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Abstract 
This paper presents an intra-process*dynamic voltage and 
frequency scaling (DVFS) technique targeted toward non real-time 
applications running on an embedded system platform. The key idea 
is to make use of runtime information about the external memory 
access statistics in order to perform CPU voltage and frequency 
scaling with the goal of minimizing the energy consumption while 
translucently controlling the performance penalty. The proposed 
DVFS technique relies on dynamically-constructed regression 
models that allow the CPU to calculate the expected workload and 
slack time for the next time slot, and thus, adjust its voltage and 
frequency in order to save energy while meeting soft timing 
constraints. This is in turn achieved by estimating and exploiting the 
ratio of the total off-chip access time to the total on-chip 
computation time. The proposed technique has been implemented 
on an XScale-based embedded system platform and actual energy 
savings have been calculated by current measurements in hardware. 
For memory-bound programs, a CPU energy saving of more than 
70% with a performance degradation of 12% was achieved. For 
CPU-bound programs, 15~60% CPU energy saving was achieved 
at the cost of 5-20% performance penalty. 

1 Introduction 
Demand for low power consumption in battery-powered computer 
systems has risen sharply. This is because extending the service 
lifetime of these systems by reducing their power requirements is a 
key customer/user requirement.  More recently, low power design 
has become a critical design consideration even in high-end 
computer systems, due to expensive cooling and packaging costs 
and lower reliability often associated with high levels of on-chip 
power dissipation.  

Dynamic voltage and frequency scaling (DVFS) technique has 
proven to be a highly effective method of achieving low power 
consumption while meeting the performance requirements [1]. The 
key idea behind DVFS techniques is to dynamically scale the supply 
voltage level of the CPU so as to provide “just-enough” circuit 
speed to process the system workload while meeting the total 
compute time and/or throughput constraints, and thereby, reducing 
the energy dissipation (which is quadratically dependent on the 
supply voltage level.) A number of modern microprocessors such as 
Intel’s XScale [2] and Transmeta’s Cruso [3] are equipped with the 
DVFS functionality. 
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DVFS techniques may be used to reduce the energy 
consumption of an executed task while ensuring that the task meets 
its deadline. However, these techniques are not directly applicable 
to general-purpose operating systems because they assume that 
critical information about all tasks, such as the task arrival time, 
deadline, and workload, are known in advance. Moreover, the 
workload of a task is often represented by the number of CPU clock 
cycles required to complete the task regardless of whether the 
workload consists of mainly CPU-bound or memory-bound 
instructions.  The latter information is, of course, critical in 
determining the idle time of the CPU. 

We are interested in a DVFS policy for general-purpose 
computer systems that differentiates between CPU-bound and 
memory-bound instructions in the workload. The intuition for 
workload partitioning is as follows. Memory is asynchronous with 
the processor and often has its own clock. Now if the task execution 
time is dominated by the memory access time, then the CPU speed 
can be slowed down with little impact on the total execution time. 
This could, however, result in potentially significant savings in 
energy consumption. 

In this paper, we propose an intra-process DVFS technique for 
non real-time operation in which finely tunable energy and 
performance trade-off can be achieved. The main idea is to lower 
the CPU frequency during the CPU idle times, which are, in turn, 
due to external memory stalls. To capture the CPU idle time at run 
time, several performance monitoring events, provided by 
performance monitoring unit (PMU) in the XScale processor, are 
used. The proposed technique has been implemented on an 
embedded system platform and actual energy savings have been 
calculated by current measurements in hardware. On this platform 
more than 70% CPU energy savings was achieved for memory-
bound programs with a performance degradation of only 12%. In 
contrast, 15~60% CPU energy savings was achieved for CPU-
bound programs with a performance degradation of 5-20%. 

The main contributions of our work are: (1) It presents one of 
the first actual implementations of an intra-process DVFS policy 
that exploits dynamic events at run time without any support from 
compiler or modification of the application program itself. (2) A 
simple, but effective, regression model is proposed to approximately 
determine the CPU idle time due to memory stalls by estimating the 
ratio of the total off-chip access time to the total on-chip 
computation time at runtime. (3) Evaluation of the proposed method 
is performed through actual hardware measurements for a number 
of different applications.  

The remainder of this paper is organized as follows. Related 
work is described in Section 2. In Section 3 and 4, a new DVFS 
policy is presented. Details of the implementation, including both 
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hardware and software, are described in Section 5. Experimental 
results and conclusions are given in Sections 6 and 7, respectively. 

