

* This work has been partially funded by the Project IST-10748- FIT.

Experiences during the Experimental Validation of
the Time-Triggered Architecture*

S. Blanc, J. Gracia, P.J. Gil
Fault Tolerant Systems Group (GSTF) - Department of Computer Engineering (DISCA)

Polytechnic University of Valencia, Spain
{sablacla, jgracia, pgil}@disca.upv.es

Abstract

During last years, the Time-Triggered Architecture
(TTA) has been gaining acceptance as a generic archi-
tecture for highly dependable real-time systems. It is
now being used to implement the “x-by-wire” concept. A
problem for this kind of systems is their validation. Fault
Injection has achieved a great acceptance among de-
signers for the experimental validation of systems. This
work describes the results and experiences obtained
during the validation of the TTP/C controller, a commu-
nication controller based on the TTA. Two different
fault-injection techniques have been used: VHDL-based
fault injection and physical fault injection at pin level.
Due to the access that each technique has to different
parts of the system, they can complement each other, but
moreover, some experiments can be reproduced using
both techniques, being very helpful for the analysis of
the results.

1. Introduction

Fault injection is used to validate Fault-Tolerant Sys-
tems (FTS) and it is being increasingly consolidated and
applied in a wide range of fields. Fault injection tech-
niques in the hardware of a system can be classified in
three main categories: Hardware Implemented Fault
Injection (HWIFI), Software Implemented Fault Injec-
tion (SWIFI), and Simulated Fault Injection [1, 2].

However not all methods and techniques are giving
the same results and coverages. It has been proved very
useful to combine different fault injection techniques
when validating a FTS [3, 4].

Although the industrial use of fault injection tech-
niques is not very spread, several attempts have been
done. One of these attempts is the FIT project [5]. Dur-
ing this project, four fault injection techniques have been
used to validate the TTP/C controller, a communication
controller based on the TTA. The use of this architecture
is growing in areas like avionics or the automotive in-
dustry, where the x-by-wire systems are a new challenge.
In the case of automotive industry, some electrical and
electronic parts are replacing mechanical and hydraulic
parts. These electrical and electronic elements must be

fault-tolerant and accomplish hard real-time specifica-
tions.

This paper is focused in the fault injection experi-
ments done using VHDL-based fault injection and physi-
cal fault injection at pin level.

Both techniques have been used to validate two pro-
totypes of the Time-Triggered communication controller,
the TTPTM/C-C1 and TTPTM/C-C2. Two fault injection
tools developed in the Polytechnic University of Valen-
cia have been used: AFIT (Advanced physical Fault
Injection Tool), a physical fault injector at pin level [6]
and VFIT, a VHDL-based fault injection tool [7].

The distribution of this paper is as follows. Sections 2
and 3 describe the tools used during the fault injection
experiments. In section 4 we present the TTP/C control-
ler and we explain the different experiments performed.
Section 5 presents the results obtained and section 6
gives some general conclusions and future work.

2. VFIT: VHDL-based Fault Injection Tool

VFIT [7], the tool used during the VHDL-based fault
injection experiments, consists of a series of elements
designed around a commercial VHDL simulator (Model-
Sim, the new simulator of Model Technology [8]).

To carry out an experiment, different faults are in-
jected into the model. For every injected fault, the be-
haviour of the model is analysed. An injection campaign
is a set of different experiments, and involves three inde-
pendent phases:
� Experiment Set-up. Here, both the parameters used

to describe the fault and the analysis conditions are
specified.

� Simulation. In this phase, two operations are carried
out. Firstly, a set of macros is automatically gener-
ated: one macro performs a fault-free simulation of
the model while the others have the commands
needed to inject the specified faults. Secondly, the
VHDL simulator executes the macros, obtaining a set
of simulation traces: a fault-free simulation, and n
with a fault injection performed, being n the number
of faults injected.

� Analysis and Readouts. The n faulty simulation
traces are compared to the fault-free trace, studying
their differences.

1530-1591/04 $20.00 (c) 2004 IEEE

About fault timing, transient, permanent and intermit-
tent faults can be injected. It is possible to choose among
different probability distributions to determine both the
injection instant and the fault duration.

With respect to the fault models used, they depend on
the injection technique and the abstraction level of the
system model. Table 1 shows the fault models that can be
injected with each technique.

