
two inputs (data and clock), which act as buffers when their clock
is active and hold their last-sampled data values otherwise. C-slow
abstraction [21, 17] is directly applicable to register-based netlists.
Both abstractions are applicable to netlists in which the state ele-
ments may be c-colored such that state elements of color i may only
combinationally fan out to state elements of color � i & 1 � mod c.‡

By eliminating all but one color of state elements (transforming
others into combinational logic), both abstractions reduce the num-
ber of state elements of a netlist by a factor of 1 H c or greater. The
semantic effect of these abstractions is to temporally fold the re-
sulting netlist modulo-c.

Theorem 3. If the diameter of a set of identically-colored vertices
Ũ of phase abstracted or c-slow abstracted netlist Ñ is d � Ũ � , then
the diameter of the corresponding vertex set U of the original netlist
N is at most c I d � Ũ � .
Proof. By Definition 3, if the diameter of the phase- or c-slow-
abstracted vertex set Ũ is d � Ũ � , then the longest required duration
to witness a particular valuation to Ũ is d � Ũ � time-steps. From [10,
21, 17], we know that phase abstraction and c-slow abstraction fold
time modulo-c. Therefore, any transition of states in Ñ correlates to
c transitions in N, and the corresponding valuation to U must occur
within c I d � Ũ � time-steps.

3.4 Target Enlargement
Target enlargement is a technique to render a target which may

be hit at a shallower depth from the initial states of a netlist, and
with a higher probability, than the original target [22, 23]. Tar-
get enlargement is based upon preimage computation to calculate
the set of states which may hit the target within k time-steps. In-
ductive simplification may be performed upon the i-th preimage
to eliminate states which hit the target in fewer than i time-steps.
The result of this calculation is the characteristic function of the
set of states S which is a subset of all states that can hit the target
in 0 ��������� k steps, and a superset of those that can hit the target in
exactly k steps minus those that can hit the target in 0 �������J� k ( 1
steps. Prior research has noted the benefit of representing the en-
larged target structurally to enable better synergy with simulation
and SAT-based analysis [24], and to enable a reduction in the size
of the cone-of-influence of the enlarged target [7].

Theorem 4. If the diameter of a k-step enlarged target t  is d � t  � ,
then the original target t is hittable within d � t  � & k time-steps,
if at all.

Proof. If d � t  �K� i, then t  must be hittable at time 0 �������J� i ( 1 if
at all, as per Definition 3. Because the enlarged target is a subset
of the states that hit the target within k time-steps, and a superset

‡Note that c may readily be bounded by LR L . In [17], a netlist preprocessing tech-
nique is formalized to allow c-slow abstraction to be applied to any netlist where each
directed cycle comprises a factor of c M 1 registers.
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of those that hit the target in exactly k time-steps minus those that
hit the target in fewer than k time-steps, the original target must be
hittable within 0 ��������� k & i ( 1 time-steps, if at all.

Due to the temporal union and input quantification inherent in
target enlargement, it may be the case that a transition of the en-
larged target t  from 1 to 0 may be skewed and possibly eliminated
with respect to such a transition of the original target t. For exam-
ple, target t may be an OR of signals A and B, where B encodes
the function counter NO 0 for a mod -c counter. The first hit of t via
A may cause the counter to unconditionally begin counting, such
that t may thereafter only be deasserted one time-step of every c
time-steps. Target enlargement may obscure this deasserted time-
step such that once hit, t  will never be deasserted. The number
of time-steps necessary to drive a binary 1 to t from any reachable
state of N may be exponentially smaller than the number necessary
to subsequently drive a binary 0 onto t. Therefore, target enlarge-
ment does not entail as clean of an impact on diameter as we may
hope; we cannot use a target enlargement approach to bound the
diameter of an intermediate component of a partitioned netlist [7],
for example. However, the result of Theorem 4 is sufficient to allow
a bound derived from the target-enlarged netlist to imply an upper-
bound on the number of time-steps sufficient to perform BMC in a
complete manner for the original target. In [7], it is demonstrated
that target enlargement may yield average register count reductions
of 14% for ISCAS89 benchmarks and of 71% for IBM Gigahertz
processor netlists.

