Hybrid Architectural Dynamic Thermal M anagement

Kevin Skadron
Department of Computer Science, University of Virginia
Charlottesville, VA 22904
skadron@cs.virginia.edu

Abstract

When an application or external environmental condi-
tions cause a chip’s cooling capacity to be exceeded, dy-
namic thermal management (DTM) dynamically reduces the
power density on the chip to maintain safe operating tem-
peratures. The challenge is that even though this reduction
in power density reduces heat dissipation and can be used
to regulate temperature and reduce the need for expensive
thermal packages, reducing power density may come at a
cost in execution speed. This paper shows the importance of
processor-architecture techniques for DTM, and proposes
a new, “hybrid,” low-overhead implementation based on
combining fetch gating and dynamic voltage scaling (DVS).
When thermal stress is low, fetch gating is superior because
it exploits instruction-level parallelism (ILP). Once thermal
stress becomes severe enough that fetch gating degrades
ILP, DVS is engaged instead to take advantage of its greater
ability to reduce power density. We show that under a va-
riety of assumptions about DVS implementation, a hybrid
policy reduces DTM performance overhead by 25% on av-
erage compared to DVS, and is easy to design.

1. Introduction

In recent years, power density in microprocessors is dou-
bling every three years, and this rate is expected to increase
as feature sizes and frequencies scale faster than operating
voltages [1, 16]. Because energy consumed by the micro-
processor is converted into heat, the corresponding expo-
nential rise in heat density is creating vast difficulties in
reliability and manufacturing costs. For high-performance
processors, cooling solutions are rising at $1-3 or more per
watt of heat dissipated [1, 6], making it more difficult to
deploy new systems. Cooling costs are exacerbated by the
fact that cooling solutions must typically be designed for
the worst-case. Yet the worst case usually far exceeds the
typical case, so even though worst-case design is necessary,
the resulting solutions are substantially over-engineered for
typical operating conditions.

Dynamic thermal management (DTM) allows the ther-
mal package to be designed for power densities exhibited
by typical applications, with the chip itself adapting its run-
time behavior if temperatures approach dangerous levels.
For typical applications, the less-expensive package still
keeps temperatures within specification and DTM is never
engaged. If some atypical application causes the processor

1530-1591/04 $20.00 (c) 2004 IEEE

to run too hot, on-chip sensors detect the thermal stress and
engage some form of runtime response, like dynamic volt-
age scaling (DVS) or global clock-gating. This response
by the chip itself therefore provides the additional cooling
and worst-case protection that is needed for reliability, with-
out the associated system cost of a package designed for
worst-case behavior. Gunther et al. [6] reported that target-
ing the thermal package for the “worst typical” application
rather than the true worst case, and using DTM in the form
of global clock gating, permitted a 20% reduction in the
thermal design power for the Pentium 4. For applications
that do engage DTM, some performance loss may be in-
curred, because reducing power density often entails slower
execution. But in the near future, the per-chip savings can
be as high as a hundred dollars or more for very high-end,
high-power processors and probably in the tens of dollars
for laptop systems which require more expensive, compact
thermal technologies like heat pipes [20]. Improving DTM
design will allow greater cost savings with minimal perfor-
mance cost.

The problem with most existing DTM approaches is that
different hardware techniques may be better suited to dif-
ferent degrees of thermal stress. This is not just a matter of
finding the optimal setting for some technique and matching
its response to the degree of thermal stress, like finding the
best voltage and frequency setting that safely cools the chip
while minimizing slowdown. That can be accomplished us-
ing feedback control. Rather, completely different mecha-
nisms may be needed. We show that when thermal stress is
severe, an aggressive DTM response based on voltage scal-
ing is likely best, because this obtains approximately cubic
reductions in power density relative to the reduction in fre-
quency. On the other hand, when thermal stress is mild and
only amild DTM response is needed, we show that an archi-
tectural response that exploits instruction-level parallelism
(ILP) has less overhead than DVS—possibly even no over-
head if ILP is sufficient. (We call these ILP-exploiting tech-
niques ILP techniques.) DVS also carries inherent overhead
due to step size and switching time that make it unattractive
for mild thermal stress. We are not aware of any prior work
examining tradeoffs between architectural ILP techniques
and traditional DV'S techniques for thermal management.

