

Fine-Grained Dynamic Voltage and Frequency Scaling for Precise Energy and
Performance Trade-off based on the Ratio of Off-chip Access to On-chip Computation

Times*

Kihwan Choi, Ramakrishna Soma, and Massoud Pedram
Department of EE-Systems, University of Southern California, Los Angeles, CA90089

{kihwanch, rsoma, pedram}@usc.edu

Abstract
This paper presents an intra-process*dynamic voltage and
frequency scaling (DVFS) technique targeted toward non real-time
applications running on an embedded system platform. The key idea
is to make use of runtime information about the external memory
access statistics in order to perform CPU voltage and frequency
scaling with the goal of minimizing the energy consumption while
translucently controlling the performance penalty. The proposed
DVFS technique relies on dynamically-constructed regression
models that allow the CPU to calculate the expected workload and
slack time for the next time slot, and thus, adjust its voltage and
frequency in order to save energy while meeting soft timing
constraints. This is in turn achieved by estimating and exploiting the
ratio of the total off-chip access time to the total on-chip
computation time. The proposed technique has been implemented
on an XScale-based embedded system platform and actual energy
savings have been calculated by current measurements in hardware.
For memory-bound programs, a CPU energy saving of more than
70% with a performance degradation of 12% was achieved. For
CPU-bound programs, 15~60% CPU energy saving was achieved
at the cost of 5-20% performance penalty.

1 Introduction
Demand for low power consumption in battery-powered computer
systems has risen sharply. This is because extending the service
lifetime of these systems by reducing their power requirements is a
key customer/user requirement. More recently, low power design
has become a critical design consideration even in high-end
computer systems, due to expensive cooling and packaging costs
and lower reliability often associated with high levels of on-chip
power dissipation.

Dynamic voltage and frequency scaling (DVFS) technique has
proven to be a highly effective method of achieving low power
consumption while meeting the performance requirements [1]. The
key idea behind DVFS techniques is to dynamically scale the supply
voltage level of the CPU so as to provide “just-enough” circuit
speed to process the system workload while meeting the total
compute time and/or throughput constraints, and thereby, reducing
the energy dissipation (which is quadratically dependent on the
supply voltage level.) A number of modern microprocessors such as
Intel’s XScale [2] and Transmeta’s Cruso [3] are equipped with the
DVFS functionality.

* This research was supported in part by DARPA PAC/C program under
contract DAAB07-02-C-P302 and by NSF under grant no. 9988441.

DVFS techniques may be used to reduce the energy
consumption of an executed task while ensuring that the task meets
its deadline. However, these techniques are not directly applicable
to general-purpose operating systems because they assume that
critical information about all tasks, such as the task arrival time,
deadline, and workload, are known in advance. Moreover, the
workload of a task is often represented by the number of CPU clock
cycles required to complete the task regardless of whether the
workload consists of mainly CPU-bound or memory-bound
instructions. The latter information is, of course, critical in
determining the idle time of the CPU.

We are interested in a DVFS policy for general-purpose
computer systems that differentiates between CPU-bound and
memory-bound instructions in the workload. The intuition for
workload partitioning is as follows. Memory is asynchronous with
the processor and often has its own clock. Now if the task execution
time is dominated by the memory access time, then the CPU speed
can be slowed down with little impact on the total execution time.
This could, however, result in potentially significant savings in
energy consumption.

In this paper, we propose an intra-process DVFS technique for
non real-time operation in which finely tunable energy and
performance trade-off can be achieved. The main idea is to lower
the CPU frequency during the CPU idle times, which are, in turn,
due to external memory stalls. To capture the CPU idle time at run
time, several performance monitoring events, provided by
performance monitoring unit (PMU) in the XScale processor, are
used. The proposed technique has been implemented on an
embedded system platform and actual energy savings have been
calculated by current measurements in hardware. On this platform
more than 70% CPU energy savings was achieved for memory-
bound programs with a performance degradation of only 12%. In
contrast, 15~60% CPU energy savings was achieved for CPU-
bound programs with a performance degradation of 5-20%.