2 Prior Work 
Previous DVFS-related works may be divided into two categories 
based on the scaling granularity: coarse-grained and fine-grained. 
Coarse-grained voltage scaling is performed at the operating system 
(OS) or application level, whereas fine-grained voltage scaling is 
performed at the level of individual blocks/segments in an 
application task or software program. Many scheduling policies for 
hard real-time applications have coarse granularity. Multi-task 
scheduling in the OS is the focus of [4][5][6][7]. More precisely, 
scheduling is performed at task level by the OS so as to reduce 
energy consumption while meeting hard timing constraints for each 
task. In these coarse-grained DVFS approaches, it is assumed that 
the total number of CPU cycles needed to complete each task is 
fixed and known a priori. There are also a number of studies that 
implement fine-grained DVFS as part of compile-time optimization 
or by modifying the application program itself. In [8], an intra-task 
voltage scheduling technique was proposed in which the application 
code is divided into many segments and the worst-case execution 
time of each segment (which is obtained from a static timing 
analysis) is used to determine a suitable voltage for the next 
segment. In [9] a method based on a software feedback loop was 
proposed. In this method, a deadline for each time slot is provided. 
The authors calculate the operating frequency of the processor for 
the next time slot depending on the slack time generated in the 
current slot and the worst-case execution time of the next time slot. 
In [10], a checkpoint-based algorithm is proposed in which the 
scaling points are identified off-line by the compiler. In [11] and 
[12], compiler-assisted DVFS techniques were proposed, in which 
frequency is lowered in memory-bound region of a program with 
little performance degradation.  

DVFS approaches that rely on micro-architecture or embedded 
hardware without any assistance from a compiler or a simulator 
have been reported. In [13] a microarchitecture-driven DVFS 
technique was proposed in which cache miss drives the voltage 
scaling. In [14] IPC (instruction per cycle) rate of a program 
execution was used to direct the voltage scaling. Reference [15] 
used a performance monitoring unit (PMU) to produce the optimal 
frequency and voltage levels under a given performance degradation. 
The PMU captures the dynamic program behavior such as cache 
hit/miss ratio and memory access counts during the whole execution 
time. 

A heuristic technique was proposed in [11] in which voltage 
scaling is done by identifying memory-bound regions of a program 
trace. However, this work needs compiler support to identify such 
regions. There is a different voltage scaling approach, called process 
cruise control, where dynamic events from the PMU on an XScale 
processor are used to determine the optimal frequency for a 
performance loss constraint [15]. In particular, the authors defined 
optimal frequency domains in 2-D memory vs. instruction count 
space. This approach requires no help from off-line simulation or 
compiler and only relies on dynamic event counts from the PMU. 
However, it is not flexible in the sense that frequency domains are 
obtained through extensive experiments of micro-benchmarks for a 
given performance loss (set to 10% in that work) and this 
performance loss is fixed for all different applications. This stiff 
policy does not allow a precise and graceful control of the energy-
performance trade-off.  

In this paper, we propose a DVFS policy for non real-time 
application similar to the one presented by [15]. However, in our 
proposed DVFS approach, we use the performance events in a 
different way. Furthermore, our policy enables more precise control 
over energy-performance trade-off by using regression-based 

method in which performance events are used to recognize 
memory-bound region at runtime effectively.  

3 Performance-energy trade-offs 
3.1 Performance degradation and energy saving 
To perform ideal DVFS, we have to accurately predict the execution 
time of a task at any clock frequency. The execution time is a 
function of the instruction mix (the sequence of unrolled 
instructions to be executed) and the cycle-per-instruction (CPI). A 
RISC instruction mix consists of register-type instructions, memory-
type instructions, and branch-type instructions (the control 
instructions for supervisor mode are not considered here). After the 
application is compiled from the source code into the object code, 
the ratios between these three instruction-types in the instruction 
mix will become fixed if the control flow is known at compile time. 
The CPI of the instruction mix depends on not only the instruction-
types and the data dependency, but also the run-time factors such as 
SDRAM access latency, PCI access latency, other running 
processes, etc.  

The instruction latencies can be classified as on-chip latencies 
(data dependency, TLB hits, cache hits, branch prediction) or off-
chip latencies (memory latency due to cache misses, PCI latency 
due to access to the frame buffer). The on-chip latencies are caused 
by events that occur inside the CPU (e.g., data dependency). They 
are synchronized to the internal clock and may linearly be reduced 
by increasing the CPU frequency. The off-chip latencies (e.g. the 
SDRAM and PCI latencies), on the other hand, are independent of 
the internal frequency and are thus not affected by changing the 
CPU frequency. Accesses to external devices such as SDRAM, 
PCMCIA flash card, LCD display, and USB storage are 
synchronized to the bus clock, which is independent of the CPU 
frequency. 

