
 1

Improving Design and Verification Productivity with VHDL-200x

Stephen Bailey
sbailey@model.com
Model Technology, a

Mentor Graphics Company

Erich Marschner
erichm@cadence.com

Cadence Design Systems
Jim Lewis

Jim@SynthWorks.com
SynthWorks

J. Bhasker
jbhasker@esilicon.com
eSilicon Corporation

Peter Ashenden
peter@ashenden.com.au

Ashenden Designs Pty Ltd

Abstract

VHDL is a critical language for RTL design and is a
major component of the $200+ million RTL simulation
market1. Many users prefer to use VHDL for RTL design
as the language continues to provide desired
characteristics in design safety, flexibility and
maintainability2. While VHDL has provided significant
value for digital designers since 1987, it has had only one
significant language revision in 1993. It has taken many
years for design state-of-practice to catch-up to and, in
some cases, surpass the capabilities that have been
available in VHDL for over 15 years. Last year, the
VHDL Analysis and Standardization Group (VASG),
which is responsible for the VHDL standard, received
clear indication from the VHDL community that it was
now time to look at enhancing VHDL.

In response to the user community, VASG initiated the
VHDL-200x project3. VHDL-200x will result in at least
two revisions of the VHDL standard. The first revision is
planned to be completed next year (2004) and will include
a C language interface (VHPI); a collection of high user
value enhancements to improve designer productivity
and modeling capability and potential inclusion of
assertion-based verification and testbench modeling
enhancements4. A second revision is planned to follow
about2 years later. This paper focuses on the 1st revision
enhancements.

1 Gartner Dataquest 2002 EDA Forecast, CAE, RTL Simulation
Market Forecast

2 VHDL users are unconcerned with rewriting their FSM models
whenever the state encoding changes or debugging race conditions as
these long time Verilog shortcomings have never been an issue in
VHDL.

3 See http://www.eda.org/vhdl-200x for more information.
4 Assertion-based verification and testbench modeling enhancements

that are ready when the first 200x revision goes to ballot will be
included in that ballot.

1. VHDL Programming Interface (VHPI)

A programming interface to VHDL has been defined
and is in process of being integrated into the VHDL
LRM. The VHPI will open the door for easy
development and integration of 3rd party tools with any
LRM compliant VHDL simulator and C language models.

2. Assertion-based verification

Assertion-based verification involves adding
behavioral specifications to a design in order to improve
verification efficiency. These specifications can define
requirements on design behavior that can be checked both
statically, using formal verification techniques, and
dynamically, during simulation. They can define both
intended design behavior, which should be demonstrated
during verification, and potential error situations, which
should not occur during verification. They give added
visibility into the internal state of a design.

Over the past several years, Accellera5 developed a
standard language for property specification and
assertion-based verification. The Property Specification
Language (PSL), is based upon the language Sugar6,
developed by IBM Haifa Research Labs. PSL version
1.017 became an Accellera standard in May 2003.
Verification tools supporting PSL have been available for
more than a year with more tool support coming.

PSL has been chosen as the basis for all property
specification capabilities for VHDL. PSL will be
integrated as a native language capability in VHDL and
exploited fully for use in assertion-based verification and
verification automation (specification of constraints and

5 http://www.accellera.org
6 http://www.haifa.il.ibm.com/projects/verification/sugar/index.html
7 http://www.accellera.org/pslv101.pdf

1530-1591/04 $20.00 (c) 2004 IEEE

 2

sequences for use in constrained, random stimulus
generation).

3. Testbench and verification

Today many users resort to high-level verification
(HLV) languages to access language features that are
required for verification. However, they have clearly
identified that it would be far easier to continue to use
VHDL if it included the HLV features.

Based on user feedback, a number of areas have been
identified that can help improve testbench writing and
consequently verification. The top priorities are:

• Associative arrays
• Fork-join
• Queues
• FIFOs
• Lists
• Synchronization and handshaking (event objects)
• Request and wait for action
• Expected value detectors
• Access to coverage data for reactive TB
• Sparse arrays
• Random value generation with optional and

dynamic constraints and weightings
• Random object initialization
• Random 2-state value resolution
• Loading and dumping memories

Proposals are being evaluated in the areas of

associative arrays, lists, fork/join (dynamic process
creation) and more.

4. Data Types and Abstraction

We are evaluating historical VHDL language
enhancement research efforts, such as SUAVE8 to
determine if we can incorporate features from those
efforts including:

• Object-orientation and inheritance
• Enhanced generics (generic types and

subprograms)
• Dynamic process creation and destruction
• Interface modeling.

5. Modeling productivity and capabilities

The goal of the modeling and productivity group is to
improve designer productivity through enhancing

8 http://www.ashenden.com.au/suave.html

conciseness, simplifying common occurrences of code,
and improving capture of intent. The following are
examples of proposed enhancements:

• Unary reduction operators
• Array/scalar logical operators
• Hierarchical signal access
• Formatted IO and string conversion functions
• Sized bit string literals
• Conditional and selected assignments within

sequential code blocks
• Case and If-else generate
• Reading driving values of output ports
• Dynamically-evaluated expressions in port maps
• Sensitivitiy list abbreviation and design intent

enhancements
• Relax local static requirement for case

alternatives
• Allow user-definable matching for case

statements to exploit don’t care matching

6. Environment

We are evaluating ways in which we can make the use
of VHDL more portable and usable. Standardizing
helpful utilities such as simulation stop, finish and restart
routines so they are callable from anywhere in the VHDL
code have been proposed. We will also consider any
proposal, such as standardizing the semantics of co-
simulation with other languages, within this context.

7. Performance

The working group is sensitive to all productivity
considerations including tool performance. Therefore, we
are evaluating ways in which the VHDL semantics can be
relaxed or modified in specific contexts to improve the
ability of tools to exploit more optimizations. We will be
careful to not be penny-wise and pound-foolish. For
example, many man-decades of valuable verification time
have been wasted debugging Verilog race conditions.
Therefore, we will not provide many verification
automation/productivity enhancements only to subtract
from those advancements by introducing poor semantics
elsewhere in the revised language.

Summary

The evolution planned with VHDL-200x will allow
VHDL users to exploit new features in assertion-based
verification, verification automation and modeling and
tool performance while they continue to reap all the
current benefits of VHDL.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