3.5 Overapproximate Abstraction
Various techniques have been developed for attempting to re-

duce netlist size while providing an overapproximation of the be-
havior of that netlist. In other words, any target assessed to be un-
reachable after overapproximation is guaranteed to be unreachable
before the overapproximation. However, a target hit obtained for
the overapproximated netlist may not imply that the target is hit-
table in the original netlist. For example, cut-point insertion [25] is
commonly used in equivalence checking, and consists of replacing
an internal netlist vertex by a primary input. Localization [26] is
another common overapproximation technique which replaces all
vertices sourcing crossing edges of a cut of the netlist by primary
inputs. There are two byproducts of overapproximate abstractions.
First, states which are not truly reachable may become reachable,
which may clearly increase the diameter. Second, state transitions
which are not reachable may become reachable, which may de-
crease the diameter. Therefore, diameter bounds obtained upon
an overapproximated netlist cannot be used in general to obtain a
bound for the original netlist.

3.6 Underapproximate Abstraction
An underapproximate abstraction attempts to reduce the netlist

size while providing an underapproximation of its behavior. In
other words, any trace hitting a target of the abstracted netlist is
valid to illustrate a hit of the unabstracted target. However, tar-
get unreachable results obtained upon the underapproximate netlist
may not imply that the target is unreachable in the original netlist.
For example, case splitting may replace certain primary inputs by
constant values. While a special case of case splitting is semantics-
preserving (if the image of a netlist cut is preserved as described in
Section 3.1), underapproximate abstractions may generally cause
two byproducts. First, reachable states may become unreachable,
which may decrease the diameter. Second, reachable state tran-
sitions may become unreachable, which may increase diameter.

Therefore, diameter bounds obtained upon an underapproximated
netlist cannot generally be used to bound the original netlist.

4 Experimental Results
In this section we provide the experimental results of our

transformation-based diameter overapproximation theory. All ex-
periments were run on an IBM ThinkPad model T21 running Red-
Hat Linux 6.2, with an 800 MHz Pentium III and 256 MB main
memory. As transformations, we utilized a redundancy removal
engine COM [27], a retiming engine RET [9], and for the IBM
Gigahertz Processor examples, a phase abstraction engine [10].

The diameter overapproximation algorithm utilized for our re-
sults is the fast structural technique presented in [7]. To briefly
summarize this technique, the approach first partitions the netlist
into an acyclic sequence of components, and then composition-
ally derives an overapproximate diameter bound d̂ from this parti-
tion. While the diameter of each component is generally exponen-
tial in its register count, it is demonstrated that certain commonly-
occurring types of components have a much smaller impact on
diameter. Four classes of components are considered: constant
components (CCs) — these do not increase the diameter; acyclic
components (ACs), which represent a one-stage pipeline of arbi-
trary width — these increment the diameter by one regardless of
how many bits wide the pipeline stage is; memory/queue compo-
nents (MCs/QCs) — these multiply the diameter by the number
of atomically-updated rows plus one regardless of the bit-width of
each row; and general components (GCs) — these are the catch-
all category for all other strongly-connected components, and may
have a diameter exponential in their register count. Rather than us-
ing more expensive diameter bounding techniques such as QBF or
recurrence diameter for GCs, we assume an exponential diameter
increase in these experiments for speed.

