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Abstract 

This paper describes the experiences and results that 
were made with a SystemC-based design flow for the im-
plementation of an automotive digital hardware design. We 
present the refinement process starting from an initial high-
level executable specification in C++ via SystemC down to 
a Gate-level description. We compare the synthesis results 
of the SystemC-based system-level design flow with those 
from a traditional VHDL-based register-transfer level de-
sign flow in terms of efficiency and simulation performance. 

1. Motivation 

Today's design flows are characterised by a heterogene-
ous mixture of design languages and tools. Different do-
mains like analog hardware, digital hardware and software 
each have their specialised languages and tools. Even when 
restricting to a single domain like digital hardware, still a 
diversity of languages and tools is used. For example, Mat-
lab is very popular for algorithmic modelling, especially in 
the signal processing community. C and C++ are often used 
for similar purposes when high simulation performance is 
required. For the actual implementation of hardware, RTL 
modelling with VHDL and Verilog is predominant.  

These language changes between the different stages of 
the design process require manual recoding, which is labo-
rious and error-prone. Furthermore, language changes in the 
design flow complicate the verification of the design. Either 
a co-simulation between the different languages has to be 
done, or the testbench has to be rewritten in the new lan-
guage. 

SystemC promises to overcome this problem by provid-
ing a single modelling framework that covers a wide range 
of abstraction levels. For example the concept of hierarchi-
cal channels facilitates transaction-level modelling (TLM), 
i.e. an abstract way to model communication in order to 
explore and profile architectural alternatives [1]. For de-

scribing algorithmic designs, SystemC introduces the no-
tion of untimed and timed functional abstraction levels. On 
these levels of abstraction the designer can concentrate on 
the functionality of the design, while abstracting from de-
tails of communication and synchronisation. Furthermore, 
SystemC is able to describe systems at the Behavioural- and 
RT-level. While the higher levels of abstraction may be 
used for simulation purposes only, it is possible to use Be-
havioural-and RT-level descriptions as starting point for an 
automated synthesis very similar to VHDL and Verilog. 

A further promoted advantage of SystemC is its high 
simulation performance, which is achieved by a compiled 
execution and the use of higher levels of abstraction. 

In order to be applicable in an industrial design flow, it 
is mandatory that the new approach seamlessly integrates 
into existing design flows. Regarding our design example 
from the digital hardware domain, this means we have to 
build on top of the well established and mature HDL-based 
RTL flow in terms of synthesis and simulation. Tools sup-
porting the new design flow must be commercially avail-
able and supported. 

The second major prerequisite is the efficiency of the 
synthesis results in terms of area and timing.  

Regarding verification, it is always desirable to obtain a 
high simulation performance in order to achieve a sufficient 
certainty of functional correctness. 

The rest of this paper is organised as follows. Section 2 
gives an overview of the evaluation procedure. Section 3 
describes the design example that is the basis of our evalua-
tion. In Section 4 we describe the refinement process. We 
present experimental results in Section 5 and draw a con-
clusion of the evaluation in Section 6. 

2. Evaluation Procedure 

In order to evaluate the applicability of SystemC and its 
potential advantages, we chose a design flow as depicted in 
Figure 1. A stepwise manual refinement was applied start-
ing with an initial specification in C++ and ending with two 
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different kinds of synthesisable SystemC models: a behav-
ioural and a RTL model both complying with the corre-
sponding synthesisable subset of the SystemC Compiler 
from Synopsys®. Each refinement step was verified for bit 
accuracy by simulation. Both models were optimised in 
order to improve the synthesis results. The optimisation 
goal was a minimum area under a fixed timing constraint of 
40 ns (clock period). 
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Figure 1. Design flow 

C++ was chosen over Matlab for the initial specification 
in order to be able to stay in a single language environment 
as long as possible during the design process. 

An existing, series-production quality VHDL implemen-
tation of our design example, that was created with the 
conventional flow of manually recoding the given C speci-
fication in RTL VHDL served as reference implementation 
regarding the required efficiency. 

