
Evaluation of an Object-Oriented Hardware Design Methodology for
Automotive Applications

N. Bannow, K.Haug
Robert Bosch GmbH, Automotive Electronics – Driver Assistance Systems

Nico.Bannow@de.bosch.com, Karsten.Haug@de.bosch.com

Abstract

In this paper we present results in using the new
object-oriented design approach OSSS (ODETTE System
Synthesis Subset). The methodology and tools of the
ODETTE (Object-oriented co-DEsign and functional Test
TEchniques) project have been developed within the
context of the IST programme of the European
Commission. Main focus of OSSS lies in the field of
hardware design and in synthesis capability. The strategy
is based on an extension of the synthesizable subset of
standard SystemC. The approach supports real object-
oriented and synthesizable design features like classes,
inheritance, templates, polymorphism and global object
access. Therefore OSSS promises high efficiency in sense
of capability to handle complex designs, faster
development time, improved code quality and faster time
to market. In contrast, standard SystemC is also based on
C++ constructs, but no object-oriented constructs are
available yet for a synthesizable system description.

We have evaluated OSSS on an automotive design
example. It was chosen for the implementation of a
component that is part of all video projects: A camera’s

exposure control unit (ExpoCU). The first main goal that

was achieved is a synthesizable design by the automatic

generation of an FPGA netlist from an OSSS description.

Furthermore we have also proved the methodology to

fulfill industrial requirements such as usability for

complex system development, integration of existing IP,

improved code quality and decreased development effort.

Comparison will be done against existing VHDL based

design flow. We especially focus on the implementation

and testability by comparing the new object-oriented

synthesis approach with a standard VHDL flow by laying

emphasis on synthesizability.

OSSS and equivalent kinds of methodology show a

large potential to handle new generations of complex

HW-SW systems. Moreover the gap between increasing

design complexity and available methodologies already

now gets bigger and bigger and thus needs to be closed

by new solutions such as OSSS.

1 Introduction

The complexity of electronic systems is significantly
growing. Especially in the automotive industry new
features required by customers go far beyond standard
applications. In modern cars the number and especially
the complexity of used controllers is steadily growing.
This new situation requires new ways to deal with
increasing complexity, growing verification effort and
pressure of time to market while keeping cost efficiency
and development time affordable. Thus, design
implementation and test strategy have to be steadily
adapted to new requirements. Otherwise, there is a risk
that development costs and time to market get out of
control. Therefore, Bosch started the evaluation of new
approaches and methodologies to be able to handle the
challenges of steadily growing system requirements in
current and future times in the automotive industry.

There is a high demand for such new methodologies in
case of compatibility with existing design flows, merging
of hardware and software development and faster
conception, implementation and verification. One big goal
we have focused on is to bring modern software
approaches like object orientation into the area of
hardware design. From this approach we expect to be able
to handle more complex designs on a higher abstraction
level and therefore to close the gap between design
requirements and existing design development
methodologies. With SystemC [1][2] as a basis platform
and object-oriented extensions provided by the OSSS [3]
methodology, developed in the project ODETTE [4], we
have selected a very promising methodology. Within the
following sections we will present OSSS and show
achieved results.

2 Design Example ExpoCU

Exemplary, we have chosen to evaluate the new
methodologies on a camera’s Exposure Control Unit

(ExpoCU) that is a fundamental part of any video system.

In the automotive area, video based applications are

‘night vision enhancement’, ‘lane departure warning’,

1530-1591/04 $20.00 (c) 2004 IEEE

‘rear view camera’, ‘road sign recognition’. In between

these applications have left the prototypic state and will

emerge on the market within next years. Considering the

importance and the average complexity of an ExpoCU,

(Figure 1) it is an ideal candidate for evaluation by
keeping even more complex designs in focus. Especially

the different scope of the modules implementation is very

interesting for us: A system clock frequency of 66 MHz

has to be reached by every component but the cycle time

of some modules is just one clock cycle and thus

pipelining is needed. Other components do have a budget

of some thousand clock periods. Furthermore, some

modules are data flow oriented with high transfer rates

where others have control flow functionality.