These observations argue for a hybrid DTM technique
that uses the most effective type of response according to
the degree of thermal stress: DVS for aggressive DTM re-
sponse, and ILP techniques for mild DTM response. In fact,

we show that this approach is so effective and so insensitive
to tuning parameters that the need for feedback control over
the ILP and DVS settings can be eliminated with negligi-
ble effect on DTM performance overhead. Hybrid DTM is
therefore easier to design and much more robust than tra-
ditional DTM techniques, an attractive property compared
to many techniques that are highly sensitive to tuning pa-
rameters. Overall, we show that a hybrid policy can reduce
DTM overhead by about 25% compared to the best existing
technique, DVS; and can also outperform even an idealized
DVS that has no switching overhead. Specifically, we make
the following contributions:

e We propose the notion of a hybrid DTM technique,
and show how to understand what characteristics dic-
tate the crossover point between the ILP technique and
DVS. We find that hybrid schemes are the best DTM
technique proposed so far. This result shows the value
of an architectural approach to thermal management.

o We show how to eliminate the need for feedback con-
trol in a hybrid DTM technique, making hybrid DTM
more robust than previous adaptive techniques.

e We show that “binary” DVS, with only two voltage
levels, is just as good for DTM as more sophisticated
DVS schemes. This is attractive because the fewer the
voltages supported, the less the testing overhead; in-
deed many chips use only two voltages.

The rest of this paper is organized as follows. The next
provides further background and discusses related work.
Then Section 3 describes our modeling setup, and Section 4
describes the DTM techniques we study. Section 5 evalu-
ates hybrid DTM, and Section 6 concludes the paper.

2. Background

Power-aware design alone has failed to stem the tide of
rising operating temperature for a variety of reasons, includ-
ing continuing demand for higher performance, the fact that
much power-aware design focuses on energy efficiency and
battery life rather than peak operating temperature, and the
fact that on-chip temperatures exhibit hotspots—spatial gra-
dients due to variations in power density among different
functional units, and temporal gradients due to variations
in computational activity among different phases of a pro-
gram and among different programs. Many low-power tech-
niques have insufficient or no effect on operating tempera-
ture, because they do not reduce power density in hotspots,
or because they only reclaim slack and do not reduce power
and temperature when no slack is present. Controlling tem-
perature with in-chip hardware responses requires power-
management techniques that directly target the spatial and
temporal behavior of operating temperature.

One of the most common techniques discussed for DTM
is dynamic voltage scaling, possibly with feedback con-
trol [12, 17], and a variety of processors offer DVS today.
There are three reasons why ILP techniques can outperform
DVS despite the cubic reduction in power density that DVS
provides with respect to the reduction in frequency. The

first is that ILP techniques can exploit ILP while DVS can-
not (because the clock speed itself is changing while the
cycle count stays mostly unchanged). The second is that
when DVS only provides discrete steps, each step imposes
a minimum quantum in performance loss due to the asso-
ciated change in frequency. Finally, ILP techniques do not
incur any stall time to engage or switch DTM settings.

Besides DVS, the other two DTM techniques that to our
knowledge have been implemented in current processors are
clock gating in the Pentium 4 [6], in which the entire pro-
cessor clock is stopped for 2 microseconds at a time; and
fetch throttling in the PowerPC G3 [13], in which the num-
ber of instructions fetched per cycle is reduced.

Other DTM techniques that have been proposed in
the research literature are fetch gating [2], in which the
instruction-fetch rate is slowed or stopped; local tog-
gling [17], in which the processor domain(s) in thermal
stress are slowed or stopped; and “migrating computa-
tion” [7, 11, 17]. We have found that local toggling confers
little advantage over fetch gating and do not consider it fur-
ther, and the cost-benefit concerns of adding extra hardware
for migration make its study beyond the scope of this paper.

A distinction should be made between fallback tech-
niques like the DEETM hierarchy of Huang et al. [8], and
the hybrid techniques we propose here. Fallback techniques
use a DTM technique until its ability to control tempera-
ture is exhausted and an additional or alternative technique
is needed to prevent thermal violations. In contrast, the hy-
brid technique we propose uses an ILP technique only while
doing so is optimal and then switches to DVS. As we show,
this crossover point is well before the ILP technique’s cool-
ing capability has been exhausted.

3. Simulation Setup

In this section, we give a brief overview of the various
aspects of our simulation framework. We use the same sim-
ulator, benchmark, and setup as in our prior work [17], with
minor exceptions noted below.