Let T, Tonchip, and Toffchip denote the total execution time of a 
program, the on-chip computation time, and the off-chip access time, 
respectively. T is obviously written as: 

= +onchip offchipT T T                                      (1) 

Notice that this breakdown of the total execution is not exact when 
the target processor supports out-of-order execution whereby 
instructions after the instruction that caused an off-chip access may 
be executed during the off-chip access. In such a case, Tonchip and 
Toffchip can overlap. However, in practice, the error introduced in this 
way is quite small considering that the memory access time is about 
two orders of magnitude greater than the instruction execution time. 
Therefore, out-of-order execution does not cause a large error in 
equation (1). 

When the CPU frequency changes, the change in T is solely due 
to Tonchip: 
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The increased execution time of a program due to lowered clock 
frequency represents the performance loss (PFloss), which is defined 
as follows:  
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f
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−
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where fmax is the maximum frequency of the CPU, fn is a frequency 
lower than fmax, Tfn and Tfmax are the total task execution times at 
CPU frequencies of fn and fmax, respectively.  

For a given program, different ratios of Tonchip and Toffchip result 
in very different PFloss over CPU frequencies. Figure 1 provides 
energy-performance trade-offs for various applications. For example, 
in case of the “crc” and “djpeg”, lowering frequency introduces 
significant performance loss compared to other tasks implying that 
these programs are CPU-bound (i.e., Tonchip >> Toffchip). On the 
contrary, it is known that “fgrep” and “qsort” are memory-bound 



 

(i.e., Tonchip << Toffchip) by observing little performance degradation 
with lowered frequency. Based on these observations, we conclude 
that the ratio of Tonchip to Toffchip for a program is very important to 
the degree of energy saving and performance penalty attained by 
DVFS techniques. 

In general, the execution time of a program can be represented 
in terms of the CPI, the number of instructions being executed, and 
the CPU frequency [16]. More precisely, Tonchip and Toffchip can be 
represented as follows: 

1

n
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where n is the total number of instructions in the instruction stream, 
m is the number of off-chip accesses in that stream, CPIi

onchip 
denotes the number of CPU clock cycles for the ith instruction, 
CPIj

offchip denotes the number of memory clock cycles for the jth off-
chip access, CPIavg

onchip  denotes the average on-chip CPI,  fcpu and 
fmem denote the current clock frequency of the CPU and the clock 
frequency of the off-chip bus. It should be pointed out that fmem can 
assume different values depending on the external devices being 
accessed. For example, in our test system, 100MHz clock frequency 
is used for the SDRAM access whereas 33MHz speed is used for 
the PCI-peripheral devices. Note that fmem cannot be scaled. 
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Figure 1: Performance loss changes according to CPU 

frequency. 

Definition 1: The β value of a program is defined as the ratio 
Toffchip/Tonchip for that program.  

β represents the degree of potential energy saving because the 
larger β is, the more CPU energy saving can be achieved by a 
DVFS technique. Consequently, we need accurate information 
about β in order to sustain an effective DVFS technique.  

From equations (3) and (4), the optimal frequency, ftarget, for a 
given PFloss value is calculated as follows: 

max
arg

max

       
1 1

t et

loss
cpu

ff
fPF
f

β
=

  
+ ⋅ + ⋅   

   

                  (5) 

As it can be seen from the above equation, ftarget is closely related to 
β of a program. Consequently, accurate calculation of β is quite 
important to the effectiveness of our proposed DVFS approach. 
3.2 Scaling granularity 
The ideal DVFS can instantaneously change the voltage/frequency 
values. In reality, however, it takes time to change CPU 
frequency/voltage due to factors such as the internal PLL (phase 
lock loop) locking time and capacitances that exist in the voltage 
path. For the 80200 XScale processor, the latency for switching the 
CPU voltage/frequency is 6 µsec at 333MHz [2]. The minimum 

