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Abstract 
 

This work presents the whole System-on-Silicon 
design flow using SystemC system specification 
language. In this study, SystemC is used to design a 
multilayer perceptron neural network, which is applied 
to an electrocardiogram pattern recognition system. 
The objective of this work is to exemplify the synthesis 
of RTL- and behavioral integrated systems. To achieve 
this, a preprocessing methodology was used to optimize 
the three main constraints of hardware neural network 
(HNN) design: accuracy, space and processing speed. 
This allows a complex HNN to be implemented on a 
single Field Programmable Gate Array (FPGA). The 
high level SystemC synthesis allows the straightforward 
translation of system level into hardware level, avoiding 
the error prone and the time consuming translation into 
another hardware description language. 

 
Keywords: SystemC Synthesis; Rapid Prototyping;  

Embedded Systems; Digital System Design; Hardware 
Neural Network (HNN); Electrocardiogram (ECG).  

 
1. Introduction 

 
The number of applications based on Rapid 

Prototyping for Embedded Systems and System-on-a-
Chip (SoC) has been impulsed by the increase of 
technological advance and the time-to-market. New 
approaches have been proposed to improve the System-
on-Silicon design flow, where a high-level description 
of circuits is the goal (for instance, behavioral model). 
To achieve this, it is mandatory to use a system-level 
description language. SystemC, a library based on C++ , 
allows creating models of software algorithms and 
hardware architectures for embedded systems as well as 
for SoCs, at different levels of abstraction [1]. 
Furthermore, the EDA market has been promoting new 
design tools, for instance CoCentric SystemC Compiler 
[2], to improve the design process and the prototyping 
of SystemC. Hence it is possible to define and simulate 
a system at a higher level and then translate it to a lower 
level using only SystemC in all phases of the design. 
Based on the aspects related above, the SystemC is used 

in this work to specify, simulate and synthesize the 
design to gate level.  

Dedicated neurochips have been explored 
successfully by industry market, especially for real-time 
and embedded applications, such as pattern recognition, 
image processing, and speech processing [4]. The 
system under development is a Digital Neural Network 
applied to a complex application involving the 
Electrocardiogram Pattern Recognition [3].  

To exemplify the whole System-on-Silicon Design 
Flow of SystemC, firstly, a Hardware Neural Network  
is designed in SystemC by means of  RTL and 
Behavioral Models Integration. Secondly, the CoCentric 
SystemC Compiler and FixTool Tübingen [5] are used to 
refine and adapt the system to a synthesizable form. 
Thirdly, the system is synthesized into a XILINX 
VirtexE rapid prototyping board [6].  

The article is structured as follows: Section 2 
presents an overview of SystemC. Section 3 gives the 
basic concepts involving hardware neural networks, 
multilayer perceptron and electrocardiogram processing. 
Section 4 describes the SystemC modeling. Section 5 
covers the conversion of the system into a synthesizable 
form. Section 6 presents the HNN synthesized to the 
XILINX Virtex-E rapid prototyping board. Section 7 
concludes this work. 

 
2. SystemC 

 
New methodologies have been proposed due to the 

recent development of technology at all stages of the 
design process [7]. SystemC is a C++ class library and a 
methodology to design (cycle-accurate models) of 
software algorithms, hardware architectures and 
interfaces of SoCs.  

SystemC reduces the time-to-market due to the 
linking of the system and the hardware designers’ work. 
Initially, it is possible to describe the design in abstract 
level using a variety of powerful types of high level 
abstract models (well known transaction level), which 
allow to simulate and evaluate the design in a very fast 
form in an earlier phase [8]. Other important aspects are 
the code and the vertical test bench reuse [9]. The code 
reuse is intrinsic to the object-oriented properties used 
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RTL 
sc_logic, sc_lv  
 

Scheduling Modes 
Cycle_fixed 
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Models 
Behavioral  

and  
RTL 
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by the designers at specification level. The vertical test 
bench reuse has a powerful capacity to validate the 
system, due to the reusing of the test bench in all stages 
of the design. At the final stage, the system can be 
translated into hardware level, avoiding the error prone 
and the time consuming translation into other HW 
description languages [8].  

Therefore, considering these important aspects, 
SystemC is able to increase the productivity and the 
quality of the results, as well as to reduce the design 
costs. The main constructors of SystemC are consisted 
in the core language, which allows describing the 
functionality and communication. As shown in the 
Figure 1, SystemC has also a layered approach which 
enables the introduction of new high-level constructors 
[8].   

Figure 1: SystemC 2.0 Language Architecture [8]. 
 