Our first set of experiments summarized in Table 1 are on the
ISCAS89 benchmarks, using each primary output as a target for
lack of any more meaningful available targets. We categorized the
registers in the netlist into the various component types. We ad-
ditionally ran the diameter overapproximation algorithm of [7] on
all targets; any with a diameter of less than 50 were enumerated
in set T  � T and the average of these corresponding diameters
is reported. The bound of 50 was arbitrarily chosen as being a
reasonable cut-off size for discharging with BMC. In the bottom
row we report the cumulative sum of registers of the correspond-
ing types, and the cumulative sum of <T  < and <T < . We performed
these experiments on the original netlists; on redundancy-removed
netlists (COM); and on netlists after redundancy removal and retim-
ing (COM,RET,COM), using Theorems 1 and 2. We perform the
identical set of experiments on randomly-selected phase-abstracted
GP netlists in Table 2. We do not report per-line computational re-
sources for these experiments; the structural diameter overapproxi-
mation algorithms consume less than 1 second and 1 MB per target.
In contrast to the results reported in [7] which do not reflect the re-
sults of retiming nor redundancy removal, these experiments are
intended to illustrate precisely the effects of these transformations.

Many registers are initially non-complex for the ISCAS netlists:
21% are acyclic registers, and 5% are table cells (elements of
MCs/QCs). A total of 477 original targets (30%) have a diame-
ter of less than 50. After redundancy removal, 24% of the registers
are acyclic, and 10% are table cells; 556 of the targets (34%) have
a diameter of less than 50. After redundancy removal and retiming,
10% of the registers are acyclic and 11% are table cells. This drop
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in acyclic registers is due primarily to their elimination by retiming.
A total of 639 targets (40%) have a diameter of less than 50.

A larger fraction of the registers is originally non-complex for
the GP netlists, as is intuitive for highly-pipelined gigahertz de-
signs: 1% are constants, 57% are acyclic, and 13% are table cells.
A total of 95 targets (33%) have a diameter of less than 50. After
redundancy removal, 0.5% of the registers are constants, 58% are
acyclic, and 15% are table cells. A total of 111 targets (39%) have
a diameter of less than 50. After retiming and redundancy removal,
1% of the registers are constants, 19% are acyclic, and 34% are ta-
ble cells. A total of 126 (44%) of these targets have a diameter of
less than 50.

Overall, the results clearly indicate that the use of structural
transformations, coupled with the theories presented in this paper,
are capable of significantly increasing the set of targets for which
a practically useful overapproximate diameter bound may be ob-
tained. We increase the percentage by 10% or more of such tar-
gets in both ISCAS89 and GP netlists. This result is particularly
profound noting that we did not employ any (possibly costly) tech-
niques to attempt to tighten GC diameter bounds; our experiments
thus reflect a very fine line between being able to attain a small
diameter bound and a huge bound. As techniques emerge for effi-
ciently improving diameter bounding for GCs, the transformation-
based theory we have developed should prove even more useful to
obtain superior results with lesser resources.

In some cases, the diameter bound computed for a retimed
netlist is slightly larger than that of the original netlist – for ex-
ample, with S1196 and S15850 1. This is partially due to the in-
equality in Theorem 2; we must add the negated target lag to its
diameter bound, even though retiming may not have reduced regis-
ter count for that target. Use of a normalized retiming helps min-
imize this potential increase, as would retiming and normalizing a
single target cone at a time (instead of the entire netlist). However,
the potential for increase tends to be very small (since most lags
tend to be very small and are bounded by (P<R < ), whereas the po-
tential for decrease is exponentially greater. Transformations also
impact table identification and clustering heuristics for MCs/QCs.
Due to the speed of these heuristic algorithms, it may be beneficial
to run them on every possible netlist representation to enable the
best possible result.

5 Conclusion
We have presented a practical approach with supporting theory

to enable the use of structural transformations (such as retiming,
redundancy removal, and target enlargement) to enhance diame-
ter overapproximation techniques, and thus to help enable com-
pleteness of bounded verification approaches. The theory enables a
diameter bound obtained upon a transformed design to backward-
imply a tight bound for the original, untransformed design. Due
to the reduction potential inherent in these transformations, this
theory is capable of significantly increasing the set of designs for
which practically useful diameter bounds may be calculated effi-
ciently. This capability is validated by numerous experimental re-
sults. A promising future research direction is to apply this the-
ory for speeding up quantified-Boolean-formulae-based diameter
calculation, and to exponentially tighten alternate overapproximate
techniques such as ones based upon recurrence diameter.
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Original Netlist COM COM,RET,COM
Design QR Q1R CC; AC; Q T STQ / QT Q ; QR Q1R CC; AC; QT STQ / QT Q ; QR Q3R CC; AC; QT SUQ / QT Q ;