Figure 1 : Exposure Control Unit

The ExpoCU’s ‘Camera control’ module consists of

the following main parts:

• Camera data synchronization

• Histogram acquisition

• Threshold calculation

• Parameter calculation

• I²C bus control

• Reset control

The goal we have focused on is to implement the

whole ExpoCU using the OSSS synthesizable hardware

description syntax. Furthermore, some components like

multipliers and FPGA specific constructs are to be

integrated as existing VHDL IP.

3 Existing solutions

Object oriented solutions for high level synthesis are

not very frequent on the market. One known tool is the

‘Cynthesizer’ by ‘Forte Design Systems’ [5] that provides

object-oriented features for hardware synthesis by using

the SystemC language subset. Nevertheless, only support
of classes, inheritance and templates is being provided.

Polymorphism and global object access are currently not

supported.

Besides this solution, Synopsys [6] provides synthesis

of SystemC as well, but the synthesizable subset is

restricted to non object-oriented elements.

There are other evaluations and implementations of

different object-oriented design methodologies ongoing

like object-oriented extensions to VHDL [7], language ‘e’

synthesis extensions [8], automated implementation of

communication protocols by V++ [9], OpenJ [10] and

others [12][13]. Nevertheless, these approaches are not

compatible to existing design flows or have been found to
be to specific for some fields of application. Furthermore

they were to complex or did not get established in real

industrial environments for other reasons.

As the approach of OSSS promises a seamless flow

from object-oriented specification down to gates with the

capability of using all abstraction levels of a design

description, we found it to be a very promising approach.

Therefore, we decided to implement an ExpoCU design

using the OSSS approach.

4 Evolution of OSSS

In the beginning of the ODETTE project, the focus
has lain on object-oriented extensions based on VHDL.

Nevertheless, during project time when the SystemC 2.0

methodology and simulation kernel got developed, much

better options for object-oriented synthesis appeared and

seemed more promising. This made it evident to skip to

SystemC as a development base instead of extending a

language that was never planned to support object

orientation.

5 Approach

As design entry language, an extension of standard
SystemC is being used. OSSS extends the SystemC

language subset with additional C++ constructs. The

specific feature is synthesizability of those constructs. The

capability to compile the design and generate a binary

executable file with any C++ compiler to support

simulation stays untouched as known from SystemC.

In the following, we will differentiate between

simulation issues for verification reasons and synthesis

issues for hardware synthesis. In case of results, we

differentiate between a binary executable program file for

simulation and a netlist past synthesis.

We found that the very basic classes and templates are
the most powerful features that motivated us to step

towards real object-oriented design. Thus, we will focus

on them while touching polymorphism and global objects

only.

6 Features

The new methodology developed in ODETTE mainly

provides the following new synthesizable features:

• Classes / class members / inheritance

• Templates (even complex types like classes)

• Polymorphism

• Global Object Access

FPGA
Exposure Control Unit

cam era
control

ca
m

er
a

protocol
adaption

raw
video

stream

raw
video

stream

cam era
control
signals

Furthermore, prototypic support of automated fixed
point number resolution has been implemented.

The usage of classes and their instantiation by creating
objects is one of the basic principles of object-oriented
programming. This feature is fully supported by OSSS
and covers e.g. class members, member access privileges
(public, private, protected), inheritance, operator
overloading, etc. Classes can be instantiated inside a
SC_MODULE or inside a process. Access takes part
inside a process by using member function calls. The
object data can be transferred via sc_signal<object>
between different processes. Figure 2 shows a shortened
class member declaration of the class ‘SyncRegister’.

This class is mainly being used to synchronize incoming

data of a camera.

class SyncRegister
{
 private:
 sc_bv<REGSIZE> RegValue;

 public:
 SyncRegister(); // constructor

 // methods
 void Reset();
 void Write(const sc_bit& NewValue);
 bool RisingEdge(const unsigned int& RegIndex) const;
 inline bool operator ==
 (const SyncRegister& ObjectRef) const;
};

Figure 2 : Example class members of SyncRegister

Templates (Figure 3) are a simple yet very powerful

instrument to specify parameterized classes or functions.