Table 1. Fault models of VFIT [7].
Fault models

Injection technique Transient Faults Permanent Faults
Simulator

Commands
Stuck-at (0,1), Delay,

Bit-flip, Pulse,
Indetermination

Stuck-at (0,1), Delay,
High impedance,
Indetermination

Saboteurs Same as for Simula-
tor Commands

Same as for Simula-
tor Commands, plus

Bridging, Stuck-open
Mutants Syntactic changes in

the VHDL model
Syntactic changes in

the VHDL model

3. AFIT: Fault injection in the prototype

Emulation of environmental parameters such as tem-
perature, undesirable capacitance, the precision error of
passive components, etc., are better provoked in the real
prototype. To validate a new prototype is an effort that
can be reduced by a previous pre-implementation testing.
But in spite of a good validation of the design by using
simulation techniques, the validation of the physical
prototype with all their components (hardware and soft-
ware: OS, application, firmware, etc.) is also important.

Among techniques that can inject faults in the real
prototype, physical fault injection at pin level presents
some advantages. The technique is based on the pertur-
bation of the logic values of the integrated circuit (IC)
pins. It can be used to modify the incoming/upcoming
data of the IC. But the main difference with other HWIFI
or SWIFI techniques is that signals used by an IC to
communicate with other system elements can be per-
turbed with high controllability [6].

The last version of AFIT [4, 9] was designed to inject
faults in distributed embedded systems, where several
electronic modules (nodes) share the same communica-
tion channel. This external tool does not halt or delay the
target execution. Otherwise, it would not be possible to
test the system, as the rest of nodes are running. AFIT is
able to inject intermittent, permanent and transient single
or multiple faults (up to 4), being the fault model stuck-at
(0, 1) line.

AFIT is a modular tool with a PC handling the inter-
face between user and injector. A specific monitor for
distributed systems has been developed to observe the
system behaviour in presence of faults. It consists of a
hardware monitor combined with software tasks imple-
mented inside each node. These tasks are used to report
if any specific event is detected.

Both injection tool and monitor are independent and
external to the target. They can be managed by the same

personal computer handling the interface between user
and devices (see Figure 1).

Computer Interface

Control
flow

Control flow

Readouts

Injection
occurrence

 time

MONITOR

AFIT

TTP/C
 Nodes

Fault
Injection

Synchronism
words

4 Reset

Reported events

Figure 1. Interconnection AFIT-target system.

Experiments are automated and due to their short du-
ration (less than 1 second), it is possible to obtain a reli-
able sample, which allows a high number of experiments
to be carried out without supervision.

The monitor also provides a physical reset used to re-
start the process in a normal state. Eventually, the moni-
tor provides an input port per node waiting to receive the
synchronism words. A node sends a synchronism word
when it is ready or it has reached a specified state. This
mechanism is very useful if the target can reach several
execution states.

4. Fault injection experiments

4.1. The system under test: the TTP/C controller

The TTA [10] implements a real-time communication
protocol for the interconnection of electronic modules in
a distributed fault-tolerant real-time system. The Time-
Triggered Protocol (TTP) is synchronous, and has a
static and cyclic scheduling. The main characteristic is
the fail-silent behaviour, which assures that the node will
work correctly or will stop the communication.

Figure 2 shows the block diagram of the TTPTM/C-
C11 controller. The communication between the control-
ler and the host computer is carried out through the
Communications Network Interface (CNI). The CNI is
structured in two main areas, a status/control area and a
message area. The host uses the CNI to monitor the con-
troller, while the controller uses the CNI as a buffer for
incoming/upcoming messages, as well as for storing
control information. The CNI is implemented as a dual
ported RAM in the Host Interface.

The VHDL model of the TTPTM/C-C1 controller is
organised around the Protocol Control Unit (PCU).
Some low-level functional blocks that implement per-
formance critical and hardware related protocol features
complete the model. The PCU controls the interaction of

1 C1 is the 1st controller of the TTPTM/C microcontroller family.

these low-level blocks and executes high-level protocol
mechanisms.

The Message Descriptor List (MEDL) defines the
specific point in time for transmitting a frame, according
to the predefined communication schedule. The MEDL is
defined before the system starts operating, and it is not
possible to change it during run-time.