MC+QC; GC Avg. d̂ V t S W MC+QC; GC Avg. d̂ V t S W MC+QC; GC Avg. d̂ V t S W
PROLOG 0 ; 107 ; 1 ; 28 14 / 73 ; 8.9 0 ; 103 ; 1 ; 28 16 / 73 ; 11.9 0 ; 16 ; 1 ; 28 24 / 73 ; 21.0
S1196 0 ; 18 ; 0 ; 0 14 / 14 ; 3.3 0 ; 18 ; 0 ; 0 14 / 14 ; 3.3 0 ; 16 ; 0 ; 0 14 / 14 ; 4.3
S1238 0 ; 18 ; 0 ; 0 14 / 14 ; 3.3 0 ; 18 ; 0 ; 0 14 / 14 ; 3.3 0 ; 16 ; 0 ; 0 14 / 14 ; 4.3
S1269 0 ; 9 ; 17 ; 11 2 / 10 ; 10.0 0 ; 9 ; 17 ; 11 2 / 10 ; 10.0 0 ; 8 ; 17 ; 11 2 / 10 ; 10.0
S13207 1 0 ; 314 ; 128 ; 196 49 / 152 ; 2.0 0 ; 315 ; 128 ; 195 49 / 152 ; 2.1 0 ; 77 ; 89 ; 183 79 / 152 ; 6.4
S1423 0 ; 3 ; 16 ; 55 1 / 5 ; 1.0 0 ; 3 ; 16 ; 55 1 / 5 ; 1.0 0 ; 1 ; 12 ; 59 1 / 5 ; 2.0
S1488 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0
S1494 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0 0 ; 0 ; 0 ; 6 19 / 19 ; 33.0
S1512 0 ; 0 ; 1 ; 56 0 / 21 ; 0.0 0 ; 0 ; 0 ; 57 0 / 21 ; 0.0 0 ; 0 ; 0 ; 57 0 / 21 ; 0.0
S15850 1 0 ; 99 ; 124 ; 311 115 / 150 ; 2.7 0 ; 96 ; 107 ; 328 115 / 150 ; 2.7 0 ; 73 ; 81 ; 292 115 / 150 ; 4.7
S208 1 0 ; 0 ; 0 ; 8 0 / 1 ; 0.0 0 ; 0 ; 0 ; 8 0 / 1 ; 0.0 0 ; 0 ; 0 ; 8 0 / 1 ; 0.0
S27 0 ; 1 ; 2 ; 0 1 / 1 ; 4.0 0 ; 1 ; 2 ; 0 1 / 1 ; 4.0 0 ; 1 ; 2 ; 0 1 / 1 ; 4.0
S298 0 ; 0 ; 1 ; 13 0 / 6 ; 0.0 0 ; 0 ; 1 ; 13 0 / 6 ; 0.0 0 ; 0 ; 1 ; 13 0 / 6 ; 0.0
S3271 0 ; 6 ; 0 ; 110 1 / 14 ; 7.0 0 ; 6 ; 0 ; 110 1 / 14 ; 7.0 0 ; 0 ; 0 ; 110 1 / 14 ; 7.0
S3330 0 ; 103 ; 1 ; 28 16 / 73 ; 11.9 0 ; 103 ; 1 ; 28 16 / 73 ; 11.9 0 ; 16 ; 1 ; 28 33 / 73 ; 25.3
S3384 0 ; 111 ; 0 ; 72 6 / 26 ; 16.5 0 ; 111 ; 0 ; 72 6 / 26 ; 16.5 0 ; 0 ; 0 ; 72 6 / 26 ; 16.5
S344 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0
S349 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0 0 ; 0 ; 4 ; 11 3 / 11 ; 5.0
S35932 0 ; 0 ; 0 ; 1728 0 / 320 ; 0.0 0 ; 0 ; 0 ; 1728 0 / 320 ; 0.0 0 ; 0 ; 0 ; 1728 0 / 320 ; 0.0
S382 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 0 ; 0 ; 15 0 / 6 ; 0.0