quantum of time for scaling the CPU frequency/voltage must be at 
least two to three orders of magnitude larger than this switching 
latency. At the same time, we would like to minimize the overhead 
of the voltage/frequency scaling as far as the OS is concerned. 
Therefore, we use the start time of an (OS) quantum (approximately 
50msec in Linux) used by the OS to schedule processes as DVFS 
decision points, that is, each time the OS invokes the scheduler to 
schedule processes in the next quantum, we also make to decision as 
to whether or not the CPU voltage/frequency is changed and if so, 
scale the voltage/frequency of the CPU. 
3.3 Events monitored through the PMU on XScale 
It is very difficult to calculate the exact β of a program in a static 
manner such as during the compilation time because on/off-chip 
latencies are severely affected by dynamic behavior such as cache 
statistics and different access overheads for different external 
devices. So, these unpredictable dynamic behaviors should be 
captured at run time. This can be achieved by using a performance-
monitoring unit that is often available in modern microprocessors. 
In our target system, the CPU is Intel’s XScale, which supports 
monitoring of 20 performance events including cache hit/miss, TLB 
hit/miss, and number of executed instructions. The overhead for 
accessing PMU (read/write) is less than 1usec [15] and can be 
ignored. However, there is a limitation in using these events in the 
sense that only two events can be monitored at the same time along 
with the number of clock counts in a quantum (CCNT).  

For our DVFS policy, we performed many experiments to figure 
out which events can give valuable clue about β and the following 
two events were proven to be most helpful based on experimental 
results: (i) the number of instructions being executed (INSTR) and 
(ii) the number of memory accesses (MEM).  
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Figure 2: Contour plots of CPIavg versus MPIavg for different 

CPU clock frequencies 



 

Using these two events, INSTR and MEM, along with CCNT, 
CPIonchip can be extracted as in Figure 2. Figure 2 plots the 
combination of three events while executing (a) “fgrep” and (b) 
“gzip” applications at different frequencies from 733MHz to 
333MHz at a fixed step of 66MHz. At the start of each quantum, the 
PMU reports the CCNT, INSTR, and MEM. From these three 
parameter values, we can calculate the average CPU cycles per 
instruction (CPIavg) for the instruction stream as the ratio of CCNT 
to INSTR. Similarly, we can calculate the average memory cycles 
per instruction (MPIavg). In this figure, we have plotted CPIavg on 
the y-axis and MPIavg on the x-axis. Each dot in the plot represents 
one PMU report. From this figure, we can easily see that, at a fixed 
CPU clock frequency, CPIavg is linearly related to MPIavg as 
follows: 

= ⋅ +( )avg avgCPI b f MPI c                                  (6) 

where b(f) is frequency-dependent slope. Notice that intercept c is 
equal to the average on-chip CPI, CPIavg

onchip and is independent of 
frequency f. Therefore, Eq. (6) can be used to provide an accurate 
estimation of CPIavg

onchip from which β can be determined from Eq. 
(4) and Definition 1. 

4 Regression-based Fine-Grained DVFS  
4.1 Calculating ββββ 

  

 with a regression equation 
In our proposed DVFS approach, monitored event values are used 
to estimate coefficient b and c of regression Eq. (6), and then to use 
this equation to predict β of a program. Voltage/frequency scaling is 
performed at the start of each quantum. Regression coefficients b 
and c are dynamically updated as explained below.  

Let the linear equation for the regression be y=b*x+c, where x 
and y denote MPIavg and CPIavg, respectively. Coefficients b and c at 
quantum t≥N, are calculated from the last N PMU reports as 
follows: 
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where xi and yi denote the MPIavg and CPIavg for the ith  quantum. 
Note that we must choose N carefully since if N is chosen to be too 
small, we will be too sensitive to small changes in the program 
behavior and we may not have enough data points to do a good 
regression. On the other hand, if N is too large, then we may 
potentially filter out many important changes in the program 
behavior. The regression coefficients are updated at the start of 
every quantum. Recall that the regression equation is maintained for 
each frequency because b is different for different frequencies.   

The optimal frequency for the next quantum t+1 is calculated as 
follows. After quantum t, β of quantum t, β 

t, is calculated as:  

β = −
,

, 1
avg t

t
avg t
onchip

CPI
CPI

                                       (8) 

Once β 

t is obtained, the target CPU frequency for the next 
quantum, ft+1, is calculated from Eq. (5) with the specified PFloss as 
follows: 

β

+ =
  + ⋅ + ⋅  

  

1 max

max1 1

t

t
loss t

ff
fPF
f

                            (9) 

4.2 Prediction error adjustment 
We assumed that β of the next quantum is the same as that of the 
current quantum. However, in reality, β varies in different quanta 
during the program execution. This is due to different off-chip 
latencies for the SDRAM and PCI-device accesses. Furthermore, 
different applications have different β distributions during runtime. 