PROTOCOL CONTROL
UNIT

data_bus[15:0]

Register File rsel
wsel

data_bus

Time
Control

Unit
macrotick
actiontime

rsel
wsel

data_bus

CRCrsel
wsel

data_bus

Transmitter

ac
tio

nt
im

e
tra

ns
_r

ea
dyrs
el

w
se

l

da
ta

_b
us

Bus
Guardian

w
se

l
rs

el

da
ta

_b
us

Receiver

rs
el

w
se

l

re
ce

iv
ed

ac
tio

nt
im

e

da
ta

_b
us

ac
tio

nt
im

e

tip

22

Host Interface

w
se

l
rs

el

da
ta

_b
us

1

co
nt

ro
lle

r_
on

m
ac

ro
tic

k
ac

tio
nt

im
e

ROM Interface

w
se

l
rs

el

da
ta

_b
us

1

ro
m

_b
us

y

7
7

1

ro
m

_c
eb

1

ro
m

_w
eb

1

ro
m

_o
eb

1

ro
m

_r
ea

dy

17
ro

m
_a

dd
re

ss
16

ro
m

_d
at

a

1 1 11 11 16

ra
m

_d
at

a
ra

m
_a

dd
re

ss

ra
m

_c
eb

ra
m

_w
eb

ra
m

_r
ea

dy
b

tim
e_

si
gn

al

2

TxD

2

RxD

2

bde

2

oe

Reset

xo
ut

0

1 1

re
se

tb

1

n_
re

se
t

1

p_
re

se
t

1

cl
k

1

tim
e_

ov
f

n_
re

se
t

p_
re

se
t

cl
k

1

xin1

1

ro
m

_r
es

et
b

1

re
se

t_
re

q

XO
U

T0

R
E

SE
TB

R
O

M
_R

E
SE

TB

R
O

M
_C

E
B

R
O

M
_W

E
B

R
O

M
_O

E
B

R
O

M
_R

E
AD

Y

R
O

M
_A

D
D

R
ES

S
R

O
M

_D
A

TA

R
A

M
_D

AT
A

R
A

M
_A

D
D

R
ES

S

R
A

M
_C

EB
R

A
M

_W
EB

R
A

M
_R

EA
D

YB

TI
M

E
_S

IG
N

AL
TI

M
E

_O
V

ER
FL

O
W

TX
D

[1
:0

]

O
E[

1:
0]

B
D

E[
1:

0]

XI
N

1

R
XD

[1
:0

]

1
1

2

CTS

C
TS

[1
:0

]

2sending

1

tim
e_

tic
k

TI
M

E
_T

IC
K

1

ra
m

_o
eb

R
A

M
_O

EB

re
se

t_
re

q
7

LE
D

1

M
IC

R
O

TI
C

K
cl

k

xi
n0

1

XI
N

0

1

xout1

X
O

U
T1

1

co
ld

st
ar

t

co
ld

st
ar

t

Figure 2. Block diagram of the TTPTM/C-C1 con-
troller [5].

The MEDL resides in an external flash EPROM,
which can be downloaded, accessed and programmed by
the controller. To connect the low-level blocks, a syn-
chronous internal register bus mastered by the PCU is
used. A single register address space is used with the
register file and the low-level blocks. Register transfers
between units are issued by move instructions of the
PCU.

The main change in the TTPTM/C-C2 is the addition of
a new block, called Bus Interface FIFO. This block is
shared between the receiver and the transmitter (these
blocks are never active at the same time). It is used as a
buffer for incoming/upcoming frames, allowing different
types of operations in the system [11].

The TTP/C uses a TDMA scheme for the exchange of
messages among the nodes. In a TDMA round, one time
slot is assigned to each node in a cluster (the set of nodes
sharing a bus in a TTP/C system). An a-priori defined
time schedule controls all activities of the cluster. A
distributed algorithm establishes the global time base
with steady clock synchronisation.

Respect to the prototype, the main elements of a node
are the local host controller (Motorola MC68360 in the
TTP/C-C1 prototype and Motorola PowerPC PPC555 in
the TTP/C-C2 prototype), the TTP/C controller and the
Communication Network Interface (CNI), that works as a
dual ported RAM between host and TTP/C controller.
The host workload consists of the real-time Operating
System (TTPOS), the Fault–Tolerant communications

layer (FTcom), and the application. The network uses a
bus topology with two communication channels called
TTP/C bus.