S38584 1 0 ; 47 ; 4 ; 1375 56 / 304 ; 1.0 1 ; 203 ; 366 ; 854 133 / 304 ; 14.9 0 ; 170 ; 345 ; 832 110 / 304 ; 16.7
S386 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0
S400 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 0 ; 0 ; 15 0 / 6 ; 0.0
S420 1 0 ; 0 ; 0 ; 16 0 / 1 ; 0.0 0 ; 0 ; 0 ; 16 0 / 1 ; 0.0 0 ; 0 ; 0 ; 16 0 / 1 ; 0.0
S444 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 6 ; 0 ; 15 0 / 6 ; 0.0 0 ; 0 ; 0 ; 15 0 / 6 ; 0.0
S4863 0 ; 62 ; 0 ; 42 0 / 16 ; 0.0 0 ; 83 ; 0 ; 21 0 / 16 ; 0.0 0 ; 16 ; 0 ; 21 0 / 16 ; 0.0
S499 0 ; 0 ; 0 ; 22 0 / 22 ; 0.0 0 ; 0 ; 0 ; 22 0 / 22 ; 0.0 0 ; 0 ; 0 ; 22 0 / 22 ; 0.0
S510 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0 0 ; 0 ; 0 ; 6 7 / 7 ; 33.0
S526N 0 ; 0 ; 1 ; 20 0 / 6 ; 0.0 0 ; 0 ; 1 ; 20 0 / 6 ; 0.0 0 ; 0 ; 1 ; 20 0 / 6 ; 0.0
S5378 0 ; 115 ; 0 ; 64 4 / 49 ; 1.5 0 ; 126 ; 0 ; 53 4 / 49 ; 1.5 0 ; 56 ; 0 ; 56 7 / 49 ; 3.9
S635 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0
S641 0 ; 7 ; 0 ; 12 3 / 24 ; 1.0 0 ; 7 ; 0 ; 12 3 / 24 ; 1.0 0 ; 4 ; 0 ; 10 7 / 24 ; 2.0
S6669 0 ; 181 ; 0 ; 58 37 / 55 ; 3.4 0 ; 181 ; 0 ; 58 37 / 55 ; 3.4 0 ; 18 ; 0 ; 58 37 / 55 ; 4.0
S713 0 ; 7 ; 0 ; 12 3 / 23 ; 1.0 0 ; 7 ; 0 ; 12 3 / 23 ; 1.0 0 ; 7 ; 0 ; 7 7 / 23 ; 2.3
S820 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0
S832 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0 0 ; 0 ; 0 ; 5 19 / 19 ; 17.0
S838 1 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0
S9234 1 0 ; 45 ; 9 ; 157 22 / 39 ; 1.2 0 ; 49 ; 5 ; 157 22 / 39 ; 1.2 0 ; 14 ; 25 ; 133 22 / 39 ; 2.0
S938 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0 0 ; 0 ; 0 ; 32 0 / 1 ; 0.0
S953 0 ; 23 ; 0 ; 6 3 / 23 ; 2.0 0 ; 23 ; 0 ; 6 3 / 23 ; 2.0 0 ; 0 ; 0 ; 6 23 / 23 ; 29.8
S967 0 ; 23 ; 0 ; 6 3 / 23 ; 2.0 0 ; 23 ; 0 ; 6 3 / 23 ; 2.0 0 ; 0 ; 0 ; 6 23 / 23 ; 29.8
S991 0 ; 0 ; 0 ; 19 17 / 17 ; 8.8 0 ; 0 ; 0 ; 19 17 / 17 ; 8.8 0 ; 0 ; 0 ; 19 17 / 17 ; 8.8