The main contributions of our work are: (1) It presents one of
the first actual implementations of an intra-process DVFS policy
that exploits dynamic events at run time without any support from
compiler or modification of the application program itself. (2) A
simple, but effective, regression model is proposed to approximately
determine the CPU idle time due to memory stalls by estimating the
ratio of the total off-chip access time to the total on-chip
computation time at runtime. (3) Evaluation of the proposed method
is performed through actual hardware measurements for a number
of different applications.

The remainder of this paper is organized as follows. Related
work is described in Section 2. In Section 3 and 4, a new DVFS
policy is presented. Details of the implementation, including both

1530-1591/04 $20.00 (c) 2004 IEEE

hardware and software, are described in Section 5. Experimental
results and conclusions are given in Sections 6 and 7, respectively.

2 Prior Work
Previous DVFS-related works may be divided into two categories
based on the scaling granularity: coarse-grained and fine-grained.
Coarse-grained voltage scaling is performed at the operating system
(OS) or application level, whereas fine-grained voltage scaling is
performed at the level of individual blocks/segments in an
application task or software program. Many scheduling policies for
hard real-time applications have coarse granularity. Multi-task
scheduling in the OS is the focus of [4][5][6][7]. More precisely,
scheduling is performed at task level by the OS so as to reduce
energy consumption while meeting hard timing constraints for each
task. In these coarse-grained DVFS approaches, it is assumed that
the total number of CPU cycles needed to complete each task is
fixed and known a priori. There are also a number of studies that
implement fine-grained DVFS as part of compile-time optimization
or by modifying the application program itself. In [8], an intra-task
voltage scheduling technique was proposed in which the application
code is divided into many segments and the worst-case execution
time of each segment (which is obtained from a static timing
analysis) is used to determine a suitable voltage for the next
segment. In [9] a method based on a software feedback loop was
proposed. In this method, a deadline for each time slot is provided.
The authors calculate the operating frequency of the processor for
the next time slot depending on the slack time generated in the
current slot and the worst-case execution time of the next time slot.
In [10], a checkpoint-based algorithm is proposed in which the
scaling points are identified off-line by the compiler. In [11] and
[12], compiler-assisted DVFS techniques were proposed, in which
frequency is lowered in memory-bound region of a program with
little performance degradation.

DVFS approaches that rely on micro-architecture or embedded
hardware without any assistance from a compiler or a simulator
have been reported. In [13] a microarchitecture-driven DVFS
technique was proposed in which cache miss drives the voltage
scaling. In [14] IPC (instruction per cycle) rate of a program
execution was used to direct the voltage scaling. Reference [15]
used a performance monitoring unit (PMU) to produce the optimal
frequency and voltage levels under a given performance degradation.
The PMU captures the dynamic program behavior such as cache
hit/miss ratio and memory access counts during the whole execution
time.

A heuristic technique was proposed in [11] in which voltage
scaling is done by identifying memory-bound regions of a program
trace. However, this work needs compiler support to identify such
regions. There is a different voltage scaling approach, called process
cruise control, where dynamic events from the PMU on an XScale
processor are used to determine the optimal frequency for a
performance loss constraint [15]. In particular, the authors defined
optimal frequency domains in 2-D memory vs. instruction count
space. This approach requires no help from off-line simulation or
compiler and only relies on dynamic event counts from the PMU.
However, it is not flexible in the sense that frequency domains are
obtained through extensive experiments of micro-benchmarks for a
given performance loss (set to 10% in that work) and this
performance loss is fixed for all different applications. This stiff
policy does not allow a precise and graceful control of the energy-
performance trade-off.

In this paper, we propose a DVFS policy for non real-time
application similar to the one presented by [15]. However, in our
proposed DVFS approach, we use the performance events in a
different way. Furthermore, our policy enables more precise control
over energy-performance trade-off by using regression-based

method in which performance events are used to recognize
memory-bound region at runtime effectively.