Power -Performance Simulation. In order to study the
temporal and spatial evolution of temperature over inter-
esting time periods in real workloads, we simulate at the
microarchitecture level, using a power model based on
the Alpha 21364 [17] that is implemented using the Sim-
pleScalar/Wattch [3, 4] toolkits. The 21364 consists of a su-
perscalar, out-of-order-issue processor core identical to the
21264, with a large L2 cache and (not modeled) multipro-
cessor logic added around the periphery. We only consider
uniprocessor benchmarks, so we replace the multiproces-
sor logic with additional cache to fill out the remaining die
area. The 21364 power data was for 1.6 V at 1 GHz in a
0.18u process, so we used Wattch’s linear scaling to obtain
power for 0.13, Vy4g=1.3V, and a clock speed of 3 GHz.
We updated Wattch’s leakage model to model leakage as a
function of temperature using ITRS [16] projections for the
0.13p node—see [18].

Thermal Simulation. It is convenient to define several
terms: the emergency threshold is the temperature above

which the chip is in thermal violation; we use 85° based on
2001 ITRS recommendations for future technology nodes.
We assume that the chip should never violate the emergency
threshold. The trigger threshold is the temperature above
which runtime thermal management begins to operate; ob-
viously, trigger < emergency.

For modeling temperature, we use our HotSpot
model [17], in which a “dynamic compact model” of ther-
mal resistances and capacitances is derived from the lay-
out of microarchitectural blocks. The various RC pairs
represent heat flow in both the lateral and vertical direc-
tions. This model has been validated against a commer-
cial finite-element model. An example of the RC model
is shown in Figure 1, with a simple floorplan of just three
blocks for better legibility—our experiments use a floorplan
corresponding to the 0.13u 21364 floorplan, shown in Fig-
ure 2. One of the important features of HotSpot is that only
microarchitectural parameters and estimates of block areas
are needed to derive the equivalent RC circuit, making it
useful for early, planning-stage research before detailed de-
sign and layout has been completed. Following [17], we
use time steps of 10,000 cycles, average the power calcu-
lated by Wattch for each block during each time step, and
use that average power for each block as the current source
at each block’s node in the RC circuit. Because tempera-
ture evolves over microseconds to milliseconds, this pro-
cedure keeps sampling error below 0.1% in temperature,
with simulation overhead of less than 1%. For the pack-
age, we assume a die thickness of 0.5mm, the same cop-
per heat spreader and heat sink as [17], and an equivalent
thermal resistance for sink-to-air heat transfer of 1.0 K/W,
corresponding to a low-cost package. This package was se-
lected to push some of the SPECcpu2000 benchmarks into
thermal stress in order to evaluate DTM with real programs.

Legend :
dot lines shorting

node

Heat Spreader
—W\— thermal resistance < 7 z D

Silicon Die

o
BJ6CKT 7~~~ Blocks /] - -
G 7

—F— thermal capacitance

~Temperature

Figure 1. Example HotSpot RC model for a
floorplan with three architectural units, a heat
spreader, and a heat sink.

To model sensor effects, we assume that each architec-
tural block has one sensor in the middle of the block. The
effective precision after averaging is +1° and the sensor
may also have a fixed offset of as much as 2°. For the 85°C

[EPMap IntReg
Q
EPMul
FPReg
LdSIQ
FPAdd FPQ IITB IntExec
BPred TB
I-Cache ID-Cache

(a) 21364 floorplan (b) CPU core

Figure 2. (a): Floorplan corresponding to the
21364. (b): Closeup of 21364 core.

maximum allowed true operating temperature, this leads to
a practical limit of 82°. To allow enough time for the DTM
response to begin cooling the chip, we set a trigger temper-
ature of 81.8°. The sampling rate for reading the sensors
is 10 kHz, an aggressive but reasonable value according
to [17]. Note that this limits the rate at which DTM can
observe changes in temperature and adjust its setting. Sen-
sor placement is also important: if the critical transistors in
a sensor are not co-located with potential hotspots, the ob-
served temperature may be cooler than the actual hotspots
which we are attempting to regulate. This requires an addi-
tional design margin that can be added to the sensor’s fixed
offset.

Brooks and Martonosi [2] pointed out that for fast DTM
response, interrupts are too costly. We adopt their sugges-
tion of on-chip circuitry that directly translates any signal
of thermal stress into actuating the thermal response. We
assume that it simply consists of a comparator for each dig-
itized sensor reading.