∑ 0; 1317; 313; 4622 477 / 1615 1; 1503; 653; 4086 556 / 1615 0; 509; 583; 3992 639 / 1615

Table 1: Diameter bounding experiments for ISCAS89 benchmarks.

Original Netlist COM COM,RET,COM
Design QR Q1R CC; AC; Q T S Q / QT Q ; QR Q1R CC; AC; QT S Q / Q T Q ; QR Q1R CC; AC; QT S Q / QT Q ;

MC+QC; GC Avg. d̂ V t S W MC+QC; GC Avg. d̂ V t S W MC+QC; GC Avg. d̂ V t S W
CP RAS 0 ; 279 ; 66 ; 315 0 / 2 ; 0.0 0 ; 286 ; 66 ; 307 0 / 2 ; 0.0 0 ; 179 ; 65 ; 238 0 / 2 ; 0.0
CLB CNTL 0 ; 29 ; 2 ; 19 0 / 2 ; 0.0 0 ; 25 ; 2 ; 19 0 / 2 ; 0.0 0 ; 15 ; 2 ; 20 0 / 2 ; 0.0
CR RAS 0 ; 96 ; 6 ; 329 0 / 1 ; 0.0 0 ; 100 ; 7 ; 321 0 / 1 ; 0.0 0 ; 52 ; 10 ; 284 0 / 1 ; 0.0
D DASA 0 ; 16 ; 81 ; 18 1 / 2 ; 35.0 0 ; 10 ; 86 ; 13 2 / 2 ; 27.0 0 ; 1 ; 86 ; 13 2 / 2 ; 28.0
D DCLA 0 ; 382 ; 1 ; 754 0 / 2 ; 0.0 0 ; 387 ; 1 ; 748 0 / 2 ; 0.0 0 ; 14 ; 0 ; 736 0 / 2 ; 0.0
D DUDD 0 ; 30 ; 28 ; 71 4 / 22 ; 9.2 0 ; 21 ; 28 ; 71 4 / 22 ; 10.8 0 ; 1 ; 21 ; 71 7 / 22 ; 11.0
I IBBQn 0 ; 623 ; 1488 ; 0 15 / 15 ; 4.7 0 ; 623 ; 1488 ; 0 15 / 15 ; 4.7 0 ; 0 ; 1488 ; 0 15 / 15 ; 4.7
I IFAR 0 ; 303 ; 11 ; 99 0 / 2 ; 0.0 0 ; 257 ; 11 ; 93 0 / 2 ; 0.0 0 ; 41 ; 18 ; 79 0 / 2 ; 0.0
I IFPF 11 ; 893 ; 44 ; 598 0 / 1 ; 0.0 1 ; 923 ; 35 ; 525 0 / 1 ; 0.0 0 ; 191 ; 4 ; 218 0 / 1 ; 0.0
L3 SNP1 25 ; 529 ; 39 ; 82 0 / 5 ; 0.0 6 ; 400 ; 41 ; 62 0 / 5 ; 0.0 0 ; 31 ; 30 ; 41 1 / 5 ; 1.0
L EMQn 5 ; 146 ; 6 ; 66 0 / 1 ; 0.0 5 ; 136 ; 6 ; 66 1 / 1 ; 1.0 5 ; 20 ; 14 ; 57 1 / 1 ; 1.0
L EXEC 12 ; 421 ; 0 ; 102 0 / 2 ; 0.0 0 ; 430 ; 0 ; 58 0 / 2 ; 0.0 0 ; 88 ; 0 ; 57 0 / 2 ; 0.0
L FLUSHn 6 ; 198 ; 0 ; 4 7 / 7 ; 3.7 0 ; 194 ; 0 ; 4 7 / 7 ; 3.7 0 ; 12 ; 0 ; 4 7 / 7 ; 4.0
L INTRo 14 ; 143 ; 12 ; 5 30 / 30 ; 3.8 0 ; 135 ; 12 ; 5 30 / 30 ; 3.8 0 ; 3 ; 12 ; 4 30 / 30 ; 3.6