4.2. Fault injection parameters

The hypothesis behind the TTP/C communication
protocol is that a single fault will not disturb the opera-
tion of the complete distributed real-time system and the
fail-silent assumption: the node will work correctly or
will stop communication. That means if any given node
fails, it will not disturb the others. If there is a replica of
the erroneous node, it will take over its functionality. The
worst-case scenario in a time triggered distributed real-
time system is an erroneous node, which disturbs the
communication between the others by sending messages
at the wrong instant in time. Such as erroneous node is
called “babbling idiot” failure. If this error condition
happens, the rest of the distributed real-time system will
also fail and it could end in a complete system shutdown
(e.g. in automotive or airplane applications). Therefore it
is of paramount importance to ensure that the TTP/C
protocol and all its building blocks will always behave in
a fail-silent manner under all possible conditions.

The main objective of the fault injection experiments
carried out has been to test the fail-silent assumption.
The faults injected were marked by the specifications of
the FIT project [5].

VFIT and AFIT can access to different system parts.
Thus, the combination of both techniques [4] or several
techniques [12] to validate the same system is a very
appreciated resource.

VHDL-based fault injection focuses the experiments
on the PCU and the Instruction Register (IR) of the PCU,
the Time Control Unit (TCU) and the CRC unit [13].
The parameters of the fault injection experiments have
been:

TTP/C-C1 model:
� Fault Location: all atomic signals and variables of

the PCU, the IR, the CRC and the TCU module.
� Number of injections: 3000 in the PCU and IR, 2000

in the CRC and TCU.
� Injection instant: randomly selected, distributed uni-

formly during the 1st TDMA round.
� Fault duration: transient faults with a random dura-

tion in a range from ½ time slot to 1 time slot.
� Fault models: bit-flip (in storage), pulse (in combi-

national logic), indetermination and delay.
TTP/C-C2 model:

� Fault Location: all atomic signals and variables of
the IR, the CRC and the TCU module.

� Number of injections: 1000 in each module.
� Injection instant: randomly selected, distributed uni-

formly during the 1st and 2nd TDMA round.
� Fault duration: transient faults with a random dura-

tion in a range from ½ time slot to 1 time slot.
� Fault models: bit-flip (in storage), pulse (in combi-

national logic), indetermination and delay.

Physical fault injection at pin level focuses the ex-
periments on the TTP/C controller pins, being divided
into two main groups: the CNI and the TTP/C Controller
bus connections. The parameters for the different ex-
periments have been:

TTP/C-C1 controller:
� Fault Location: controller bus connections, CNI

interface, MEDL interface and the hard Reset line.
� Number of effective injections: 3726 in the bus con-

nections, 7432 in the CNI busses and control lines,
12342 in the MEDL busses and control lines and 859
in the Reset line.

� Injection instant: randomly selected during the exe-
cution of the application.

� Fault duration: transient faults from 1 µs to 600 µs.
� Fault models: single stuck-at 0 and stuck-at 1.

TTP/C-C2 controller:
� Fault Location: controller bus connections, local Bus

Guardian (BG) [14] oscillator and CNI interface.
� Number of effective injections: 7283 in the bus con-

nections, 1000 in the BG oscillator and more than
10000 in the CNI busses.

� Injection instant in the bus connections and BG os-
cillator: synchronised with a frame transmission or
reception.

� Injection instant in the CNI busses: synchronised
with a write or read host access to memory.

� Fault duration: transient faults from 500 ns to 12 µs.
� Fault models: single stuck-at 0 and stuck-at 1 and

double stuck-at (0,0) and stuck-at (0,1).

5. Results

5.1. VHDL-based fault injection results

Using the VHDL model we can test the correct exe-
cution of the algorithms involved in the TTP/C protocol.
In fact, during the experiments it was shown the usability
of the technique due to its high precision in deciding the
fault location and the fault model. A summary of the
main results obtained with the TTP/C-C1 controller is
presented in Table 2. As can be seen, the percentage of
activated errors is similar for all modules. Those acti-
vated errors that cause no-effect in a target are denoted
as non-effective errors. One of their more frequent rea-
sons is the target redundancy. Although the percentages
of detected errors are very high, we can see that the CRC
module is the most sensitive, as it presents the lower
detection percentage. An error not correctly detected will
derive in a failure (denoted as undetected errors in Table
2).

Once the error has been detected, it can be recovered
or it can cause a failure (denoted as non recovered in
Table 2). These failures can be produced because the
detected error has been incorrectly isolated or the target
cannot be recovered after the detection.

Table 3 resumes the percentage of failures produced
in all experiments respect to the propagated faults.

Table 2. TTP/C-C1 results.