3 Performance-energy trade-offs
3.1 Performance degradation and energy saving
To perform ideal DVFS, we have to accurately predict the execution
time of a task at any clock frequency. The execution time is a
function of the instruction mix (the sequence of unrolled
instructions to be executed) and the cycle-per-instruction (CPI). A
RISC instruction mix consists of register-type instructions, memory-
type instructions, and branch-type instructions (the control
instructions for supervisor mode are not considered here). After the
application is compiled from the source code into the object code,
the ratios between these three instruction-types in the instruction
mix will become fixed if the control flow is known at compile time.
The CPI of the instruction mix depends on not only the instruction-
types and the data dependency, but also the run-time factors such as
SDRAM access latency, PCI access latency, other running
processes, etc.

The instruction latencies can be classified as on-chip latencies
(data dependency, TLB hits, cache hits, branch prediction) or off-
chip latencies (memory latency due to cache misses, PCI latency
due to access to the frame buffer). The on-chip latencies are caused
by events that occur inside the CPU (e.g., data dependency). They
are synchronized to the internal clock and may linearly be reduced
by increasing the CPU frequency. The off-chip latencies (e.g. the
SDRAM and PCI latencies), on the other hand, are independent of
the internal frequency and are thus not affected by changing the
CPU frequency. Accesses to external devices such as SDRAM,
PCMCIA flash card, LCD display, and USB storage are
synchronized to the bus clock, which is independent of the CPU
frequency.

Let T, Tonchip, and Toffchip denote the total execution time of a
program, the on-chip computation time, and the off-chip access time,
respectively. T is obviously written as:

= +onchip offchipT T T (1)

Notice that this breakdown of the total execution is not exact when
the target processor supports out-of-order execution whereby
instructions after the instruction that caused an off-chip access may
be executed during the off-chip access. In such a case, Tonchip and
Toffchip can overlap. However, in practice, the error introduced in this
way is quite small considering that the memory access time is about
two orders of magnitude greater than the instruction execution time.
Therefore, out-of-order execution does not cause a large error in
equation (1).

When the CPU frequency changes, the change in T is solely due
to Tonchip:

∆∆ =
∆ ∆

onchipTT
f f

 , 0offchipT
f

∆
≈

∆
 (2)

The increased execution time of a program due to lowered clock
frequency represents the performance loss (PFloss), which is defined
as follows:

max

max

()
nf f

loss
f

T T
PF

T
−

=
 (3)

where fmax is the maximum frequency of the CPU, fn is a frequency
lower than fmax, Tfn and Tfmax are the total task execution times at
CPU frequencies of fn and fmax, respectively.

For a given program, different ratios of Tonchip and Toffchip result
in very different PFloss over CPU frequencies. Figure 1 provides
energy-performance trade-offs for various applications. For example,
in case of the “crc” and “djpeg”, lowering frequency introduces
significant performance loss compared to other tasks implying that
these programs are CPU-bound (i.e., Tonchip >> Toffchip). On the
contrary, it is known that “fgrep” and “qsort” are memory-bound

(i.e., Tonchip << Toffchip) by observing little performance degradation
with lowered frequency. Based on these observations, we conclude
that the ratio of Tonchip to Toffchip for a program is very important to
the degree of energy saving and performance penalty attained by
DVFS techniques.

In general, the execution time of a program can be represented
in terms of the CPI, the number of instructions being executed, and
the CPU frequency [16]. More precisely, Tonchip and Toffchip can be
represented as follows:

1

n
i

avgonchip
onchipi

onchip
cpu cpu

CPI n CPI
T

f f
= ⋅

= =
∑ == = −

∑
1

m
j

offchip
j

offchip onchip
mem

CPI
T T T

f
 (4)

where n is the total number of instructions in the instruction stream,
m is the number of off-chip accesses in that stream, CPIi

onchip
denotes the number of CPU clock cycles for the ith instruction,
CPIj

offchip denotes the number of memory clock cycles for the jth off-
chip access, CPIavg

onchip denotes the average on-chip CPI, fcpu and
fmem denote the current clock frequency of the CPU and the clock
frequency of the off-chip bus. It should be pointed out that fmem can
assume different values depending on the external devices being
accessed. For example, in our test system, 100MHz clock frequency
is used for the SDRAM access whereas 33MHz speed is used for
the PCI-peripheral devices. Note that fmem cannot be scaled.