Benchmarks. We evaluate our results using the nine
hottest benchmarks from the SPEC CPU2000 suite, rep-
resenting a mixture of integer and floating-point programs
with intermediate and extreme thermal demands: mesa,
perlbmk, gzip, bzip2, eon, crafty, vortex, gcc, and art. All
operate above 85° 100% of the time and above 90° most
of the time. The benchmarks are compiled and statically
linked for the Alpha instruction set using the Compaq Al-
pha compiler with SPEC peak settings and include all linked
libraries. For each program, we simulate a single repre-
sentative sample of 500 million instructions using UCSD’s
SimPoints [15]. When we start simulations, we initialize all
temperatures to their steady-state values and then run the
simulations in full-detail cycle-accurate mode (but without
statistics gathering) for 300 million cycles to bring caches to
steady-state miss ratios and bring operating temperatures to
accurate runtime values. Only then do we begin to track any
experimental statistics. For all the benchmarks we study, the
hottest unit is the integer register file.

Note that over these time scales, the heat sink tempera-
ture changes little. Temperature changes in the silicon, on
the other hand, take place as fast as 1°/ms, so many phases
of program behavior can be observed and many cycles of
DTM response can be modeled.

4. Techniques for Architectural DTM

This section describes the various architectural mecha-
nisms for dynamic thermal management that are evaluated
in this paper: three existing techniques, DVS, fetch gating,
and clock gating; and our new hybrid techniques. All are
simulated at levels that eliminate thermal violations.

4.1. Existing DTM Techniques

Dynamic Voltage Scaling. When changing the proces-
sor voltage, frequency must be reduced in conjunction with
voltage, a capability many processors offer today. We used
Cadence with BSIM 100nm low-leakage models to simu-
late the period of a 101-stage ring oscillator to determine the
frequency for each voltage step—for more details, see [18].
Different implementations of DVS offer various step sizes
for the voltage and frequency, ranging from two with Intel’s
SpeedStep [9] to at least ten for Transmeta’s LongRun [5],
and forty for the Intel Xscale [14]. For thermal manage-
ment, we found that multiple step sizes are unnecessary.
We tried a variety of step sizes: continuous, ten, five, three,
and two. For two steps, if the temperature dictates that
DVS must be engaged, the low voltage is used. This type
of response simply entails comparators on the sensor read-
ings. For the other schemes, we use a Pl controller to set
the voltage to the highest level that regulates temperature.
A problem arises when the controller is near a boundary
between DVS settings and stalls are required on changes,
because small fluctuations in temperature can produce too
many changes in setting, along with the associated over-
head. To prevent this, we apply a simple low-pass filter to
decide whether to increase the voltage. Filtering is not used
for lowering the voltage, because that is compulsory in re-
sponse to thermal stress. We model two possible scenarios
for the overhead of switching voltage/frequency settings. In
the first (“stall””), the penalty to change the DVS setting is
10us, during which the pipeline is stalled. In the second
(“ideal”) the processor may continue to execute through the
change but the change does not take effect until after 10us
have elapsed.

Although multiple step sizes can be beneficial for bal-
ancing battery life and performance, for DTM they all give
almost exactly the same performance, differing by less than
0.4% for DVS-stall and less than 0.01% for DVS-ideal. The
reason for this behavior is twofold. First, when more than
two voltages are available, safety requires DTM to be con-
servative, and so the minimum voltage is often used anyway,
obviating the benefit of multiple steps. Second, even when
multiple steps are available and a higher voltage is used, it
takes longer to reduce thermal stress, eliminating the ad-
vantage of conferred by the higher frequency; while lower
voltages take less time to reduce thermal stress so the lower
frequency is used for a shorter time.

Instead of step size, what does matter for DTM is the
value of the lowest voltage. With our heat sink and bench-
marks, 85% of the nominal voltage is the largest value for
the low-voltage setting that eliminates thermal violations.
Based on these results, the rest of this paper only presents
data for binary DVS.

Fetch Gating. With fetch gating, fetch is prevented at
some duty cycle, reducing the number of instructions flow-
ing through the pipeline and hence the unit activities and
the power densities. This entails gating both the I-cache
accesses and branch/target predictions. The choice of duty
cycle is a feedback-control problem, for which we use an
integral controller, with settings confirmed by exhaustive
search. The hardware to implement this controller is mini-
mal. A few registers, an adder, and a multiplier are needed,
along with a state machine to drive them. Single-cycle re-
sponse is not needed, so the controller can be made with
minimum-sized circuitry. The datapath width in this cir-
cuit can also be fairly narrow, since only limited precision
is needed.