They enable designers to create generic functions, class

instances and even SystemC modules. The types of

templates can be basic types like ‘int’ or complex types

like class identifiers. Indeed, using C++ templates is

nothing unusual, but now, template usage is available
even for synthesis for the first time. The advantages can

be understood like automatic resolution of the operation

‘+’ to its corresponding instantiation of an adder. This is

in fact nothing exceptional, but compared to manual

resolution we do not want to miss this powerful feature

anymore.

template<unsigned int REGSIZE, unsigned int RESETVALUE>
class SyncRegister
{ ... };

Figure 3 : Example parameterization via templates

Figure 4 exemplary presents the instantiation of the
class ‘SyncRegister’ with two template parameters ‘0’

and ‘4’ inside a SC_MODULE:

SC_MODULE(sync) {
 SyncRegister< 4, 0 > data_sync_reg; // SyncRegister instance
 ...
 SC_CTOR(sync) {
 SC_CTHREAD(sync_input, clk.pos());
 watching(reset.delayed() == true); // (synchronous) reset
 ...
 }
};

Figure 4 : Parameterized class instantiation

Now after the instantiation of a class, the next code

lines (Figure 5) inside a SC_CTHREAD show the access

by class member function calls. In the reset part, the class

instance gets initialized by a Reset() method. Later in the

main while loop, the class data is updated using a Write()
method. The contents of the class can be read and

evaluated using different methods. One could be a rising

edge detection:

// (access to ‘SyncRegister’)

void sync::sync_input() {

 data_sync_reg.Reset(); // reset data_sync_reg

 wait();

 while (true) { // none reset behavior

 data_sync_reg.Write(data.read()); // update data_sync_reg

 if (data_sync_reg.RisingEdge(0)) { // detect rising edge

 ...

 wait();

 }

}

Figure 5 : Object access

Another classic but advanced design approach of
object-oriented design style is polymorphism. With the
OSSS methodology and tools, the synthesis of
polymorphic objects is supported. This feature can be
used to call different operations through the same
interface on different objects. One example could be to
simply select between different ALU (Arithmetic Logic
Unit) instantiations (e.g. ‘+’, ‘*’, ‘-‘) but keeping the

same access methods like ‘read()’ / ‘write()’ / ‘execute()’.

Often, components of a system have to be accessed by

different modules or processes. Those components are

either shared resources (like an ALU) or used for

intercommunication (like buses or memories). Such parts

of a system can be implemented as global objects. The

methodology of OSSS provides simple definition and

access capabilities for global objects. The access and

scheduling of a global object gets automatically included

for synthesis. A designer can use a standard scheduler or
implement an own – according to the required needs.

7 Flow

For simulation some parts of the OSSS extensions like

classes or usage of templates may simply be compiled by

a standard C++ compiler. Only the SystemC kernel needs

to be included. Other features like global objects and

polymorphism additionally require the OOWHLIB

(object-oriented hardware library) available at [3] that in

fact provides some classes and macros to support the

OSSS features.

For synthesis of OSSS down to SystemC (Figure 6),
two tools developed in ODETTE are being used. The first

tool is an analyzer that parses OSSS source code and

generates a library where it holds information of the

whole design structure. The library will be written out and

used by a second tool, the synthesizer. This synthesizer

generates standard SystemC files with a strong focus on
synthesizability.

After the generation of SystemC files out of the
original OSSS files, we can simply apply the standard
synthesis flow to generate an FPGA netlist (Figure 6).

Figure 6 : OSSS flow down to an FPGA netlist

For the integration of existing VHDL IP modules into
the ExpoCU design, we generate the netlists separately.
Then – on the netlist level – the synthesis tools connect

the whole design automatically (Figure 6).

8 Resolution of OSSS constructs

As explained in the flow, the generated SystemC files

are in fact resolved OSSS constructs.