0

20

40

60

80

100

120

666 600 533 466 400 333
Frequency [MHz]

Pe
rf

or
m

an
ce

 L
os

s
[%

]

fgrep
qsort
gzip
djpeg
crc

Figure 1: Performance loss changes according to CPU

frequency.

Definition 1: The β value of a program is defined as the ratio
Toffchip/Tonchip for that program.

β represents the degree of potential energy saving because the
larger β is, the more CPU energy saving can be achieved by a
DVFS technique. Consequently, we need accurate information
about β in order to sustain an effective DVFS technique.

From equations (3) and (4), the optimal frequency, ftarget, for a
given PFloss value is calculated as follows:

max
arg

max

1 1

t et

loss
cpu

ff
fPF
f

β
=

+ ⋅ + ⋅

 (5)

As it can be seen from the above equation, ftarget is closely related to
β of a program. Consequently, accurate calculation of β is quite
important to the effectiveness of our proposed DVFS approach.
3.2 Scaling granularity
The ideal DVFS can instantaneously change the voltage/frequency
values. In reality, however, it takes time to change CPU
frequency/voltage due to factors such as the internal PLL (phase
lock loop) locking time and capacitances that exist in the voltage
path. For the 80200 XScale processor, the latency for switching the
CPU voltage/frequency is 6 µsec at 333MHz [2]. The minimum

quantum of time for scaling the CPU frequency/voltage must be at
least two to three orders of magnitude larger than this switching
latency. At the same time, we would like to minimize the overhead
of the voltage/frequency scaling as far as the OS is concerned.
Therefore, we use the start time of an (OS) quantum (approximately
50msec in Linux) used by the OS to schedule processes as DVFS
decision points, that is, each time the OS invokes the scheduler to
schedule processes in the next quantum, we also make to decision as
to whether or not the CPU voltage/frequency is changed and if so,
scale the voltage/frequency of the CPU.
3.3 Events monitored through the PMU on XScale
It is very difficult to calculate the exact β of a program in a static
manner such as during the compilation time because on/off-chip
latencies are severely affected by dynamic behavior such as cache
statistics and different access overheads for different external
devices. So, these unpredictable dynamic behaviors should be
captured at run time. This can be achieved by using a performance-
monitoring unit that is often available in modern microprocessors.
In our target system, the CPU is Intel’s XScale, which supports
monitoring of 20 performance events including cache hit/miss, TLB
hit/miss, and number of executed instructions. The overhead for
accessing PMU (read/write) is less than 1usec [15] and can be
ignored. However, there is a limitation in using these events in the
sense that only two events can be monitored at the same time along
with the number of clock counts in a quantum (CCNT).

For our DVFS policy, we performed many experiments to figure
out which events can give valuable clue about β and the following
two events were proven to be most helpful based on experimental
results: (i) the number of instructions being executed (INSTR) and
(ii) the number of memory accesses (MEM).

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
PI

av
g

fgrep
733MHz

333MHz

(a)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
PI

av
g

fgrep
733MHz

333MHz

(a)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
PI

av
g

gzip

333MHz

733MHz

(b)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
PI

av
g

gzip

333MHz

733MHz

(b)

Figure 2: Contour plots of CPIavg versus MPIavg for different

CPU clock frequencies

Using these two events, INSTR and MEM, along with CCNT,
CPIonchip can be extracted as in Figure 2. Figure 2 plots the
combination of three events while executing (a) “fgrep” and (b)
“gzip” applications at different frequencies from 733MHz to
333MHz at a fixed step of 66MHz. At the start of each quantum, the
PMU reports the CCNT, INSTR, and MEM. From these three
parameter values, we can calculate the average CPU cycles per
instruction (CPIavg) for the instruction stream as the ratio of CCNT
to INSTR. Similarly, we can calculate the average memory cycles
per instruction (MPIavg). In this figure, we have plotted CPIavg on
the y-axis and MPIavg on the x-axis. Each dot in the plot represents
one PMU report. From this figure, we can easily see that, at a fixed
CPU clock frequency, CPIavg is linearly related to MPIavg as
follows:

= ⋅ +()avg avgCPI b f MPI c (6)

where b(f) is frequency-dependent slope. Notice that intercept c is
equal to the average on-chip CPI, CPIavg

onchip and is independent of
frequency f. Therefore, Eq. (6) can be used to provide an accurate
estimation of CPIavg

onchip from which β can be determined from Eq.
(4) and Definition 1.