This situation becomes worse when the quantum length is varied, 
for example, when a process performs an I/O operation (mostly file-
read/write operations). In such a case, the CPU preempts the process, 
thus, the length of the quantum is shortened compared to the 
"standard" quantum length of approximately 50msec.  

To alleviate these shortcomings, we modify the proposed 
technique in order to handle the non-equal quantum times. The 
modification is shown in Figure 3, which depicts three consecutive 
quanta, qt-1, qt, and qt+1, each with a distinct β value and quantum 
lengths Tact

t-1, Tact
t, and Tact

t+1. For the specified PFloss, the expected 
execution time is denoted by Texp

t-1, Texp
t, and Texp

t+1, respectively. 
Voltage/frequency scaling for qt, qt+1, and qt+2 is performed at t1, t2, 
and t3, respectively.  
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Figure 3: Compensating for the error due to misprediction of ββββ 

When a frequency is chosen for the next quantum, there may 
exist some (positive or negative) slack time (i.e., the difference 
between Texp

* and Tact
*.) These slack times come about due to the 

misprediction of β for the next quantum. With a positive (negative) 
slack, the frequency for the next quantum should be made smaller 
(larger) compared to the case of zero slack. For example, at time t2, 
the actual execution time until t2 is (Tact

t-1 + Tact
t ) which is less than 

the expected time (Texp
t-1 + Texp

t), so there is a positive slack time St 
= Texp

t – Tact
t + St-1. If St is added in the calculation of the frequency 

for the next quantum qt+1, then the error that occurred in the 
previous quanta can be compensated for. Eq. (9) for calculating the 
target frequency for next quantum is thus modified as follows:  

β

+ =
    + ⋅ + + ⋅    ⋅    

1 max

max1 1

t
t

t
loss t t

loss act

ff
fSPF

PF T f

                  (10) 

Notice that for positive (negative) slack St, the denominator will 
be larger (smaller) than the zero slack case, and hence the target 
frequency ft+1 will be smaller (larger), which is of course the desired 
behavior. 

5 Implementation 
We implemented the proposed policy on a high-performance 
XScale-based testbed, which runs Linux (v2.4.17).  

A programmable clock multiplier (PLL) in the XScale processor 
generates the internal CPU clock, which can be adjusted from 200 
up to 733MHz in steps of about 66 MHz with the development-
board speeds only available from 333 MHz and up. The lower 
bound results from a constraint to the memory bus speed, which is 
at 100 MHz in our system. The bus speed has to be less than a third 
of the CPU clock speed. This would yield a minimum speed of 333 
MHz.  Running the system at CPU speeds slower than 333MHz 
causes immediate halts. The main PCB of our testbed includes an 
on-board variable voltage generator, which provides suitable 



 

operating voltage at each clock frequency level. A D/A converter 
was used as a variable operating voltage generator to control the 
reference input voltage to a DC-DC converter that supplies 
operating voltage to the CPU. Inputs to the D/A converter were 
generated using a customized CPLD (Complex Programmable 
Logic Device). When the CPU clock speed is changed, a minimum 
operating voltage level should be applied at each frequency to avoid 
a system crash due to increased gate delays. In our implementation, 
these minimum voltages are measured and stored in a table so that 
these values are automatically sent to the variable voltage generator 
when the clock speed changes. Voltage levels mapped to each 
frequency are obtained through extensive measurements and 
summarized in Table 1.  

For the measurements, the system has a 40K samples/second 
data acquisition system in which the voltage drop across a precision 
resistor inserted between the external power line and the “design 
under test” (DUT) power line is used to measure the power 
consumption as shown in Figure 4. 

Table 1. Frequency and voltage levels in the system 
Frequency 

(MHz) 
Voltage 

(V) 
333 0.91 
400 0.99 
466 1.05 
533 1.12 
600 1.19 
666 1.26 
733 1.49 

DUT

ResistorPower split
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ResistorPower split
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Figure 4: Data acquisition system. 

As software works, we wrote a module in which the proposed 
policy is implemented and this module is hooked to the scheduler so 
that voltage scaling can occur during every context switch. Figure 5 
shows the software architecture of DVFS implementation. 