Clock gating might seem maore attractive, because it at-
tains extra power reduction by eliminating power dissipa-
tion in the clock tree. But stopping and starting the entire
clock tree on a rapid basis (required to exploit ILP) may be
infeasible, especially given voltage-stability concerns. The
mild levels of fetch gating that we employ maintain activity
throughout the pipeline and should present less of a voltage-
stability problem. If fine-grained clock gating is in fact fea-
sible, our results here represent a lower bound on the bene-
fits of hybrid DTM.

4.2. Hybrid DTM

Our hybrid techniques use fetch or clock gating as the
ILP techniques when a mild DTM response is required, be-
cause when DTM response is mild, the overhead for these
ILP techniques is lower than DVS. This is even true for
the ideal DVS schemes, because they still reduce clock fre-
quency, while mild fetch gating may be mostly hidden by
ILP. Naturally, the stalls incurred by non-ideal DVS sub-
stantially increase the DTM range for which the ILP tech-
niques are superior.

Once the required DTM response is aggressive enough
that ILP techniques no longer adequately exploit ILP, DVS
is engaged. This is the point at which DVS’s cubic impact
becomes dominant.

There are two ways to implement a hybrid scheme. The
most obvious perhaps is to use a feedback-controlled ILP
technique until the crossover point is reached, and then use
DVS. This outperforms both DVS-ideal and DVS-stall, and
we call this “PI-Hyb.” A much simpler approach is to use
a single fixed level of DTM response for the ILP tech-
nique, and when the temperature is too far above the trig-
ger point, to lower the voltage instead. We call this “Hyb.”
This latter approach is appealing because it eliminates any
risks of imprecision, oscillation, etc. with the controllers,
and because it is compatible with a binary DVS. In fact,
we show that it sacrifices negligible performance compared
to feedback-controlled (PI) hybrid DTM. Implementation is
slightly more complex than for binary DVS, because com-
parison is required against two thresholds rather than just
one, but this remains simpler than feedback control.

1.25 14
1.20 —DVS | 13
§1 15 3
3 128
81.10 k]
® F 14 ?
1.05 .
1.00 T T T 1.0
20 10 5 3 2 033 20 15 10 5 0
Duty Cycle Duty Cycle

@) (b)

Figure 3. DTM slowdowns for (a) different PI-
Hyb configurations and (b) FG and DVS.

5. Evaluation of Hybrid DTM
5.1. Finding the Crossover Point

Composing a hybrid technique requires a way to find
the crossover point at which the choice of best technique
changes between the ILP technique and DVS. To conduct
such measurements, we would eventually like a figure of
merit that is an a-priori measure of cooling, independent of
the specific experimental thermal setup; developing such a
metric is an interesting and important area for future work.
Instead, we simply conducted a search across a range of FG
duty cycles. Since binary DVS is sufficient for the DVS
component and since the ILP techniques have a reasonably
limited range of duty cycles, this is not overly burdensome.

As Figure 3a shows, the best hybrid configuration uses a
maximum duty cycle of 3 (i.e., skip fetch once every three
cycles) for PI-Hyb with DVS-stall. This figure plots, for P1-
Hyb, the slowdown as a function of the fetch-gating duty
cycle. A value of x on the x-axis indicates that fetch is
gated every 1/x cycles, so larger values mean that DVS is
engaged sooner. (0.33 means that fetch is gated two out
of every three cycles.) All these DTM configurations fully
prevent thermal emergencies. A duty cycle of 3 represents
the crossover point. Beyond this point, it becomes difficult
for the ILP technique to successfully exploit instruction-
level parallelism, and slowdown rises sharply; whereas
DVS’s cubic advantage overcomes the stalls associated with
switching settings. This is shown in Figure 3b, which plots
the slowdown of stand-alone fetch gating, with the overhead
of stand-alone DVS superimposed as a straight line for com-
parison purposes. Of course, most of these duty cycles are
insufficient to eliminate all thermal violations. Only a duty
cycle of 0.33 does that, although it is overly harsh much
of the time—that is why FG needs PI control. Figure 3b
merely shows the linear relationship between duty cycle and
slowdown that sets in at a duty cycle of about 3, the point at
which all ILP has been exhausted. It might seem that a duty
cycle of 2 would be even better for hybrid DTM, because
the overhead of FG and DVS is approximately equal at this
point. But Figure 3b does not distinguish the effectiveness
of each technique according to the severity of thermal stress,
and hence does not reflect the savings achieved by combin-
ing FG and DVS. For example, Figure 3b includes the high
overhead costs of DVS for even very mild thermal emergen-

cies, where FG would be better, and the high overhead costs
of FG for severe thermal emergencies, where DVS is better.