PCU IR-PCU CRC TCU
Activated errors 38.17 % 38.10 % 37.15 % 39.15 %
Non effective
errors

6.89 % 14.00 % 22.88 % 10.35 %

Detected errors 93.02 % 85.13 % 75.10 % 89.14 %
Recovered 98.87 % 98.25 % 99.28 % 99.14 %
Non Recovered 1.13 % 1.75 % 0.72 % 0.86 %

Undetected errors 0.09 % 0.87 % 2.02 % 0.51 %

Table 3. Percentage of failures respect to activated
errors [13].

IR PCU CRC TCU
CORRECT 97.64 % 98.86 % 97.44 % 98.72 %
FAILURE 2.36 % 1.14 % 2.56 % 1.28 %

As can be seer, a non-negligible percentage of failures
were found. These failures are provoked by a single fault
injected in a node. This failing node affects all the sys-
tem as it causes a cluster shutdown. That is, all nodes of
the system stop transmitting frames, violating the fault
hypothesis.

This fail silence violation is caused by the special con-
figuration of the message schedule in the model. The
system supplies two communication channels that allow
to replicate messages, or to improve the communication
bandwidth. It is up to the user to decide if one frame is
sent by one channel or by both channels.

In the particular case analysed here, during the first
slot, the first node sends only a frame in one channel.
The injection of a transient fault at this moment causes
an erroneous frame to be received by the rest of the
nodes.

The fault causes an incorrect execution of the CRC
calculus of the next frame to be transmitted. The frame
with an erroneous CRC is transmitted. All the nodes in
the cluster receive the frame that will be considered as an
invalid frame. That is the expected behaviour. However,
an erroneous implementation of the clique avoidance
algorithm [15] produces a whole cluster shutdown if the
erroneous frame is the first transmitted frame. With the
help of these experiments, the manufacturer company
that builds the TTP/C controller (TTTech [14]) was able
to find the problem and solve it in the TTPTM/C-C2. In
order to check if the problem has been solved, several
fault injection experiments have been done in the TTP/C-
C2. The results of these fault injection experiments are
shown in Table 4.

The main conclusions obtained in these last experi-
ments were:
� No fail silence violations have been found (all de-

tected errors are recovered).
� The TCU is the most sensitive point, as it has the

biggest percentage of activated errors.
� In the IR experiments, a relatively high number of

activated errors (in both columns) are detected by the
error detection mechanisms of the TTP/C-C2.

� The biggest part of errors in the TCU and CRC are
covered by the intrinsic redundancy of the system.

Table 4. TTP/C-C2 results.

IR-PCU
(1st TDMA)

IR-PCU
(2nd TDMA)

CRC TCU

Activated errors 18.30 % 18.40 % 14.80 % 60.60 %
Non effective
errors

22.40 % 20.65 % 72.30 % 51.16 %

Detected errors 77.60 % 79.35 % 27.70 % 48.84 %
Recovered 100 % 100 % 100 % 100 %
Non Recovered 0 % 0 % 0 % 0 %

Undetected errors 0 % 0 % 0 % 0 %

5.2. Fault injection at pin level results

5.2.1. TTP/C bus connection lines
The babbling-idiot scenario at the drivers’ level can

be provoked with faults in the controller bus connections
[4]. That means basically in the transmission and recep-
tion lines of one channel (single faults) or both channels
(double faults). The injection is synchronised with the
frame transmission (or reception), being possible to in-
ject the fault before, during or after the transmission. The
following issues were observed:
1. Although the error appears before, during or after the

transmission, the frame will be considered as invalid
by the receiver nodes.

2. The reinstatement of the node in the cluster is quicker
if the error appears during a transmission instead of
during a reception.

3. Drivers must assure the physical isolation of the
transmission lines of the assigned transmission time
slot. Otherwise, the error will be propagated causing
the exclusion of a non-faulty node.

4. In spite of the precision of the clock synchronization
algorithm, the perfect synchronization of the local
clocks is not always possible due to bad oscillators or
degraded performance. Thus, it is high recommended
to validate the communication protocol in the
presence of babbling idiot failures that occur in the
limits of a transmission window because in a
degraded performance they will have the condition of
an asymmetric fault [4].

5.2.2. Bus Guardian Oscillator
The role of the local bus guardian in a bus topology is

to avoid that out-of-time frames are transferred into the
bus. The clock frequency is independently generated to
the main TTP/C clock frequency. In fact, our working
nodes supply a 16 MHz oscillator just to be used by the
local bus guardian. 1000 faults were injected in the local
bus guardian oscillator, synchronised with the transmis-
sion and reception of frames.