3. Design Example 

The design example we chose for our evaluation is a 
sample-rate converter (SRC). It represents a typical hard-
ware design in the area of car multimedia. Its moderate 
complexity (about 3000 lines of code for the final RTL-
SystemC implementation) makes it an ideal candidate for 
an evaluation. The purpose of the SRC is to convert stereo 
audio signals between different sampling frequencies from 
different sources, e.g. between 44.1 kHz (CD) and 48 kHz 
(DVD). This is illustrated in Figure 2. Given a sequence of 
samples of an analog signal equally spaced at InT , it is 
SRC's task to calculate samples of the original analog sig-
nal at a different rate. So basically it is an interpolation 
problem. The underlying algorithm that realises the interpo-
lation makes use of bandlimited interpolation as described 
in [1].  
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Figure 2. Sample-rate conversion 

The SRC can be regarded as a periodically time-variant 
system, i.e. it performs a convolution of the input signal 
with a time-varying impulse response. In order to do so all 
SRC implementations from our evaluation contain the fol-
lowing parts: a buffer, that collects past input samples, 
some kind of ROM to store the impulse responses (filter 
coefficients), and an algorithmic block that performs the 
convolution (see Figure 3 - Figure 6) 

4. Refinement Process 

The overall strategy during refinement was to make only 
small, conservative changes to the design and to revalidate 
each refined model. In this section we describe the major 
refinement steps. 

4.1. Initial Specification in C++ 

The basic structure of the C++ version is shown in 
Figure 3. The three main components are the classes CIn-
putBuffer, CPolyphaseFilter and the function 
Filter().  

 
Figure 3. C++ model of the SRC 

The class CPolyPhaseFilter (more precisely: an 
instance) handles the storage of the coefficients for the 
time-varying impulse response. The actual filtering is done 
in the function Filter(). With each call to Filter() 
one output sample is calculated. One might expect to find 
this as a member function of the class CPolyphaseFil-
ter, but the filter needs the samples from the input buffer 
in the same way it needs the coefficients of the polyphase 
filter. Consequently the filter function was associated to 
neither of the classes. The filter function is realised as a 
single function, which obtains the samples as well as the 
coefficients in the same way, namely via the iterators pro-



vided by the input-buffer and the polyphase-filter class 
(Figure 3). The iterators can be regarded as some kind of 
access objects similar to pointers. They provide methods to 
access the element they are pointing on and to manipulate 
the pointer. The iterators for the input buffer realise a ring 
buffer like access scheme. They can be thought of as read 
and write pointers (see Figure 4). The iterator internally 
holds an index to an array and ensures a correct wrap 
around, because it can only be modified through public 
methods. For example when the convolution steps back-
wards through the input samples, the iterator automatically 
wraps from 0 to the maximum index. In a similar fashion 
the iterator of the polyphase filter hides the storage order of 
the coefficients and the fact that only one half of the sym-
metrical impulse response is stored. 
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Figure 4. Input buffer organised as ring buffer 

4.2. SystemC 2.0 with Channels 

Starting from the C++ implementation as the golden 
model, an abstract SystemC model was developed. The first 
refinement step was a structural refinement, which resulted 
in the model shown in Figure 5. The SRC algorithm was 
encapsulated in a hierarchical channel, which implements 
the three interfaces SRC_CTRL, SampleWriteIF and 
SampleReadIF. The SRC_CTRL is the configuration 
port for setting the operation mode. 

The major difference between the C++ and the SystemC 
implementation is the way the model is executed in its 
testbench. The C++ model is a pure sequential algorithm. 
The calculation of an output value is assumed to be per-
formed in zero time. The time between two output samples 
is calculated and the number of input samples that would 
have arrived during this time is added to the input buffer, 
before the output sample is calculated. The SystemC model 
behaves differently. The producer and consumer in Figure 5 
and Figure 6 are independent threads which read and write 
samples with a certain frequency. 

 
Figure 5. SRC as hierarchical channel 

In a next refinement step the hierarchical channel itself 
was refined. The C++ code was split-up into three sub-
modules, basically according to the class structure. A third 
thread was added in the main module of the SRC modelling 
its functional behaviour. Synchronisation between the 
threads was done by explicit event objects (sc_event). 
The method calls of the C++ model were roughly translated 
into interface method calls (IMC) through channels [3].  