4 Regression-based Fine-Grained DVFS
4.1 Calculating ββββ

 with a regression equation
In our proposed DVFS approach, monitored event values are used
to estimate coefficient b and c of regression Eq. (6), and then to use
this equation to predict β of a program. Voltage/frequency scaling is
performed at the start of each quantum. Regression coefficients b
and c are dynamically updated as explained below.

Let the linear equation for the regression be y=b*x+c, where x
and y denote MPIavg and CPIavg, respectively. Coefficients b and c at
quantum t≥N, are calculated from the last N PMU reports as
follows:

− + − + − + − + − +

= = = = =
− + − +

= =

⋅ ⋅ − ⋅
= = − ⋅

⋅ −

∑ ∑ ∑ ∑ ∑

∑ ∑

1 1 1 1 1

1 1
2 2

1

() () ()
,

() ()

t N t N t N t N t N

i i i i i i
i t i t i t i t i t

t N t N

i i
i t i

N x y x y y x
b c b

N NN x x

 (7)

where xi and yi denote the MPIavg and CPIavg for the ith quantum.
Note that we must choose N carefully since if N is chosen to be too
small, we will be too sensitive to small changes in the program
behavior and we may not have enough data points to do a good
regression. On the other hand, if N is too large, then we may
potentially filter out many important changes in the program
behavior. The regression coefficients are updated at the start of
every quantum. Recall that the regression equation is maintained for
each frequency because b is different for different frequencies.

The optimal frequency for the next quantum t+1 is calculated as
follows. After quantum t, β of quantum t, β

t, is calculated as:

β = −
,

, 1
avg t

t
avg t
onchip

CPI
CPI

 (8)

Once β

t is obtained, the target CPU frequency for the next
quantum, ft+1, is calculated from Eq. (5) with the specified PFloss as
follows:

β

+ =
 + ⋅ + ⋅

1 max

max1 1

t

t
loss t

ff
fPF
f

 (9)

4.2 Prediction error adjustment
We assumed that β of the next quantum is the same as that of the
current quantum. However, in reality, β varies in different quanta
during the program execution. This is due to different off-chip
latencies for the SDRAM and PCI-device accesses. Furthermore,
different applications have different β distributions during runtime.

This situation becomes worse when the quantum length is varied,
for example, when a process performs an I/O operation (mostly file-
read/write operations). In such a case, the CPU preempts the process,
thus, the length of the quantum is shortened compared to the
"standard" quantum length of approximately 50msec.

To alleviate these shortcomings, we modify the proposed
technique in order to handle the non-equal quantum times. The
modification is shown in Figure 3, which depicts three consecutive
quanta, qt-1, qt, and qt+1, each with a distinct β value and quantum
lengths Tact

t-1, Tact
t, and Tact

t+1. For the specified PFloss, the expected
execution time is denoted by Texp

t-1, Texp
t, and Texp

t+1, respectively.
Voltage/frequency scaling for qt, qt+1, and qt+2 is performed at t1, t2,
and t3, respectively.

T t-1 T t T t+1

Texp
t-1 Texp

t Texp
t+1

Tact
t-1 Tact

t Tact
t+1

St-1 St St+1

St-1 = Texp
t-1 – Tact

t-1

St = Tex[
t + Texp

t-1 - Tact
t – Tact

t-1

= Texp
t - Tact

t + St-1

St+1 = Texp
t+1 + Texp

t + Texp
t-1 – Tact

t+1 - Tact
t – Tact

t-1

= Texp
t+1 – Tact

t+1 + St

q t-1 q t q t+1

; ET at fmax

; expected ET with
a given PFloss

; actual ET
(slack generation)

t1 t2 t3

ET : Execution time

Texp
k= T k • (1+PFloss)
(k = t-1, t, t+1)