Resolution of class member functions is done by the

generation of non-member functions. Template

parameters are forwarded to their location where they are

being used. The data members of a class instance are

mapped to a single bit vector. This vector stays where it

has been declared: Inside a SC_MODULE or as a process

member. The access to object data is therefore being
translated to a read/write to parts (slices) of the generated

vector. The class ‘SyncRegister’ and SC_MODULE

‘sync’ get analyzed and translated into the following

synthesizable SystemC code (Figure 7, Figure 8).

void
_SyncRegister_Reset_1_(sc_biguint< 4 > & _this_)
{ _this_ = 0; }

void
_SyncRegister_Write_1_(
 sc_biguint< 4 > & _this_, const sc_bit & NewValue)
{
 sc_biguint< 4 > _temp_0_;
 _temp_0_[0] = NewValue;
 _temp_0_.range(3, 1) = ((sc_biguint<4>)_this_).range(2, 0);
 this = _temp_0_;
}

bool
_SyncRegister_RisingEdge_1_(
 const sc_biguint<4> & _this_, const sc_bigint<32> & RegIndex)
{ ... }

Figure 7 : Non-member functions

SC_MODULE(sync)
{
 sc_biguint< 4 > data_sync_reg;
 ...
 void sync_input()
 {
 _SyncRegister_Reset_1_(data_sync_reg);
 wait();

 while (true) {
 _SyncRegister_Write_1_(data_sync_reg, data.read());
 ...
 }
 ...
 SC_CTOR(sync) { ... }
}

Figure 8 : Translated module ‘sync’

In the code translation (Figure 8) it can be seen that no
additional logic has been added when using classes and
templates. The resolution of object-oriented design
features like classes and templates do not create an
additional overhead. This is not only valid for the given
example but for the whole OSSS approach. During
compilation down to standard SystemC this structures are
fully resolved. In case of polymorphism, multiplexers are
being inserted to select the function and object. When
global objects are being instantiated and accessed, some
scheduling logic of course has to be added. But in any
case: If described in conventional approach, logic would
have to be added anyway for global-object-like as well as
for polymorphism-like design descriptions.

9 Additional implementation issues

Implementation of ‘sc_trace’ and furthermore the

overloading of the streaming operator ‘<<’ is

recommended to enable the tracing of an object’s contents

and to allow a dump of object data at any time (Figure 9):

#ifndef SYNTHESIS
 // overloading operator ’<<’
 template <unsigned int REGSIZE, unsigned int RESETVALUE>
 inline ostream& operator << (ostream& OStream,
 const SyncRegister<REGSIZE, RESETVALUE>& ObjectReference);

 // overloading method ’sc_trace’
 template <unsigned int REGSIZE, unsigned int RESETVALUE>
 extern void
 sc_trace(sc_trace_file* TraceFile,
 const SyncRegister<REGSIZE, RESETVALUE>& ObjectReference,
 const sc_string& ObjectName);
#endif SYNTHESIS

Figure 9 : Operator ‘<<’, sc_trace

To enable ‘sc_trace’ access to object data it has to be

declared as a friend function (Figure 10):
#ifndef SYNTHESIS
 #ifndef WIN32
 friend void sc_trace<>(
 sc_trace_file* TraceFile,
 const SyncRegister& ObjectReference,
 const sc_string& ObjectName);
 #endif WIN32

 #ifdef WIN32
 friend void sc_trace(
 sc_trace_file* TraceFile,
 const SyncRegister& ObjectReference,
 const sc_string& ObjectName);
 #endif WIN32
#endif SYNTHESIS

Figure 10 : sc_trace friend declaration

procudeural
interface

*.h,
*.cpp

*.h,
*.cpp

OSSS
Analyzer

OSSS
Synthesiser

standard
SystemC™

OSSS
(object-oriented

extension of
SystemC™)

SystemC™
Compiler

Verilog/VHDL
netlist

FPGA
Map Tool

FPGA
Place&Route

FPGA
configuration file

Synthesis

VHDL/Verilog/
internal format

*.v,
*.vhd

internal
format

internal format/
ROM file

*.v,
*.vhd

VHDL IP

modules

Furthermore, for comparison of whole complex
objects, we may overload operators like ‘==’ (Figure 11):

// overloading operator ’==’
inline bool operator == (const SyncRegister& ObjectRef) const;

Figure 11 : Operator ’==’ overloading

10 Benefits

OSSS, together with SystemC, has many benefits

compared to conventional HW-design methodologies like

VHDL. The most important benefits we identified are:

• Real object-oriented design approach allows to reach

higher abstraction level,

• Intermediate output format is (readable and

simulatable) standard SystemC,

• Seamless synthesizable design flow from OO concept

and design down to hardware (gates),

• SystemC kernel can be extended for simulation by

public or internal extensions to custom requirements

because source code is open source,

• Simulation tools are not strictly needed as the

SystemC kernel provides signal-tracing capabilities

comparable to existing HDL simulators, debugging

capability usually is provided by C++ compilers,

• Standard C++ compilers can be used to create an

executable binary file for simulation, debugging is

straight forward either by using a C++ debugger or

by printing simple text to output, using ‘cout’ calls,

• Possible separation between synthesizable and non

synthesizable constructs by using #define directives

or macros,

• Separation of pure hardware / pure software design

gets abolished by support of C++ constructs,

• HW/SW co-design becomes much easier,

• Encapsulation, preferable on mid and lower
granularity, can additionally be applied by class

member function calls instead of using ports,

interfaces and channels only,

• Class libraries can be used for IP transfer,

• Reduced development time, faster time to market and

therefore better cost efficiency,

• Much higher simulation speed than conventional

RTL simulators.

11 Open issues

There are some open issues that currently prevent
OSSS to be used for series projects within Bosch. Most of

them are based on restrictions in SystemC usage:

• Currently OSSS tools are in a prototypic but

advanced state,

• SystemC synthesis tools are very rare,

• Some parts of synthesizable subset of HDL’s like

VHDL are still not supported by tools for synthesis

yet like ‘generate’ loops or recursive function calls,

• Some restrictions exist in available standard SystemC

synthesis tools that require workarounds.

12 Results

The question why we look for new methodologies

instead of keeping established design flow is obvious:

Already now and even in very close future, SOC’s

(System on a Chip), multiprocessor circuits and HW/SW

co-design become too complex or may even not be

handled at all by common pure HDL’s. They are not

powerful enough to handle the new challenges in

acceptable time with affordable resources. Big advantages

can be seen when looking to standard SystemC already.
But even SystemC’s synthesizable subset is restricted to

structures that do not allow the usage of real object-

orientation. Looking to VHDL, which is Europe’s

dominating hardware description language, the benefits of

the new methodology OSSS are very promising.

We have set up the evaluation of OSSS in parallel to a

standard development flow with existing methodologies

like C++ and VHDL. This, of course, was necessary

because it prevents dependency on new methodology and

its tools. Because of the two flows, we have the chance to

compare both flows in case of results and their efficiency.

If we compare the required area of a synthesized
ExpoCU netlist in a conventional and an OSSS approach,

they are almost equivalent. The frequency of the FPGA

achieved in OSSS design is below the frequency in the

VHDL flow. Further evaluation on this issue will be done.

The development time in the beginning of the project

was restricted by the prototypic tool implementation. To

the end of the project major tool issues got solved and the

development effort could be spent on implementation

mainly. Thus, development time dramatically decreased.

The implementation of a complete I²C master module e.g.

took a single day. We assume an implementation effort of
two days in case of pure SystemC implementation by

keeping same hierarchical module structure. The VHDL

implementation took slightly longer using the RTL coding

style. The difference in behavioral OSSS and SystemC

coding time versus VHDL RTL is mainly based in the

controlling functionality that the I²C interface is based on.

Especially in the implementation of controlling

functionality the behavioral description has advantages

versus RTL coding. Nevertheless, in data flow oriented

modules where RTL coding might be preferred, OSSS

may also be applied very efficiently.

We have been debugging the generated intermediate
files on all possible levels of synthesis to get an idea of

realization strategy. What we found out is that the

behavior on every stage is bit and cycle accurate and fully

complies with its original description. In other words does
it mean that even with OSSS full control of synthesis
results in case of design functionality stays in the hands of
designers. Unfortunately, in synthesis steps during
behavioral synthesis of SystemC code, the tools have
some restrictions and produce some unnecessary
overhead. Thus, nevertheless the influence on area and
speed are partly tool specific issues. Figure 12 represents
a screenshot of the synthesized main components that are
connected on the top level of the ExpoCU. Synthesis has
been done by using the OSSS approach.