 
Figure 6. Refined hierarchical channel 

4.3. Synthesisable Behavioural SystemC 

The refinement of the non-synthesisable SystemC im-
plementation with channels into a synthesisable behavioural 
description required the following steps: 

Communication refinement: The IMC-based commu-
nication of the hierarchical channels was replaced by a 
signal-based communication. Explicit handshaking was 
implemented, because the main module was going to be 
scheduled in a scheduling mode where the number of clock 
cycles between I/O operations is not fixed [4]. Therefore 
handshaking signals have to be used to indicate valid data. 
The advantage of this scheduling mode is that it offers the 
greatest optimisation potential. 

Structural refinement: All arithmetic operations were 
moved into a single process allowing resource sharing for 
more efficient synthesis results with current synthesis tech-
nology.  

Type refinement: The native C/C++ types were re-
placed by SystemC types with explicit bit-widths. Although 
the native types would have been synthesisable, the use of 
explicit bit-widths produces more efficient synthesis results. 

Timing refinement: A clock was introduced. The time 
quantisation that was introduced by this clock required a 
change of the golden model. The effect is illustrated in 



Figure 7. The upper part of the figure shows the sampling 
times within a continuous time domain; the lower figure 
shows the sampling times as "seen" by the clocked imple-
mentation (discrete time domain). Since the events at which 
input and output samples occur can only be detected at 
clock edges, these events are slightly delayed. This delay 
causes small changes in the output values compared to the 
reference data. To be able to still compare the output values 
with the reference output values by a bit-accurate compari-
son, the time quantisation was manually propagated back to 
the golden model. 
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Figure 7. Time quantisation of sample events 

Note, this behavioural version of the SRC already con-
tained RTL SystemC modules for two reasons. The first 
reason was to test the interoperability of behavioural and 
RT level code for simulation and synthesis. The second 
reason was that some modules (especially the I/O inter-
faces) only contained simple control functionality, which 
was easy to implement at RTL. 

4.4. Optimised Behavioural SystemC 

The first synthesis result of the complete SRC needed 
27.5% more area than the VHDL reference implementation 
(for the results refer to Section 5). By far the biggest part of 
the design with more than 90% of the total area was the 
SRC_MAIN module. Therefore the optimisation was focus-
sed on this module. 

The following constructs were expected to cause ineffi-
ciencies of the synthesis result: 

Handshaking in loops. A handshaking mechanism be-
tween the input buffer and the SRC_MAIN module was 
necessary, due to the scheduling policy of the behavioural 
synthesis. The handshaking mechanism could be eliminated 
by relying on a fixed cycle scheme. For example this can be 
done by proper constraining the behavioural code. 

Code proliferation. Because the focus of the refinement 
process was to preserve the functionality a conservative 
"cut-and-paste-and-refine" strategy was chosen. Since ma-
jor restructuring of the code was necessary the code became 
cluttered and less readable. An intensive code cleanup at 
this stage helped to simplify several expressions. 

Bit-widths. Due to the conservative refinement strategy, 
some bit-widths were chosen too pessimistic. These could 
be reduced without affecting the result. 

Generality. The initial C++ implementation of the SRC 
was written in a very generic style. Especially the bit-
widths were parameterised through the C++ template 
mechanism. The template mechanism was replaced by 
preprocessor #define directives. The code was more 
flexible with parameterised bit-widths, but it was harder to 
figure out which constructs caused large registers, opera-
tions, etc. 

4.5. RTL SystemC 

The manual refinement of the synthesisable behavioural 
SystemC code from the main module into synthesisable 
RTL code consisted of the following steps: 
• Fine-tuning of the model's scheduling. 
• Allocation of registers for the variables 
• Creating an FSM that realises the scheduling 

The data-path was not modelled explicitly. Instead it was 
described implicitly by the state transitions of the FSM and 
then optimised with the Design Compiler� [5]. 

The refinement of the behavioural SystemC implementa-
tion to an RTL description was relatively easy. The opti-
mised behavioural SystemC implementation of the SRC 
was already bit-accurate and nearly cycle-accurate, so the 
main task was to optimise its scheduling and the creation of 
the controlling FSM.  