; quantum sequence

T t-1 T t T t+1

Texp
t-1 Texp

t Texp
t+1

Tact
t-1 Tact

t Tact
t+1

St-1 St St+1

St-1 = Texp
t-1 – Tact

t-1

St = Tex[
t + Texp

t-1 - Tact
t – Tact

t-1

= Texp
t - Tact

t + St-1

St+1 = Texp
t+1 + Texp

t + Texp
t-1 – Tact

t+1 - Tact
t – Tact

t-1

= Texp
t+1 – Tact

t+1 + St

q t-1 q t q t+1

; ET at fmax

; expected ET with
a given PFloss

; actual ET
(slack generation)

t1 t2 t3

ET : Execution time

Texp
k= T k • (1+PFloss)
(k = t-1, t, t+1)

; quantum sequence

Figure 3: Compensating for the error due to misprediction of ββββ

When a frequency is chosen for the next quantum, there may
exist some (positive or negative) slack time (i.e., the difference
between Texp

* and Tact
*.) These slack times come about due to the

misprediction of β for the next quantum. With a positive (negative)
slack, the frequency for the next quantum should be made smaller
(larger) compared to the case of zero slack. For example, at time t2,
the actual execution time until t2 is (Tact

t-1 + Tact
t) which is less than

the expected time (Texp
t-1 + Texp

t), so there is a positive slack time St
= Texp

t – Tact
t + St-1. If St is added in the calculation of the frequency

for the next quantum qt+1, then the error that occurred in the
previous quanta can be compensated for. Eq. (9) for calculating the
target frequency for next quantum is thus modified as follows:

β

+ =
 + ⋅ + + ⋅ ⋅

1 max

max1 1

t
t

t
loss t t

loss act

ff
fSPF

PF T f

 (10)

Notice that for positive (negative) slack St, the denominator will
be larger (smaller) than the zero slack case, and hence the target
frequency ft+1 will be smaller (larger), which is of course the desired
behavior.

5 Implementation
We implemented the proposed policy on a high-performance
XScale-based testbed, which runs Linux (v2.4.17).

A programmable clock multiplier (PLL) in the XScale processor
generates the internal CPU clock, which can be adjusted from 200
up to 733MHz in steps of about 66 MHz with the development-
board speeds only available from 333 MHz and up. The lower
bound results from a constraint to the memory bus speed, which is
at 100 MHz in our system. The bus speed has to be less than a third
of the CPU clock speed. This would yield a minimum speed of 333
MHz. Running the system at CPU speeds slower than 333MHz
causes immediate halts. The main PCB of our testbed includes an
on-board variable voltage generator, which provides suitable

operating voltage at each clock frequency level. A D/A converter
was used as a variable operating voltage generator to control the
reference input voltage to a DC-DC converter that supplies
operating voltage to the CPU. Inputs to the D/A converter were
generated using a customized CPLD (Complex Programmable
Logic Device). When the CPU clock speed is changed, a minimum
operating voltage level should be applied at each frequency to avoid
a system crash due to increased gate delays. In our implementation,
these minimum voltages are measured and stored in a table so that
these values are automatically sent to the variable voltage generator
when the clock speed changes. Voltage levels mapped to each
frequency are obtained through extensive measurements and
summarized in Table 1.

For the measurements, the system has a 40K samples/second
data acquisition system in which the voltage drop across a precision
resistor inserted between the external power line and the “design
under test” (DUT) power line is used to measure the power
consumption as shown in Figure 4.

Table 1. Frequency and voltage levels in the system
Frequency

(MHz)
Voltage

(V)
333 0.91
400 0.99
466 1.05
533 1.12
600 1.19
666 1.26
733 1.49

DUT

ResistorPower split

DUT

ResistorPower split

DUT

ResistorPower split

DUT

ResistorPower split

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

Figure 4: Data acquisition system.

As software works, we wrote a module in which the proposed
policy is implemented and this module is hooked to the scheduler so
that voltage scaling can occur during every context switch. Figure 5
shows the software architecture of DVFS implementation.