The bus guardian has detected the perturbations on its
oscillator. It takes several TDMA rounds to reintegrate
the node in the cluster again, but no collisions or viola-
tion of the fault hypothesis were observed during these
reintegration actions.

5.2.3. CNI Address and Data Busses
There are two types of data exchanged between the

TTP/C controller and the host controller: messages and

status/control information. Data are exchanged through
the CNI. This section describes the observations obtained
with those faults oriented to test the different memory
areas.

Status/control area
Injections in this area show the collaboration between

a physical fault injection technique and simulation.
Among the status/control registers in the CNI are the

life-sign registers. As long as the host is active, it has to
periodically update its life-sign register in order to notify
the TTP/C controller that messages are still being
read/written (it is alive).

In case the TTP/C controller detects an error in the
host life-sign updating, it changes from an active state
into a passive state waiting the host to be again ready to
execute the application. Moreover, the controller triggers
the only existing external signal between the controller
and the host: the TTP/C Interrupt signal. The interrupt
informs the host that the controller has detected an error.

During the experiments pertaining to the life-sign al-
gorithm, the injected faults modified the value stored in
the life-sign register. Figure 3 show the analysed cases.

CNI accesses during the Life-sign registers updating
Read cycle Write cycle

The host reads
the TTP/C-C2 controller life-sign register

The host updates
its life-sign register in the CNI

Output Enable Write Enable
Faults description:

1.
2.

3.

4.

5.

6.

Duration: 500ns; Location: Data bus

Duration: 2µ; Location: Data bus

Duration: 2µ; Location: Address bus

Duration: 500ns; Location: Address bus

Duration: 500ns; Location: Data bus

Duration: 2µ; Location: Address bus

Figure 3. Injections during the Life-sign updating
algorithm in the TTP/C-C2 controller.

Because the host busses are disturbed with faults, host
exceptions are frequent in cases 2 and 3. Operating sys-
tem exceptions are observed specially in case 6. Cases 1
and 4 cause a bit-flip in data and consequently, the host
updates its life-sign register with a wrong value. In case
5, the host does not update the register. In order to carry
out a detailed analysis of cases 1, 4 and 5, the VHDL-
based fault injector was used to reproduce them and to
compare the results with the pin-level fault injector.

During the monitoring of the transmission lines of the
faulty node, it was observed that the node does not
transmit any frame (both channels were observed) in the
following TDMA round after the fault injection. Due to
this silence of the faulty node, the rest of the cluster
members judge this node as inactive.

That means that the TTP/C controller is aware of the
host error in updating the life-sign and follows the con-
dition of fail-silence. But the TTP/C interrupt should be
raised, warning the host about the detection of the error.
However, it was observed that the interrupt status flag
register is not updated and the interrupt is not raised,

mismatching the specifications [14]. It is considered as
an error in the implementation of a specific algorithm
that could be early detected in the VHDL model using
fault injection, before the defect will be propagated into
the prototype.

Message area
A fault injection campaign was carried out altering the

message values, resulting in host exceptions and fail-
silence violation in the value domain.

Two different fault effects are observed that lead the
system to a value failure. Due to a fault that forces (0 or
1) a line during some time, part of the data written in the
CNI becomes erroneous, but the node sends them to
other node.

Firstly, a fault causes a bit-flip in one or several
words, depending on the number of accesses during
which the line remains stuck. Secondly, the fault causes a
whole ineffective write access. Transferred data do not
get to update the content of the selected memory address.
Both cases imply multiple errors.

The frame to be transmitted by the node is built using
the contents of the CNI message area. But, as these con-
tents are wrong, the frame will be syntactically correct
but semantically incorrect. A good solution to detect
semantic errors is the use of Error Detection Codes able
to detect multiple errors [9].

6. Summary. Conclusions and future work

The combination of two different fault injection tech-
niques has brought us the opportunity of a deeper valida-
tion of the TTP/C communication controller.

The PCU and its Instruction Register, the TCU and
the CRC Unit have been put to the test using VHDL-
based fault injection, which achieves a high control to
define the fault location and duration as well as the in-
jection instant. During the experiments, an error in the
clique avoidance algorithm implementation was ob-
served. This error leads the TTP/C-C1 to a complete
shutdown under specific conditions. Thanks to the vali-
dation test, the error has been solved in the second ver-
sion of the controller (TTP/C-C2).