Although RTL-modelling and synthesis is not the pri-
mary area of application for SystemC and is less elegant 
than with HDLs, it is definitely feasible.  

4.6. Optimised RTL SystemC 

Since the data-path already utilised a minimum number 
of resources, the remaining optimisation potential results 
from register usage. Since the refinement was done in a 
conservative way, there were still some registers that could 
be eliminated. 

4.7. Discussion 

The first refinement steps turned out to be the most diffi-
cult and labour intensive tasks, because of the semantic gap 
between the different levels of abstraction, e.g., the transi-
tion from a sequential C++-based program into concurrent 
SystemC processes and their transition into clocked threads. 
In total, nearly the same amount of work as in the case of 
recoding the model in VHDL had to be done, but in a step-
wise manner instead of a single large transformation. If too 
many, intermediate levels of abstraction and refinement 
steps are chosen, the effort for the refinement can be even 
higher. Regarding this evaluation we think that the use of 
channels was inadequate for our application. Channels 
neither helped for profiling or exploring different architec-
tures nor did they help for synthesis. 



The refinement effort however, is comparable to the re-
coding effort, at least when targeting the RT-level. This 
appears sensible due to the fact that the necessary tasks, e.g. 
creating an architecture and scheduling, are the same � just 
the language is different.  

An advantage of the refinement-driven approach is that 
parts of the code can be reused and that the risk of introduc-
ing new errors into the model is lower. During our evalua-
tion it even happened that a bug in the golden model was 
refined down to Gate-level and was discovered during 
Gate-level simulation. The bug in the golden model has 
been identified as an erroneous access to an invalid buffer 
position in some corner cases. When the memory for the 
buffer was replaced by an automatically generated simula-
tion model (that included a check for valid addresses) for 
Gate-level simulation, the bug became obvious. On the one 
hand this example shows that the (in principle positive) 
function-preserving property of the refinement-driven ap-
proach also has some drawbacks. On the other hand the 
example shows, that the refinement approach allows for 
testing the system's general functionality across all design-
stages, so that the probability for failure recognition is in-
creased in this approach 

The synthesis results in Section 5 show that the most ef-
ficient designs could be obtained with the RTL-SystemC 
implementation. The effort to refine the optimised behav-
ioural level description into RTL turned out to be lower 
than expected. So at least for this kind of design the RTL 
approach has the best cost-value ratio. The feature making 
behavioural synthesis less suitable for this class of designs 
is the asynchronous nature of sample-rate conversion in 
general. It requires a relatively fine-grained control over the 
internal timing behaviour, a quality that is much easier to 
control at the RT-level.  

5. Results 

5.1. Simulation Performance 

All simulations have been done on a Sun Blade 100 with 
500 MHz and 640 MB RAM. All simulations were per-
formed with ModelSim® 5.5d, SystemC models were com-
piled with gcc 2.95.1 and SystemC/HDL co-simulation has 
been performed with the SystemC HDL-Cosim tool version 
2002.05 from Synopsys (which is now part of System Stu-
dio). The simulation performance is given in simulated 
clock cycles/second. The implementations without a clock 
were scaled appropriately according to the ratio of simula-
tion time and simulated time assuming a 25 MHz clock. 

Figure 8 shows the degradation of the simulation per-
formance along the refinement process. As expected, the 
pure C++ implementation is the fastest one. When compar-
ing the simulation performance of the behavioural SystemC 
and RTL SystemC implementation, it has to be considered, 

that the behavioural level implementation also contained 
RT level components. Due to the lack of proper profiling 
tools for the SystemC simulation, it could not be checked 
whether the RTL parts dominated the overall simulation or 
whether the behavioural part is not significantly faster at 
all. 
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Figure 8. Simulation performance on different lev-

els of abstraction 

Figure 9 shows the simulation performance of the HDL 
versions of the SRC: the intermediate RTL Verilog code 
from RTL SystemC synthesis, the Gate-level code (Ver-
ilog) resulting from the behavioural flow and the Gate-level 
(Verilog) code resulting from the RTL flow. The simula-
tions have been performed in two different configurations. 
In the first configuration each design under test (DUT) was 
simulated in the VHDL testbench, that was available from 
the reference design. In the second configuration each DUT 
was simulated in the SystemC testbench. 