During the context switch, the PMU values for the previous
process are read and the ideal frequency calculation for the next
quantum is performed as described in section 4. A regression
equation at each frequency is maintained for each process, which
consists of no more than 5 long-type variables, resulting in little
space overhead for implementing our DVFS policy. We measured
the time overhead of our policy by using benchmark in the suite of
the Lmbench [17] and found that the time overhead was about
100µsec. The original context switch time was also nearly 100 µsec.
Although we almost doubled the context switch time, the overhead
is still quite negligible in comparison to the quantum time of a few
tens of millisecond. Our implementation supports a proc-file
interface to the module such that the performance loss level and size
of the window can be specified by writing the appropriate value to
the this proc-file, which allows us to dynamically control the
desired level of energy saving. Furthermore, the current values can
be read from the proc-file interface. Another feature we have
implemented to gain more accurate information (at the cost of
higher overhead) is to measure the event values of PMU at every
timer interrupt (1ms on our platform). This feature is disabled by
default and is not exploited in the experimental results section.

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

Figure 5: Software architecture of our DVFS implementation

6 Experimental Results
Our experiments are performed on the following applications
including two common UNIX utility programs (“gzip” and “fgrep”)
and five representative benchmark programs available on the web
[18]. They are summarized in Table 2. All the measurements are
performed 10 times for each benchmark and the average
performance loss and average energy saving values are reported.
Size of the window, N, is set to 25 through exhaustive experiments.
Based on the experimental results, it is found that N of 20 ~50
shows similar characteristics.

Table 2. Summary of test applications
Benchmarks Description

gzip compressing a given input file
fgrep searching for a given pattern in the files residing in a

directory
math floating-point calculations

bf
(blowfish)

a symmetric block cipher with a variable length key
from 32 to 448 bits

crc 32-bit cyclic redundancy check on a file
djpeg decoding a jpeg image file
qsort sorting a large array of strings in ascending order

Figure 6 represents the measured performance degradation with

target performance loss ranging from 5% to 20% at steps of 5%. As
seen in this figure, we obtained actual performance loss values very
close to the target values for all programs (i.e., actual within 2% of
the target) except for “fgrep” and “qsort” programs, which are
memory-bound and PFloss of these are saturated to ~12%,
corresponding to data in Figure 1. In Figure 7, actual power
consumptions (including both CPU and DC-DC converter power)
for two cases: (a) without DVFS and (b) with DVFS are reported
when running “gzip”. In case (a), the program is run at the
maximum frequency (733MHz) and 10% target PFloss is given
consistent with case (b). By applying the proposed policy, 52.1% of
the CPU energy is saved at the cost of 11.6% performance loss.
Measured energy savings for all benchmarks appear in Figure 8.
From these measurements, we conclude that a CPU energy saving
of more than 70% is achieved for memory-bound applications
(“fgrep” and “qsort”) with about 10% performance loss. The energy
saving saturates after that, i.e., we cannot increase the amount of
energy savings by tolerating a larger performance loss value. For
CPU-bound applications, the degree of energy saving is smaller, but
our approach allows a finely tuned energy-performance tradeoff.
For example, in the case of “djpeg” program, we obtain a 42% CPU
energy saving with a 20% performance loss constraint or a 26%
energy saving with a 5% performance loss constraint.

7 Conclusion
In this paper, a regression-based DVFS policy for finely tunable
energy-performance trade-off was proposed and implemented on an
XScale-based platform. In the proposed DVFS approach, a program

execution time is decomposed into two parts: on-chip computation
and off-chip access latencies. The CPU voltage/frequency is scaled
based on the ratio of the on-chip and off-chip latencies for each
process under a given performance degradation factor. This ratio is
given by a regression equation, which is dynamically updated based
on runtime event monitoring data provided by an embedded
performance-monitoring unit. Through actual current measurements
in hardware, we demonstrated a CPU energy consumption of saving
of more than 70% for memory-bound programs with about 12%
performance degradation. For CPU-bound programs, 15~60%
energy saving was achieved with fine-tuned performance
degradation, ranging 5% to 20%.