2.1. Synthesis of SystemC 
 

The synthesis of SystemC behavioral and RTL 
models is a new emerging possibility from EDA at the 
moment. Some evaluation of SystemC synthesis has 
been presented by other groups [10]. 

 

Figure 2: Synthesizable subset of SystemC. 
 

 In this work, the whole top-down design flow of 
SystemC synthesis is presented, while evaluating its 
restrictions and proposing solutions. 

As shown in the Figure 1, SystemC is composed of 
rich architecture options, which however are not 
possible to synthesize, though CoCentric SystemC 
Compiler can successfully synthesize a subset of 
SystemC language constructors, summarized in Figure 
2. 

Two important restrictions of the synthesizable 
subset are the coding rules for superstate-fixed and 
cycle-fixed modes [2], and the data types. For instance, 
fixed point types can not be synthesized and for this 
reason, a tool is used to translate fixed point arithmetic 
into integer arithmetic. A detailed explanation is given 
in section 5. 

 
3. Benchmark System Specification 

 
3.1. Hardware Neural Networks (HNN) 

 
Artificial neural networks (ANN) are based on the 

neural brain structure. They are powerful tools in many 
areas like pattern classification, function approximation, 
forecasting, fault tolerance and accomplishment in 
VLSI (Very Large-Scale Integrated) [4]. Most of the 
neural systems are implemented in simulators, where 
the fundamental drawback is the lost of the spatial-
temporal parallelism [11]. HNN are capable to take 
advantage of the system performance. However, the 
hardware neural networks have to optimize three main 
constraints: accuracy, space and processing speed. The 
next section presents some approaches to optimize the 
design of digital neural network systems.  This work 
uses the multilayer perceptron (MLP), which is one of 
the most popular ANNs used as classifier [4].   

 
3.2. Electrocardiogram Processing 

 
The increasing number of people with 

cardiovascular diseases stimulates new research in pre-
monitoring and pre-diagnostic of arrhythmia using the 
electrocardiogram (ECG) [3]. We have validated our 
specification based on the MIT/BIH Arrhythmia 
Database [12]. The records were sampled with 360 
samples per second and a resolution of 11 bits. We have 
chosen patients (records) with three types of signals: 
normal, fusion, and premature ventricular contraction 
(PVC). However, the classification is not efficient 
applying the whole ECG segment. Minimizing the 
structure of the neural network, as much as possible, 
makes the system more efficient. To do this, the 
Karhunen-Lòeve Transform (KLT) method is used in the 
pre-processing phase, to extract some important 
characteristics of the ECG segments. The aim of KLT is 
to reduce the dimensionality of the data set, where the 



importance of the variables is statistically evaluated [4]. 
In this way, it is possible to reduce the weight memory 
positions (WMP) and consequently the weights memory 
space (WMS) area. Thus, one electrocardiogram 
segment with 180 samples is reduced to 5 principal 
components. The compression ratio (CR) between the 
total number of data on the original form and the 
number of data using the KLT approach is 36 times 
smaller. In hardware it means a reduction of 36 times 
the amount of memory/register used. Therefore it can be 
possible to reduce drastically the weight memory space 
using principal components and keeping the high 
accuracy. The principal components are obtained by 
means of Generalized Hebbian Algorithms [4] and 
downloaded into the FPGA memory.  

 
4. SystemC Modeling and Simulation 

 
The neural network system was designed using five 

behavioral modules and one top-level (RTL) module. A 
behavioral model is an algorithmic description of the 
block’s behavior. The SC_CTHREAD, a clocked thread 
process, is sensitive to one edge of a clock. This macro 
registers the member function declared previously as a 
behavioral process. The global reset is defined by means 
of statement watching within the constructor. The 
internal signals are used as communication between 
processes within the same modules. The following code 
presents the neuron designed by the standard SystemC 
behavioral modeling style. 

 
// model_neuron_hid.h: header file 
#include <systemc.h> 
#include "usr_define.h" 
class model_neuron_hid 
: public sc_module 
{ 
 public: 
  // ports 
  sc_in<sc_fixed<20,6> > X;   //Input 
  sc_out<sc_fixed<20,5> > Y;  //Output 
  sc_in_clk CLK;              //Clock 
  sc_in<bool> RESET;          //RESET 
  ... 
  // Member Functions        //Forward Phase  
  void Summup();             // Summup  
  void ActFunction();        // Activation  
  void AdjustWeights();      // Learning Phase 
  sc_fixed<20,5> AF_derivate(); 
  ...   
  void neuron_hid();         //Main Process 
 