For idealized DVS without any stalls, the gentlest duty
cycle of 20 is preferred. Because no stalls are incurred to
switch DVS settings, only the mildest fetch gating, where
ILP hides almost all performance impact from FG, can give
better results than DVS.

We performed the same analysis for binary DVS with
different low-voltage settings, and with and without the PI
controller, and always found the same crossover points. We
attribute this to the fact that the interaction of fetch duty
cycle with ILP is purely an architectural phenomenon and
remains the same even as the low voltage varies.

5.2. Perfor mance Comparison

Figure 4 compares the performance of the various DTM
schemes we have described: fetch gating, DVS, PI-Hyb,
and Hyb (without PI control). DVS is consistently bet-
ter than fetch gating, but the hybrid schemes are even bet-
ter. When DVS incurs overhead to change settings, hybrid
DTM can improve performance by 5.5-6%, which repre-
sents about a 25% reduction in DTM overhead. When an
idealized DVS is available with no overhead to change set-
tings, hybrid DTM is less helpful, improving performance
by only about 1%. This represents about an 11% reduction
in DTM overhead. All the performance differences com-
pared to DVS are significant at the 99% confidence level.
These results show that with the overheads found in typical
DVS implementations today, hybrid DTM offers impressive
benefits, but that much of the benefit comes from minimiz-
ing changes in DVS setting and the associated overhead.

Figure 4 also shows that eliminating PI control sacrifices
almost no performance, and in fact it performs slightly bet-
ter with DVS stall. (The small difference is also significant
at the 99% confidence level.) The explanation is the same
as for DVS’s insensitivity to the number of voltage steps:
less aggressive fetch gating takes longer to reduce the tem-
perature, and vice versa. It might seem that this argument
should apply to FG too, but here the PI control is needed.
If only one FG duty cycle were available, it would have to
be too high—a duty cycle of 2—to eliminate all thermal vi-
olations; and this is beyond the ILP-DVS crossover point.
Eliminating PI control for DVS works because its cubic na-
ture compensates for using a low voltage, and eliminating
P1 control for hybrid DTM works because the fixed ILP re-
sponse can be matched to the crossover point.

6. Conclusions and Future Work

In this paper, we have pointed out that dynamic thermal
management can be made more efficient by applying a com-
bination of different thermal responses. The key insight is
that at mild levels of thermal stress, “ILP techniques” incur
less overhead, because they take advantage of the microar-
chitecture’s ability to exploit instruction-level parallelism to
mask bubbles in the pipeline. This hybrid DTM approach
differs from prior work by switching away from the ILP

12028 1.1976

Slowdown Factor
Slowdown Factor

FG DVS PlHyb Hyb
(a)

Figure 4. DTM slowdown, averaged across
nine SPECcpu2000 benchmarks, comparing
fetch gating, DVS, PI-Hyb, and Hyb for (a)
DVS-stall and (b) DVS-ideal.

technique when instruction-level parallelism no longer suf-
ficiently hides the overhead of the DTM technique—rather
than waiting until the DTM technique fails to cool the chip
sufficiently. When combining fetch gating with traditional
DVS schemes, we find that the proper crossover point be-
tween is when most of the ILP has been exploited, slow-
down begins to rise in proportion to the duty cycle, and
DVS is better able to reduce power density despite the over-
head of changing voltage settings. On the other hand, when
combining fetch gating with an idealized DVS scheme that
has no overhead for switching voltage and frequency, only
the mildest levels of fetch gating are justified, where ILP
almost completely hides the fetch gating. In both cases, hy-
brid DTM confers benefits, another example of the impor-
tance of architectural approaches for thermal management.

We showed that for typical DVS implementations where
changing the voltage does require the processor to stall, the
hybrid DTM approach outperforms DVS by 5.5-6% on av-
erage. This represents a 25% reduction in DTM overhead.
When compared to an idealized DV'S with no overhead, hy-
brid DTM still outperforms DVS by 1%.

