
Synthesis of Embedded SystemC Design:
A Case Study of Digital Neural Networks *

Djones Lettnin, Axel Braun, Martin Bodgan, Joachim Gerlach, Wolfgang Rosenstiel

Department of Computer Engineering

Tübingen University
Sand 13

 72076 Tübingen – Germany
{lettnin,abraun,bodgan,gerlach,rosenstiel}@informatik.uni-tuebingen.de

* This work is partially supported by DAAD and FAPERGS.

Abstract

This work presents the whole System-on-Silicon
design flow using SystemC system specification
language. In this study, SystemC is used to design a
multilayer perceptron neural network, which is applied
to an electrocardiogram pattern recognition system.
The objective of this work is to exemplify the synthesis
of RTL- and behavioral integrated systems. To achieve
this, a preprocessing methodology was used to optimize
the three main constraints of hardware neural network
(HNN) design: accuracy, space and processing speed.
This allows a complex HNN to be implemented on a
single Field Programmable Gate Array (FPGA). The
high level SystemC synthesis allows the straightforward
translation of system level into hardware level, avoiding
the error prone and the time consuming translation into
another hardware description language.

Keywords: SystemC Synthesis; Rapid Prototyping;

Embedded Systems; Digital System Design; Hardware
Neural Network (HNN); Electrocardiogram (ECG).

1. Introduction

The number of applications based on Rapid

Prototyping for Embedded Systems and System-on-a-
Chip (SoC) has been impulsed by the increase of
technological advance and the time-to-market. New
approaches have been proposed to improve the System-
on-Silicon design flow, where a high-level description
of circuits is the goal (for instance, behavioral model).
To achieve this, it is mandatory to use a system-level
description language. SystemC, a library based on C++ ,
allows creating models of software algorithms and
hardware architectures for embedded systems as well as
for SoCs, at different levels of abstraction [1].
Furthermore, the EDA market has been promoting new
design tools, for instance CoCentric SystemC Compiler
[2], to improve the design process and the prototyping
of SystemC. Hence it is possible to define and simulate
a system at a higher level and then translate it to a lower
level using only SystemC in all phases of the design.
Based on the aspects related above, the SystemC is used

in this work to specify, simulate and synthesize the
design to gate level.

Dedicated neurochips have been explored
successfully by industry market, especially for real-time
and embedded applications, such as pattern recognition,
image processing, and speech processing [4]. The
system under development is a Digital Neural Network
applied to a complex application involving the
Electrocardiogram Pattern Recognition [3].

To exemplify the whole System-on-Silicon Design
Flow of SystemC, firstly, a Hardware Neural Network
is designed in SystemC by means of RTL and
Behavioral Models Integration. Secondly, the CoCentric
SystemC Compiler and FixTool Tübingen [5] are used to
refine and adapt the system to a synthesizable form.
Thirdly, the system is synthesized into a XILINX
VirtexE rapid prototyping board [6].

The article is structured as follows: Section 2
presents an overview of SystemC. Section 3 gives the
basic concepts involving hardware neural networks,
multilayer perceptron and electrocardiogram processing.
Section 4 describes the SystemC modeling. Section 5
covers the conversion of the system into a synthesizable
form. Section 6 presents the HNN synthesized to the
XILINX Virtex-E rapid prototyping board. Section 7
concludes this work.

2. SystemC

New methodologies have been proposed due to the

recent development of technology at all stages of the
design process [7]. SystemC is a C++ class library and a
methodology to design (cycle-accurate models) of
software algorithms, hardware architectures and
interfaces of SoCs.

SystemC reduces the time-to-market due to the
linking of the system and the hardware designers’ work.
Initially, it is possible to describe the design in abstract
level using a variety of powerful types of high level
abstract models (well known transaction level), which
allow to simulate and evaluate the design in a very fast
form in an earlier phase [8]. Other important aspects are
the code and the vertical test bench reuse [9]. The code
reuse is intrinsic to the object-oriented properties used

1530-1591/04 $20.00 (c) 2004 IEEE

C++ Language Standard

Core Language
Modules, Ports,
Processes, Interfaces,
Channels, Events

Data Types
Logic Type(01XZ), Logic
Vectors, Bits and Bit
Vectors, Arbitrary Precision
Integers, Fixed Point Integers

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Standard Channels
for Various MOC’s

Kahn Process Networks,
Static Dataflows, etc.