  // Variables 
  sc_fixed<20,6> input[7]; 
  sc_fixed<25,6> wg[7]; 
  sc_fixed<20,5> delta_old[7]; 
  ... 
  //default constructor 
  SC_CTOR( model_neuron_hid) 
    { 
      // process declarations 
      SC_CTHREAD(neuron_hid,CLK.pos()); 
      watching(RESET.delayed() == true); 
    } 
}; // end module model_neuron_out 
 

The module structure of HNN is shown in Figure 3. 
The highest degree of parallelism can be reached if all 
the interconnections between neurons are simultaneous. 
However, if the number of connections is high, the 
constraint space will be also expensive. Therefore, a 
hybrid approach is proposed. Thus, between the input 
and hidden layer the broadcasting principle [13] is 
used:  the input layer sends one data word to all the 
neurons of the hidden layer. Between the hidden and the 
output layer the parallelism principle is applied, and 
consequently all the data transfer will happen in parallel 
form (as shown Figure 3.b). 

To simulate and evaluate the system, a well known 
method in ANN called “open test” [4] is used, which is 
a powerful way to analyze the pattern recognition 
system. 

The open test means that the database used to test 
the neural network efficiency, was not consisted in the 
train database. In this work, we use one third of the 
database to perform the open test. 

 

Figure 3: (a) Top-level RTL; (b) Behavioral Neural 
Network 

 
 The Table 1 shows the open test results, where we 

can observe the capacity of the HNN as a beat classifier. 
The ANN can classify correctly more then 95% of the 
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PVC signals, which is very important to pre-diagnose 
the fibrillation arrhythmia. We can also observe that the 
worst misclassification occur between the Fusion and 
Normal signals (error of 14.05%) because of the 
similarity between these signals. The mean accuracy of 
this simulation was 91.35%. 

 
Table 1: Open test results. 

MIT – DATA BASE 

% NORMAL FUSION PVC 
NORMAL 92.97 14.05 2.16 
FUSION 7.02 85.40 2.16 H

N
N

 

PVC 0 0.54 95.67 
 

 
5. Converting to a Synthesizable Form  
 
After defining and simulating the system, it is 

mandatory to refine and convert it to a synthesizable 
form. This section presents some issues to be considered 
for the synthesis phase. 

 
5.1. SystemC Fixed-Point to Integer-Based 

Conversion 
 
The use of floating point data types to define and 

simulate a system is an usual form to validate if the 
system is working properly. However floating point 
arithmetic has extremely high costs when implemented 
in hardware. One solution is the conversion of float 
point types to fixed point types based on bit widths and 
accuracy analysis. The tools FRIDGE [5] and CoCentric 
Fixed Point Designer [14] are two well known examples 
for this evaluation process. Most of the synthesis tools 
however, are not able to synthesize fixed point data 
types and their arithmetic operations and thus, we used 
the FixTool [5] to convert the fixed point data types and 
their arithmetic operations into integer-based system, as 
shown in the code below. 

 
/* Fixed Point Format*/ 
... 
sc_fixed<20,6> input[7]; 
sc_fixed<25,6> wg[7]; 
sc_fixed<25,6> sum; 
... 
sum = sum + input[i]*wg[i]; 
--------------------------------------- 
/* Integer Format */ 
... 
sc_int<20> input[7]; 
sc_int<25> wg[7]; 
sc_int<25> sum; 
... 
sum=sum+((sc_int<25>)(((((sc_int<45>)(input[

i])))*(((sc_int<45>)(wg[i]))))>>14)); 
 

This automated conversion avoids the expensive 
time-consuming and error-prone usual manual work.  

 

5.2. Scheduling Modes 
 
The behavioral synthesis has two basic schedule 

modes [3]: the cycle-fixed, in which the SystemC 
Compiler keeps the cycle-to-cycle I/O behavior in the 
synthesized design as the previous behavioral 
description, and the superstate-fixed, where SystemC 
Compiler keeps the I/O behavior and adapts the number 
of cycles between the I/O operations. For this reason, it 
is necessary to implement an handshake protocol 
between the circuit and the testbench.    

In this system, the superstate-fixed mode is used. It 
is more flexible to optimize the system through the 
SystemC Compiler. A two-way handshake protocol [2] 
is used between the circuit and the testbench and thus it 
is possible to use the same testbench in the design and 
synthesis. The main module requests (ASK) to receive 
or to send (X_RDY) data. Waiting until an ac 
knowledge is received from the transmitter (Y_RDY) or 
from the receiver (SEEN), as shown in Figure 4. 

 

 
Figure 4: Two-Way Protocol. 
 