On the other hand, physical fault injection at pin level
has been very useful to generate babbling idiot errors in
delivered frames through the communication bus, vali-
dating the fault hypothesis of the distributed system in
the presence of arbitrary faults. Moreover, some injec-
tions have been carried out directly on the local bus
guardian oscillator, assuring that the reinstatement of the
controller does not provoke frame collisions.

Faults injected at the CNI cause that the faulty node
sends a semantically incorrect message but syntactically
correct and on time, which is considered a failure in the
value domain. These experiments are useful to experi-
mentally obtain the coverage of different error detection
codes and protection strategies.

Finally, different fault injection techniques can be
used to study specific faulty scenarios, in order to put a

high level of confidence in the validation results. That is
the case of the life-sign algorithm, where a set of physi-
cal faults at pin level reveals a mismatch of the prototype
with the specifications. The case was reproduced in the
VHDL model obtaining the same results.

In the future, we will continue with the fault injection
experiments, in order to test the effectiveness of different
detection and recovery mechanisms added to the TTP/C
controller.

References
[1] J. Clark, D. Pradhan, “Fault Injection. A method for
validating computer-system dependability”, IEEE Computer,
June 1995.
[2] M. Sueh, T. Tsai, R. Iyer, “Fault Injection Techniques
and Tools”, IEEE. Computer, pp. 75-82, April 1997.
[3] P. Folkesson, “Assessment and Comparison of Physical
Fault Injection Techniques”, Technical Report nº 377, 1999.
[4] S. Blanc, J. Gracia, P.J. Gil, “A Fault Hypothesis Study
on the TTP/C using VHDL-based and Pin-Level Fault Injec-
tion Techniques”, Procs. of 17th International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT 2002), pp.
254-262, November 2002.
[5] C. Madritsch, “Fault Injection for the Time-Triggered
Architecture (FIT)”, Supplement of the 2001 Int. Conference
on Dependable Systems and Networks (DSN 2001), Special
Track: European Dependability Initiative, Göteborg, Sweden,
pp.D-25-D-27, July 2001.
[6] J. R. Martínez, P.J. Gil, G. Martín, C. Pérez, J. J. Serrano,
“Experimental Validation of High-Speed Fault-Tolerant Sys-
tems Using Physical Fault Injection”, Procs. of 7th International
Working Conference on Dependable Computing for Critical
Applications (DCCA-7), pp. 233-249, 1999.
[7] J.C. Baraza, J. Gracia, D. Gil, P.J. Gil, “A Prototype of a
VHDL-Based Fault Injection Tool: Description and Applica-
tion”, Journal of Systems Architecture, I.S.S.N. 1383-7621,
47(10):847-867, 2002.
[8] Model Technology, “ModelSim SE/User’s Manual,
Version 5.5e”, Septiembre 2001.
[9] S. Blanc, P.J. Gil, “Improving the Multiple Errors Detec-
tion Coverage in Distributed Embedded Systems”, Procs. of
Symposium on Reliable Distributed Systems (SRDS2003), pp.
303-312, October 2003.
[10] “TTP/C C1 Controller. Specification of the TTP/C C1
Controller”, TTTech Computertechnik GmbH, Available at
http://www.tttech.com.
[11] “AS8202. Functional Description of the AS8202 (pre-
liminary) D-032-S-10-026. Version 1.0”, TTTech, Available at
http://www.tttech.com, September 2001.
[12] S. Blanc, A. Ademaj, H. Sivencrona, J. Torin, P. Gil,
“Three Different Fault Injection Techniques Combined to
Improve the Detection Efficiency for Time-Triggered Sys-
tems”, Procs. of IEEE Design and Diagnostic of Electronic
Circuits and Systems (DDECS2002), pp. 412-415, April 2002.
[13] J. Gracia, J.C. Baraza, D. Gil, P.J. Gil, “Using VHDL-
Based Fault Injection for the Early Diagnosis of a TTP/C Con-
troller”, to be published in IEICE Transactions on Information
and Systems, Vol. E86-D, Nº 12, December 2003.
[14] Specifications of the TTP/C Communications Controller,
Available at http://www.tttech.com.
[15] H. Kopetz, TTP/C Protocol, TTTech 1999, Available at
http://www.ttpforum.org.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