Methodology-Specific
Channels

Master/Slave Library, etc.

CoCentric SystemC Compile

Core Language
Modules
Ports (in, out, inout)
Processes
(METHOD; CTHREAD)
- wait, wait_until,
watching

Data Types
RTL + Behavioral
sc_bv<n>, sc_int<n>,
sc_bigint<n>, bool,
int, long, char, short,
struct, enum, ...

RTL
sc_logic, sc_lv

Scheduling Modes
Cycle_fixed

and
Superstate-fixed

Models
Behavioral

and
RTL

Elementary Channels
Signal

by the designers at specification level. The vertical test
bench reuse has a powerful capacity to validate the
system, due to the reusing of the test bench in all stages
of the design. At the final stage, the system can be
translated into hardware level, avoiding the error prone
and the time consuming translation into other HW
description languages [8].

Therefore, considering these important aspects,
SystemC is able to increase the productivity and the
quality of the results, as well as to reduce the design
costs. The main constructors of SystemC are consisted
in the core language, which allows describing the
functionality and communication. As shown in the
Figure 1, SystemC has also a layered approach which
enables the introduction of new high-level constructors
[8].

Figure 1: SystemC 2.0 Language Architecture [8].

2.1. Synthesis of SystemC

The synthesis of SystemC behavioral and RTL
models is a new emerging possibility from EDA at the
moment. Some evaluation of SystemC synthesis has
been presented by other groups [10].

Figure 2: Synthesizable subset of SystemC.

 In this work, the whole top-down design flow of
SystemC synthesis is presented, while evaluating its
restrictions and proposing solutions.

As shown in the Figure 1, SystemC is composed of
rich architecture options, which however are not
possible to synthesize, though CoCentric SystemC
Compiler can successfully synthesize a subset of
SystemC language constructors, summarized in Figure
2.

Two important restrictions of the synthesizable
subset are the coding rules for superstate-fixed and
cycle-fixed modes [2], and the data types. For instance,
fixed point types can not be synthesized and for this
reason, a tool is used to translate fixed point arithmetic
into integer arithmetic. A detailed explanation is given
in section 5.

3. Benchmark System Specification

3.1. Hardware Neural Networks (HNN)

Artificial neural networks (ANN) are based on the

neural brain structure. They are powerful tools in many
areas like pattern classification, function approximation,
forecasting, fault tolerance and accomplishment in
VLSI (Very Large-Scale Integrated) [4]. Most of the
neural systems are implemented in simulators, where
the fundamental drawback is the lost of the spatial-
temporal parallelism [11]. HNN are capable to take
advantage of the system performance. However, the
hardware neural networks have to optimize three main
constraints: accuracy, space and processing speed. The
next section presents some approaches to optimize the
design of digital neural network systems. This work
uses the multilayer perceptron (MLP), which is one of
the most popular ANNs used as classifier [4].

3.2. Electrocardiogram Processing

The increasing number of people with

cardiovascular diseases stimulates new research in pre-
monitoring and pre-diagnostic of arrhythmia using the
electrocardiogram (ECG) [3]. We have validated our
specification based on the MIT/BIH Arrhythmia
Database [12]. The records were sampled with 360
samples per second and a resolution of 11 bits. We have
chosen patients (records) with three types of signals:
normal, fusion, and premature ventricular contraction
(PVC). However, the classification is not efficient
applying the whole ECG segment. Minimizing the
structure of the neural network, as much as possible,
makes the system more efficient. To do this, the
Karhunen-Lòeve Transform (KLT) method is used in the
pre-processing phase, to extract some important
characteristics of the ECG segments. The aim of KLT is
to reduce the dimensionality of the data set, where the

importance of the variables is statistically evaluated [4].
In this way, it is possible to reduce the weight memory
positions (WMP) and consequently the weights memory
space (WMS) area. Thus, one electrocardiogram
segment with 180 samples is reduced to 5 principal
components. The compression ratio (CR) between the
total number of data on the original form and the
number of data using the KLT approach is 36 times
smaller. In hardware it means a reduction of 36 times
the amount of memory/register used. Therefore it can be
possible to reduce drastically the weight memory space
using principal components and keeping the high
accuracy. The principal components are obtained by
means of Generalized Hebbian Algorithms [4] and
downloaded into the FPGA memory.