L LMQo 28 ; 690 ; 4 ; 133 0 / 16 ; 0.0 24 ; 682 ; 4 ; 141 0 / 16 ; 0.0 24 ; 114 ; 2 ; 132 0 / 16 ; 0.0
L LRU 0 ; 142 ; 20 ; 75 0 / 12 ; 0.0 0 ; 127 ; 86 ; 9 12 / 12 ; 15.0 0 ; 0 ; 86 ; 8 12 / 12 ; 15.0
L PFQo 14 ; 1936 ; 17 ; 84 1 / 67 ; 1.0 8 ; 1929 ; 82 ; 20 1 / 67 ; 1.0 8 ; 192 ; 83 ; 17 1 / 67 ; 1.0
L PNTRn 3 ; 228 ; 10 ; 11 23 / 31 ; 2.0 0 ; 211 ; 10 ; 11 23 / 31 ; 2.0 0 ; 1 ; 10 ; 11 23 / 31 ; 4.0
L PRQn 34 ; 366 ; 106 ; 265 10 / 10 ; 15.2 30; 367; 108; 260 10 / 10 ; 15.2 30 ; 12 ; 64 ; 302 10 / 10 ; 8.0
L SLB 3 ; 135 ; 6 ; 27 2 / 3 ; 1.0 0 ; 126 ; 6 ; 26 2 / 3 ; 1.0 0 ; 15 ; 6 ; 23 2 / 3 ; 1.0
L TBWKn 0 ; 202 ; 117 ; 14 0 / 21 ; 0.0 0 ; 186 ; 119 ; 12 1 / 21 ; 1.0 0 ; 1 ; 78 ; 53 1 / 21 ; 1.0
M CIU 0 ; 343 ; 10 ; 424 0 / 6 ; 0.0 0 ; 321 ; 5 ; 417 0 / 6 ; 0.0 0 ; 63 ; 60 ; 286 6 / 6 ; 1.0
SIDECAR4 3 ; 109 ; 32 ; 455 0 / 1 ; 0.0 0 ; 60 ; 34 ; 453 0 / 1 ; 0.0 0 ; 24 ; 34 ; 67 0 / 1 ; 0.0
S SCU1 1 ; 232 ; 4 ; 136 0 / 3 ; 0.0 0 ; 220 ; 6 ; 124 0 / 3 ; 0.0 0 ; 75 ; 4 ; 70 2 / 3 ; 2.0
V CACH 5 ; 94 ; 15 ; 59 0 / 1 ; 0.0 0 ; 93 ; 14 ; 52 0 / 1 ; 0.0 1 ; 22 ; 15 ; 27 1 / 1 ; 1.0
V DIR 6 ; 91 ; 13 ; 68 0 / 2 ; 0.0 0 ; 100 ; 13 ; 55 0 / 2 ; 0.0 0 ; 13 ; 10 ; 20 2 / 2 ; 8.0
V SNPM 65; 846; 134; 376 1 / 2 ; 2.0 3 ; 762 ; 97 ; 401 2 / 2 ; 1.5 0 ; 51 ; 26 ; 46 2 / 2 ; 1.5
W GAR 0 ; 159 ; 0 ; 83 1 / 7 ; 1.0 0 ; 158 ; 0 ; 82 1 / 7 ; 1.0 0 ; 10 ; 0 ; 81 1 / 7 ; 1.0
W SFA 0 ; 22 ; 0 ; 42 0 / 8 ; 0.0 0 ; 22 ; 0 ; 42 0 / 8 ; 0.0 0 ; 0 ; 0 ; 42 0 / 8 ; 0.0

∑ 235; 9683; 2272; 4714 95 / 284 77; 9291; 2367; 4397 111 / 284 68; 1241; 2228; 3007 126 / 284

Table 2: Diameter bounding experiments for phase-abstracted GP netlists.
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