During the context switch, the PMU values for the previous 
process are read and the ideal frequency calculation for the next 
quantum is performed as described in section 4. A regression 
equation at each frequency is maintained for each process, which 
consists of no more than 5 long-type variables, resulting in little 
space overhead for implementing our DVFS policy. We measured 
the time overhead of our policy by using benchmark in the suite of 
the Lmbench [17] and found that the time overhead was about 
100µsec. The original context switch time was also nearly 100 µsec. 
Although we almost doubled the context switch time, the overhead 
is still quite negligible in comparison to the quantum time of a few 
tens of millisecond. Our implementation supports a proc-file 
interface to the module such that the performance loss level and size 
of the window can be specified by writing the appropriate value to 
the this proc-file, which allows us to dynamically control the 
desired level of energy saving. Furthermore, the current values can 
be read from the proc-file interface. Another feature we have 
implemented to gain more accurate information (at the cost of 
higher overhead) is to measure the event values of PMU at every 
timer interrupt (1ms on our platform). This feature is disabled by 
default and is not exploited in the experimental results section. 
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Figure 5: Software architecture of our DVFS implementation 

6 Experimental Results 
Our experiments are performed on the following applications 
including two common UNIX utility programs (“gzip” and “fgrep”) 
and five representative benchmark programs available on the web 
[18]. They are summarized in Table 2. All the measurements are 
performed 10 times for each benchmark and the average 
performance loss and average energy saving values are reported. 
Size of the window, N, is set to 25 through exhaustive experiments. 
Based on the experimental results, it is found that N of 20 ~50 
shows similar characteristics. 

Table 2. Summary of test applications 
Benchmarks Description 

gzip compressing a given input file 
fgrep searching for a given pattern in the files residing in a 

directory 
math floating-point calculations 

bf 
(blowfish) 

a symmetric block cipher with a variable length key 
from 32 to 448 bits 

crc 32-bit cyclic redundancy check on a file 
djpeg decoding a jpeg image file 
qsort sorting a large array of strings in ascending order 

 
Figure 6 represents the measured performance degradation with 

target performance loss ranging from 5% to 20% at steps of 5%. As 
seen in this figure, we obtained actual performance loss values very 
close to the target values for all programs (i.e., actual within 2% of 
the target) except for “fgrep” and “qsort” programs, which are 
memory-bound and PFloss of these are saturated to ~12%, 
corresponding to data in Figure 1. In Figure 7, actual power 
consumptions (including both CPU and DC-DC converter power) 
for two cases: (a) without DVFS and (b) with DVFS are reported 
when running “gzip”.  In case (a), the program is run at the 
maximum frequency (733MHz) and 10% target PFloss is given 
consistent with case (b). By applying the proposed policy, 52.1% of 
the CPU energy is saved at the cost of 11.6% performance loss. 
Measured energy savings for all benchmarks appear in Figure 8. 
From these measurements, we conclude that a CPU energy saving 
of more than 70% is achieved for memory-bound applications 
(“fgrep” and “qsort”) with about 10% performance loss. The energy 
saving saturates after that, i.e., we cannot increase the amount of 
energy savings by tolerating a larger performance loss value. For 
CPU-bound applications, the degree of energy saving is smaller, but 
our approach allows a finely tuned energy-performance tradeoff. 
For example, in the case of “djpeg” program, we obtain a 42% CPU 
energy saving with a 20% performance loss constraint or a 26% 
energy saving with a 5% performance loss constraint. 

7 Conclusion 
In this paper, a regression-based DVFS policy for finely tunable 
energy-performance trade-off was proposed and implemented on an 
XScale-based platform. In the proposed DVFS approach, a program 



 

execution time is decomposed into two parts: on-chip computation 
and off-chip access latencies. The CPU voltage/frequency is scaled 
based on the ratio of the on-chip and off-chip latencies for each 
process under a given performance degradation factor. This ratio is 
given by a regression equation, which is dynamically updated based 
on runtime event monitoring data provided by an embedded 
performance-monitoring unit. Through actual current measurements 
in hardware, we demonstrated a CPU energy consumption of saving 
of more than 70% for memory-bound programs with about 12% 
performance degradation. For CPU-bound programs, 15~60% 
energy saving was achieved with fine-tuned performance 
degradation, ranging 5% to 20%. 
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Figure 6: Performance loss with different target values 
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(a) Without DVFS - at maximum frequency 
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(b) With DVFS - at a 10% performance loss constraint 

Figure 7: CPU power consumption of with/without DVFS 

0

10

20

30

40

50

60

70

80

bf crc djpeg gzip math fgrep qsort

En
er

gy
 S

av
in

g 
[%

]

5%
10%
15%
20%

Target Performace Loss

           
Figure 8: CPU Energy saving for various application programs 
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