4. SystemC Modeling and Simulation

The neural network system was designed using five

behavioral modules and one top-level (RTL) module. A
behavioral model is an algorithmic description of the
block’s behavior. The SC_CTHREAD, a clocked thread
process, is sensitive to one edge of a clock. This macro
registers the member function declared previously as a
behavioral process. The global reset is defined by means
of statement watching within the constructor. The
internal signals are used as communication between
processes within the same modules. The following code
presents the neuron designed by the standard SystemC
behavioral modeling style.

// model_neuron_hid.h: header file
#include <systemc.h>
#include "usr_define.h"
class model_neuron_hid
: public sc_module
{
 public:
 // ports
 sc_in<sc_fixed<20,6> > X; //Input
 sc_out<sc_fixed<20,5> > Y; //Output
 sc_in_clk CLK; //Clock
 sc_in<bool> RESET; //RESET
 ...
 // Member Functions //Forward Phase
 void Summup(); // Summup
 void ActFunction(); // Activation
 void AdjustWeights(); // Learning Phase
 sc_fixed<20,5> AF_derivate();
 ...
 void neuron_hid(); //Main Process

 // Variables
 sc_fixed<20,6> input[7];
 sc_fixed<25,6> wg[7];
 sc_fixed<20,5> delta_old[7];
 ...
 //default constructor
 SC_CTOR(model_neuron_hid)
 {
 // process declarations
 SC_CTHREAD(neuron_hid,CLK.pos());
 watching(RESET.delayed() == true);
 }
}; // end module model_neuron_out

The module structure of HNN is shown in Figure 3.
The highest degree of parallelism can be reached if all
the interconnections between neurons are simultaneous.
However, if the number of connections is high, the
constraint space will be also expensive. Therefore, a
hybrid approach is proposed. Thus, between the input
and hidden layer the broadcasting principle [13] is
used: the input layer sends one data word to all the
neurons of the hidden layer. Between the hidden and the
output layer the parallelism principle is applied, and
consequently all the data transfer will happen in parallel
form (as shown Figure 3.b).

To simulate and evaluate the system, a well known
method in ANN called “open test” [4] is used, which is
a powerful way to analyze the pattern recognition
system.

The open test means that the database used to test
the neural network efficiency, was not consisted in the
train database. In this work, we use one third of the
database to perform the open test.

Figure 3: (a) Top-level RTL; (b) Behavioral Neural
Network

 The Table 1 shows the open test results, where we

can observe the capacity of the HNN as a beat classifier.
The ANN can classify correctly more then 95% of the

(b)
)

Stimulus

Device
Under
Test

Results

Checking

Hidden

Output
Neuron

Hidden

Hidden

Hidden

Hidden

(a)

ASK

RDY

SEE

RDY

Top-Level
Module

PVC signals, which is very important to pre-diagnose
the fibrillation arrhythmia. We can also observe that the
worst misclassification occur between the Fusion and
Normal signals (error of 14.05%) because of the
similarity between these signals. The mean accuracy of
this simulation was 91.35%.

Table 1: Open test results.

MIT – DATA BASE

% NORMAL FUSION PVC
NORMAL 92.97 14.05 2.16
FUSION 7.02 85.40 2.16 H

N
N

PVC 0 0.54 95.67

5. Converting to a Synthesizable Form

After defining and simulating the system, it is

mandatory to refine and convert it to a synthesizable
form. This section presents some issues to be considered
for the synthesis phase.

5.1. SystemC Fixed-Point to Integer-Based

Conversion

The use of floating point data types to define and

simulate a system is an usual form to validate if the
system is working properly. However floating point
arithmetic has extremely high costs when implemented
in hardware. One solution is the conversion of float
point types to fixed point types based on bit widths and
accuracy analysis. The tools FRIDGE [5] and CoCentric
Fixed Point Designer [14] are two well known examples
for this evaluation process. Most of the synthesis tools
however, are not able to synthesize fixed point data
types and their arithmetic operations and thus, we used
the FixTool [5] to convert the fixed point data types and
their arithmetic operations into integer-based system, as
shown in the code below.