As can be seen from the figure, the co-simulation of the 
DUT in the SystemC testbench is slightly faster than a 
native HDL simulation. This indicates that in this case the 
performance gain by using SystemC outweighs the over-
head introduced by the co-simulation.  
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Figure 9. Co-Simulation vs. native HDL simulation 



5.2. Synthesis 

Synthesis has been done with SystemC� Compiler 
2002.05 and Design Compiler� 2002.05 from Synopsys. 
Target library was a 0.25µ CMOS library. All designs were 
synthesised with the same synthesis constraints. 

We only consider the area here, since it was the main op-
timisation goal in the evaluation. The timing goal could be 
easily achieved by all implementations.  

Figure 10 shows the area of the SRC designs after com-
pilation to Gate-level relative to the VHDL reference de-
sign which is scaled to 100%. The area numbers were ob-
tained by the report_area command of the Design 
Compiler. Memories are excluded from the area, because 
they are identical for all implementations and do not reflect 
the quality of the synthesis result. A scan chain, however, is 
included in all designs. 
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Figure 10. Comparison of area efficiency 

The most remarkable result is that the optimised Sys-
temC implementations produce a smaller design than the 
VHDL reference. Even the unoptimised RTL-SystemC 
implementation is smaller than the VHDL reference. We 
can explain this result as follows. The VHDL reference 
implementation started from a low level C specification that 
already guided the implementation to a specific architec-
ture. The more abstract C++ model includes more degrees 
of freedom concerning the target architecture. So actually 
the efficiency was gained through the use of more abstract 
models. A direct refinement of the original low-level speci-
fication into RTL-SystemC would have resulted most 
probably into nearly the same result as the VHDL imple-
mentation. 

When comparing the optimised behavioural and RTL 
implementation it can be seen, that the amount of combina-
torial logic is nearly the same. This indicates, that the opti-

mum allocation was reached with the behavioural synthesis. 
The area savings of the RTL SystemC implementation over 
the behavioural SystemC implementation result from a 
more efficient usage of registers. 

6. Conclusion 

Our evaluation showed that it is generally possible to 
apply SystemC in an industrial design flow. The integration 
into the existing design flow turned out to be straight for-
ward.  

Regarding the efficiency of the synthesis result our 
evaluation showed that the refinement-driven approach and 
the use of higher levels of abstraction does not necessarily 
produce less efficient results. Even the contrary was the 
case in our evaluation. 

As expected, the use of higher levels of abstraction al-
lows for much faster simulation. Even co-simulating the 
SystemC testbench with the HDL design turned out to be 
slightly faster than the pure HDL simulation. 

The refinement-driven approach in a single language has 
pros and cons. The main advantage of the approach is the 
partitioning of the design process in several intermediate 
steps combined with a revalidation of each step, which 
allows for making small function-preserving changes. The 
disadvantage is that undersized refinement steps will result 
in an overall higher effort than complete recoding and tend 
to produce lower quality code, when refinement means 
changing the code instead of completely rewriting it. With a 
careful selection of the right abstraction levels and the on-
going raise of the level of automation of the SystemC syn-
thesis process, the advantages could outweigh the disadvan-
tages. 

7. Acknowledgements 

This work was done in the MEDEA+ project SpeAC and 
partially supported by the German Bundesministerium für 
Bildung und Forschung under grant 01M 3049C. 

8. References 

[1] Grötker, T., Liao, S., Martin, G., Swan, S., System Design 
with SystemC, Kluwer, Academic Publishers, Boston, 2002 

[2] Digital Audio Resampling Home Page, http://www-
ccrma.stanford.edu/~jos/resample/ 

[3] Open SystemC Initiative (OSCI), Functional Specification 
for SystemC 2.0, October 2001 

[4] Synopsys Inc., CoCentric® SystemC� Compiler Behavioral 
User and Modeling Guide Version 2002.05, June 2002 

[5] Synopsys Inc.: Design Compiler� Reference Manual: Opti-
mization and Timing Analysis, Version 2002.05, June 2002 


	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04