We also showed that a hybrid technique can eliminate the
need for sophisticated feedback control on adaptive tech-
niques like DVS or fetch gating. This creates a robust tech-
nique that avoids tuning difficulties, while still preserving
the performance benefits of hybrid DTM. And we showed
that “binary” DVS with only two voltage settings is just as
good as more sophisticated DVS schemes.

We hope that the hybrid technique proposed here stimu-
lates further work on architectural solutions to temperature-
aware design. A variety of important areas remain for fu-
ture work. A figure of merit is needed to help in analyz-
ing DTM performance and cooling capability. New archi-
tectural techniques may allow produce even better DTM
performance. Techniques for predicting thermal stress
and responding proactively, rather than waiting for actual
thermal stress and responding reactively, may further re-
duce the overhead of DTM [19]. Thermal management
on multi-threaded and multi-core systems remains poorly
understood. And our results in combining microarchitec-
tural techniques and DVS suggest the potential value of
hybrid DTM for thermal management in globally asyn-
chronous/locally synchronous processors with independent
voltage domains, like [10, 14].

Acknowledgments

This work is supported in part by the National Science Founda-
tion under grant no. CCR-0133634, a grant from Intel MRL, and
an Excellence Award from the Univ. of Virginia Fund for Excel-
lence in Science and Technology. | would also like to thank Mircea
Stan, Karthik Sankaranarayanan, Wei Huang, and the anonymous
reviewers for their helpful comments.

References

[1] S. Borkar. Design challenges of technology scaling. |EEE

Micro, pages 23-29, Jul.-Aug. 1999.
[2] D. Brooksand M. Martonosi. Dynamic thermal management

for high-performance microprocessors. In Proc. HPCA-7,
pages 171-82, Jan. 2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-

tions. In Proc. ISCA-27, pages 83-94, June 2000.
[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set,

version 2.0. ACM S GARCH CAN, 25(3):13-25, June 1997.
[5] M. Fleischmann. Crusoe power management: Cutting x86

operating power through LongRun. In Embedded Processor

Forum, June 2000.
[6] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Manag-

ing the impact of increasing microprocessor power consump-

tion. Intel Tech. J,, Q1 2001.))
[7] S. Heo, K. Barr, and K. Asanovic. Reducing power density

through activity migration. In ISLPED 2003, Aug. 2003.
[8] W.Huang, J. Renau, S.-M. Yoo, and J. Torellas. A framework

for dynamic energy efficiency and temperature management.

In Proc. Micro-33, pages 202-13, Dec. 2000.)
[9] Intel Corp. Mobile PentiumlIl processor in BGA2 and Micro-

PGA2 pacakages, 2001. Datasheet Order no. 283653-002.
[10] A. lyer and D. Marculescu. Power and performance evalu-

ation of globally asynchronous locally synchronous proces-

sors. In Proc. ISCA-29, pages 158-68, May 2002.
[11] C.-H. Lim, W. Daasch, and G. Cai. A thermal-aware super-

scalar microprocessor. In Proc. ISQED, pages 517-22, Mar.

2002.

[12] M. Ma et al. Enhanced thermal management for future pro-
cessors. In Proc. of the 2003 Int’| Symp. on VLS Circuits,
pages 201-04, June 2003.

[13] H. Sanchez et al. Thermal management system for high-
performance PowerPC microprocessors. In Proc. COMP-

CON, page 325, 1997.
[14] G. Semeraro et al. Energy-efficient processor design using

multiple clock domains with dynamic voltage and frequency

scaling. In Proc. HPCA-8, pages 29-40, Feb. 2002.
[15] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-

tribution analysis to find periodic behavior and simulation

points in applications. In Proc. PACT, Sept. 2001.
[16] SIA. International Technology Roadmap for Semiconduc-

tors, 2001.
[17] K.Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-

ture. In Proc. ISCA-30, June 2003.
[18] K.Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-

narayanan, and D. Tarjan. Temperature-aware microarchi-
tecture: Extended discussion and results. Technical Report

CS-2003-08, U.Va. Dept. of Computer Science, Apr. 2003.
[19] J. Srinivasan and S. V. Adve. Predictive dynamic thermal

management for multimedia applications. In Proc. 17th ICS

June 2003. B
[20] R. Viswanath, W. Vijay, A. Watwe, and V. Lebonheur. Ther-

mal performance challenges from silicon to systems. Intel
Tech. J., Q3 2000.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