0

5

10

15

20

25

30

bf crc djpeg gzip math fgrep qsort

A
ct

ua
l P

er
fo

rm
an

ce
 L

os
s

[%
]

5%
10%
15%
20%

Target Performace Loss

Figure 6: Performance loss with different target values

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

gzip, @733MHz

0.9684 sec
avg. power : 789.5mW

0

500

1000

1500

0.4 0.41 0.42

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

gzip, @733MHz

0.9684 sec
avg. power : 789.5mW

0

500

1000

1500

0.4 0.41 0.42

(a) Without DVFS - at maximum frequency

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

gzip, with 10% PFloss

1.0806 sec (11.6% PFloss)

avg. power : 338.7mW
(52.1% energy saving)

0

500

1000

1500

0.4 0.41 0.42

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

gzip, with 10% PFloss

1.0806 sec (11.6% PFloss)

avg. power : 338.7mW
(52.1% energy saving)

0

500

1000

1500

0.4 0.41 0.42

(b) With DVFS - at a 10% performance loss constraint

Figure 7: CPU power consumption of with/without DVFS

0

10

20

30

40

50

60

70

80

bf crc djpeg gzip math fgrep qsort

En
er

gy
 S

av
in

g
[%

]

5%
10%
15%
20%

Target Performace Loss

Figure 8: CPU Energy saving for various application programs

References
[1] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital

design,” IEEE Symp. on Low Power Electronics, 1994, pp.8-11
[2] “Intel 80200 Processor Based on Intel XScale Microarchitecture,”

http://developer.intel.com/design/iio/manuals/273411.htm
[3] “Cruso SE Processor TM5800 Data Book v2.1,”

http://www.transmeta.com/everywhere/products/embedded/embedde
d_sefamily.html .

[4] F. Yao, A. Demers, and S. Shenker, “ A Scheduling model for
reduced CPU energy,” IEEE Annual Foundations of Computer
Science, 1995, pp.374-382

[5] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” Proc. Int’l Symp. on Low
Power Electronics and Design, 1999, pp.197-202

[6] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling for
variable voltage processors,” Proc. Design Automation and Test in
Europe, March 2002, pp.782-787

[7] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava, “Synthesis
techniques for low-power hard real-time systems on variable voltage
processor,” Proc. of the IEEE Real-Time Systems Symp. December
1998, pp.178-187

[8] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage
scheduling using static timing analysis,” Proc. Design Automation
Conf., 2001, pp. 438-443.

[9] S. Lee and T. Sakurai, “Run-time power control scheme using
software feedback loop for low-power real-time applications,” Proc.
Asia-Pacific Design Automation Conf., 2000, pp.381-386.

[10] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A.
Veidenbaum, and A. Nicolau, “Profile-based dynamic voltage
scheduling using program checkpoints in the COPPER framework,”
Proc. Design Automation and Test in Europe Conference, March
2002, pp.168-176

[11] C. Hsu and U. Kremer, “Compiler-directed dynamic voltage scaling
for memory-bound applications,” Technical Report DCS-TR-498,
Department of Computer Science, Rutgers University, August 2002.

[12] C. Hsu and U. Kremer, “Single region vs. multiple regions: A
comparison of different compiler-directed dynamic voltage
scheduling approaches,” Proc. Workshop on Power-Aware
Computer Systems, February 2002.

[13] D. Marculescu, “On the use of microarchitecture-driven dynamic
voltage scaling,” Workshop on Complexity-Effective Design, 2000.

[14] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in
workloads with externally specified rates to reduce power
consumption,” Proc. Workshop on Complexity Effective Design,
2000.

[15] A. Weissel and F. Bellosa, “Process Cruise Control,” Proc.
Compilers, Architectures and Synthesis for Embedded Systems,
October 2002, pp.238-246

[16] J. Hennessy and D. Patterson, “Computer Architecture–A
Quantitative Approach,” 2nd, Morgan Kaufmann Publishers, 1996

[17] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance
Anaylis,” Proc. of the USENIX 1996 Technical Conf., January 1996,
pp. 279-294

[18] http://www.eecs.umich.edu/mibench

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