/* Fixed Point Format*/
...
sc_fixed<20,6> input[7];
sc_fixed<25,6> wg[7];
sc_fixed<25,6> sum;
...
sum = sum + input[i]*wg[i];

/* Integer Format */
...
sc_int<20> input[7];
sc_int<25> wg[7];
sc_int<25> sum;
...
sum=sum+((sc_int<25>)(((((sc_int<45>)(input[

i])))*(((sc_int<45>)(wg[i]))))>>14));

This automated conversion avoids the expensive
time-consuming and error-prone usual manual work.

5.2. Scheduling Modes

The behavioral synthesis has two basic schedule

modes [3]: the cycle-fixed, in which the SystemC
Compiler keeps the cycle-to-cycle I/O behavior in the
synthesized design as the previous behavioral
description, and the superstate-fixed, where SystemC
Compiler keeps the I/O behavior and adapts the number
of cycles between the I/O operations. For this reason, it
is necessary to implement an handshake protocol
between the circuit and the testbench.

In this system, the superstate-fixed mode is used. It
is more flexible to optimize the system through the
SystemC Compiler. A two-way handshake protocol [2]
is used between the circuit and the testbench and thus it
is possible to use the same testbench in the design and
synthesis. The main module requests (ASK) to receive
or to send (X_RDY) data. Waiting until an ac
knowledge is received from the transmitter (Y_RDY) or
from the receiver (SEEN), as shown in Figure 4.

Figure 4: Two-Way Protocol.

The superstate-fixed mode has some coding rules for

placing clock cycles, thus it was necessary to modify the
initial specification. In the following examples, the
wait() statements are pointed out to exemplify the
coding rules of super-fixed mode. The system had to be
adapted for four of six general rules [2].

1. Place at least one wait statement in every

loop except unrolled for loops.

for(int i = 0; i < N_IN_WG; i++){
sum=sum+(sc_int<25>)(((((sc_int<45>)(input
[i])))*(((sc_int<45>)(wg[i]))))>>14));

 wait();
 }

2. Place at least one wait statement after the

reset action and before the main infinite loop.
…
//initialize the Ports
 SEND_INPUT.write(false);
 OUTPUT_RDY.write(false);
 wait();
 while(true){

clk

ASK

XRDY

X

YRDY

Y

SEEN

0.1 0.2 0.3 0.4 0.5

0.678

 in_ptl();
 Summup();
…
 }

3. Place at least one wait statement between
successive writes to the same output.

…
GRAD_SEEN.write(true);
wait();
GRAD_SEEN.write(false);
wait();
…

4. If one branch of a conditional (if..else, …) has
at least one wait statement in each of the
other branches, including the default branch
and implicit else conditions.

…
if (LEARN.read() == true){
 out_ptl(); // wait() within method
 AdjustWeights();
 }else{ wait(); }
…

6. HNN synthesized to the XILINX
VirtexE board

The first implementation of HNN described in

SystemC is validated on a SPYDER-VIRTEX-X2E
board. This board has one XILINX VirtexE-Series
FPGA of the XCV2000E family (2.000.000 equivalent
logic gates) [6]. The block diagram and the board
picture is show in the Figure 5.

The CoCentric SystemC Compiler is able to
synthesize integrated RTL and behavioral modules into
gate-level netlists or HDL RTL descriptions [2]. In our
case, a HDL RTL description was obtained and was
applied to the Xilinx low-level synthesis tools. This
synthesis phase is composed of mapping and fitting the
design into a specific device (for instance, XCV2000E).
The automatic synthesis is completed after the
successful routing and bit stream generation.

The use of preprocessing path allows the integration
of weights in a single-chip. Thus it is possible to
achieve a higher real-time throughput without the
bandwidth problem of weights external memory
communication.

HNN was applied to the Electrocardiogram Pattern
Classification, and a second simpler XOR Problem was
additionally used to evaluate and to compare the results.