The superstate-fixed mode has some coding rules for 

placing clock cycles, thus it was necessary to modify the 
initial specification. In the following examples, the 
wait() statements are pointed out to exemplify the 
coding rules of super-fixed mode. The system had to be 
adapted for four of six general rules [2]. 

 
1. Place at least one wait statement in every 

loop except unrolled for loops. 
 
for(int i = 0; i < N_IN_WG; i++){ 
sum=sum+(sc_int<25>)(((((sc_int<45>)(input
[i])))*(((sc_int<45>)(wg[i]))))>>14)); 

    wait(); 
  } 
 
2. Place at least one wait statement after the 

reset action and before the main infinite loop. 
… 
//initialize the Ports 
  SEND_INPUT.write(false); 
  OUTPUT_RDY.write(false); 
  wait();  
  while(true){ 

clk 

ASK 

XRDY 

X 

YRDY 

Y 

SEEN  

0.1 0.2 0.3 0.4 0.5 

0.678 



    in_ptl(); 
    Summup(); 
… 
   } 

3. Place at least one wait statement between 
successive writes to the same output. 

… 
GRAD_SEEN.write(true);         
wait(); 
GRAD_SEEN.write(false); 
wait(); 
… 

4. If one branch of a conditional (if..else, …) has 
at least one wait statement in each of the 
other branches, including the default branch 
and implicit else conditions. 

… 
if (LEARN.read() == true){ 
      out_ptl(); // wait() within method 
      AdjustWeights(); 
    }else{ wait(); } 
… 
 

6. HNN synthesized to the XILINX 
VirtexE board 

 
The first implementation of HNN described in 

SystemC is validated on a SPYDER-VIRTEX-X2E 
board. This board has one XILINX VirtexE-Series 
FPGA of the XCV2000E family (2.000.000 equivalent 
logic gates) [6]. The block diagram and the board 
picture is show in the Figure 5. 

The CoCentric SystemC Compiler is able to 
synthesize integrated RTL and behavioral modules into 
gate-level netlists or HDL RTL descriptions [2]. In our 
case, a HDL RTL description was obtained and was 
applied to the Xilinx low-level synthesis tools. This 
synthesis phase is composed of mapping and fitting the 
design into a specific device (for instance, XCV2000E). 
The automatic synthesis is completed after the 
successful routing and bit stream generation. 

The use of preprocessing path allows the integration 
of weights in a single-chip. Thus it is possible to 
achieve a higher real-time throughput without the 
bandwidth problem of weights external memory 
communication.  

HNN was applied to the Electrocardiogram Pattern 
Classification, and a second simpler XOR Problem was 
additionally used to evaluate and to compare the results.  

The benchmarks are composed of two complex non-
linearly separable systems, meaning that the HNN 
requires at least one hidden layer. The applied neural 
architecture was: 

• ECG: 7 inputs / 5 hidden neurons / 1 output 
neuron; 

• XOR: 2 inputs / 2 hidden neurons / 1 output 
neuron; 

The implementation results of the Xilinx board are 
exposed in Table 2. The first two columns present the 
elements and the maximal number of them on Xilinx 
board. The last two columns present the synthesis 

results of benchmarks and testbench together. It is 
possible to observe that the duplication of neurons cause 
one increment of almost five times in Slices size. 
However the clock speed is reduced to the half. 

 
 

 

 
Figure 5: Block Diagram and board picture [6] 
 
Table 2. Processing Elements 

XCV2000E Max ECG** XOR 
Slices* 19200 14826  3009 
Slice Flip-Flop 38400 5236 1440 
4 input LUT 38400 27529 5403 
IOB 404 3 3 
GCLKs 4 1 1 
GCLKIOBs 4 1 1 
CLK Freq. MHz 33  7 16 

* One CLB is compound of two slices. 
** The result does not consider the training and test 
data set memory. 
 
7. Conclusion  
 
This paper presented the design and synthesis flow 

of a SystemC design. As a case study, a digital neural 
network is applied to the electrocardiogram pattern 
recognition problem. Firstly, the system is designed and 
simulated, achieving the expressive results of 95.67% 
of PVC accuracy, and then it is adapted to  
synthesizable form. Finally, the HNNs examples were 
synthesized into a Xilinx hardware target. 



As shown in this investigation, the CoCentric 
SystemC Compiler supplies good results to 
automatically synthesize RTL and behavioral integrated 
systems. Our solutions for the fixed point data type 
conversion (FixTool) and scheduling mode (coding 
rules) were pointed out. Therefore, the synthesis of 
SystemC designs offer a new possibility for commercial 
market to synthesize high level hardware design in an 
efficient and economic form.       
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