Figure 12 : Screenshot of SystemC synthesis tool
with main ExpoCU modules

On higher hierarchy level, SystemC ports, interfaces
and channels should be used to: Keep independent
communication and synchronization, to simplify a
modular synthesis, to be able to use different channel
implementations or refinement strategies and for further
hardware specific issues. Thus the usage of OSSS classes
and their access via class member functions should be
preferred on lower hierarchy level. Furthermore, if
blocking object access is applied via wait() calls, other
modules still must continue their execution. This can only
be provided by independent, parallel module execution.

More information about ODETTE participants and
OSSS results can be found on [4][13][14].

13 Conclusions

We have shown that an object-oriented design
methodology has been successfully applied to a real
industrial design example. One major result is the
generation of a silicon netlist, working on an FPGA. First
results and experiences with OSSS are very promising.
The OSSS approach is not fixed but open for possible
additional features. Standard SystemC sources are a
subset of OSSS and thus fully supported. The
development time is supposed to be decreasing because of
different reasons: Many issues are done implicitly within
OSSS while they need to be done explicitly in SystemC.
Class encapsulation, the usage of templates, additional
structures and basis for concept and prototyping, better
integration into existing C++ test-environments, etc. are

the main features of the new methodology and toolset.
OSSS extends the powerful possibilities which SystemC
already offers by providing a higher level of abstraction.

14 Future Work

Bosch sees a high potential in this new methodology
developed in the ODETTE project.

The approach and evaluation of OSSS is based on a
prototypic tool chain. But even in this state we obtained
very promising results. Thus, Bosch will keep track on
any further evaluations of OSSS and all similar
approaches. Further we will continue investigation on the
synthesis results of OSSS and SystemC versus VHDL
flow. Especially we will focus on the reasons of the
achieved lower frequency of the ExpoCU and on the
generated overhead during behavioral synthesis.

Bosch decided to play an active role in providing
valuable feedback for ongoing activities in tool and
methodology development. This includes internal and
external evaluations to be able to move to new promising
design techniques and methodology once they are
available for industrial usage.

References
[1] Open SystemC Initiative. SystemC, Version 2.0.

www.systemc.org, 2001
[2] T. Grötker, S. Liao, G. Martin, S. Swan. System Design

with SystemC. Kluver Academic Publishers, 2002
[3] E. Grimpe, B. Timmermann, T. Fandrey, R. Biniasch, F.

Oppenheimer. SystemC Object-Oriented Extensions and
Synthesis Features. Forum on Design Languages FDL ’02

[4] http://odette.offis.de. Homepage of ODETTE project.
[5] Forte Design Systems Forte Cynthesizer www.forteds.com
[6] Synopsys, Inc. Synopsys SystemC™ Compiler.

www.synopsys.com
[7] S. Swamy, A. Molin, B. Covnot. OO-VHDL: Object-

Oriented Extensions to VHDL. IEEE Computer, Oct. 1995
[8] T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel, M.

Edwards, Y. Kashai. A Framework for OO-Hardware

Specification, Verification, and Synthesis. DAC 38th, 2001
[9] S.-T. Cheng, P. C. McGeer, M. Meyer, T. Truman, and P.

Scaglia, R. K. Brayton, A. L. Sangiovanni-Vincentelli. The

V++ System Design Language. EECS and ERL of
University of California, Berkley, 1998

[10] J. Zhu, D. D. Gajski. OpenJ: An Extensible System Level

Design Language. Date ‘99
[11] M. Radetzki, A. Stammermann, W. Putzke-Röming, W.

Nebel. Data Type Analysis for Hardware Synthesis from
Object-Oriented Models. Date ’99

[12] J. Zhu. MetaRTL: Raising the abstraction level of RTL
Design. Date ’01

[13] E. Grimpe. OO Features supported by the SystemC™ Plus
Methodology. ODETTE OFFIS, V0.2,
http://odette.offis.de/systemc-plus/, Oct. 2002

[14] W. Fornaciari, L. Pomante. Generic Class Library User
Guide. ODETTE Siemens ICN, R1.5,

http://odette.offis.de/systemc-plus/, May 2003

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