The benchmarks are composed of two complex non-
linearly separable systems, meaning that the HNN
requires at least one hidden layer. The applied neural
architecture was:

• ECG: 7 inputs / 5 hidden neurons / 1 output
neuron;

• XOR: 2 inputs / 2 hidden neurons / 1 output
neuron;

The implementation results of the Xilinx board are
exposed in Table 2. The first two columns present the
elements and the maximal number of them on Xilinx
board. The last two columns present the synthesis

results of benchmarks and testbench together. It is
possible to observe that the duplication of neurons cause
one increment of almost five times in Slices size.
However the clock speed is reduced to the half.

Figure 5: Block Diagram and board picture [6]

Table 2. Processing Elements

XCV2000E Max ECG** XOR
Slices* 19200 14826 3009
Slice Flip-Flop 38400 5236 1440
4 input LUT 38400 27529 5403
IOB 404 3 3
GCLKs 4 1 1
GCLKIOBs 4 1 1
CLK Freq. MHz 33 7 16

* One CLB is compound of two slices.
** The result does not consider the training and test
data set memory.

7. Conclusion

This paper presented the design and synthesis flow

of a SystemC design. As a case study, a digital neural
network is applied to the electrocardiogram pattern
recognition problem. Firstly, the system is designed and
simulated, achieving the expressive results of 95.67%
of PVC accuracy, and then it is adapted to
synthesizable form. Finally, the HNNs examples were
synthesized into a Xilinx hardware target.

As shown in this investigation, the CoCentric
SystemC Compiler supplies good results to
automatically synthesize RTL and behavioral integrated
systems. Our solutions for the fixed point data type
conversion (FixTool) and scheduling mode (coding
rules) were pointed out. Therefore, the synthesis of
SystemC designs offer a new possibility for commercial
market to synthesize high level hardware design in an
efficient and economic form.

8. Bibliography

[1] SystemC Version 2.0 User Guide.
http://www.systemc.org
[2] Synopsys, CoCentric SystemC Compiler. Behavioral
User and Modeling Guide,2002.
[3] Vargas, F., Lettnin, D., Felippetto de Castro, M. C.,
Macarthy, M. “Electrocardiogram Pattern Recognition
by Means of MLP Network and PCA: A Case Study on
Equal Amount of Input Signal Types”. SBRN2002.
[4] Haykin, S. Neural Networks. Editor Prentice Hall,
1999.
[5] Braun A. G., Freuer Jan B., Gerlach J., Rosenstiel,
W. “Automated Conversion of SystemC Fixed-Point
Data Types for Hardware Synthesis” IFIP VLSI SOC
2003;

[6] Weiss, K., Steckstor, T.,Oetker, C., Esser, K.
Embedded Systems Design Group. User’s Manual.
Spyder-Virtex-X2E.
[7] Mueller, W., Rosenstiel, W., Ruf, J. SystemC
Methodologies and Applications. Kluwer Academic
Publishers, 2003.
[8] Groetker, T., Stan Liao, Grant Martin, Stuart Swan,
System Design with SystemC, Kluwer Academic
Publishers, The Netherlands, 2002.
[9] Sayinta, A., G. Canverdi, M. Pauwels, A. Alshawa,
W. Dehaene,”A Mixed Abstraction Level Co-
Simulation Case Study Using SystemC for System on
Chip Verification”, Designers’ Forum, DATE03.
[10] Bruschi, F., F. Ferrandi, “Synthesis of complex
control structures from behavioral SystemC models”,
Designers’ Forum, DATE03.
[11] Ramacher, U., Ulrich Rückert, VLSI Design of
Neural Networks, Kluwer Academic Publishers, The
Netherlands, 1991.
[12] MIT/BIH database distributor, Beth Israel Hospital,
Biomedical Engineering, Division, available in the
address: http://ecg.mit.edu/, USA, 1979.
[13] Ossoinig, H., E. Reisinger, C. Steger, R. Weiss,
“Design and FPGA-Implementation of a Neural
Network”, available in the address:
www.icspat.com/papers/493mfi.pdf
 [14] Synopsys, Inc. CoCentric Fixed-Point Designer
User Guide, version 2002.05 edition, June 2002.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

