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Abstract 
This paper describes a run-time reconfigurable 
architecture targeted to flexible low-level image processing 
functions. The purpose is to present the evolution of the 
DRIP (Dynamically Reconfigurable Image Processor) 
architecture from a statically configurable datapath design 
to a dynamically reconfigurable approach. The 
methodology used to redefine the datapath basic building 
blocks and the hardware units developed to provide an 
efficient and flexible image processing system are also 
discussed. An important issue is the granularity of the basic 
processing elements of the datapath, in view of the 
combination of programmable function by hardware 
control - the classical datapath paradigm - and the 
dynamic reconfiguration. DRIP can perform a large set of 
digital image processing algorithms with real-time 
performance to fulfill the requirements of contemporary 
complex applications. 

 

1. Introduction 
 

In recent years the reconfigurable computing machines 
introduced a new set of alternatives for hardware and 
systems designers. Fueled by the increasing FPGA densities 
and the combination of software targeted tasks with run-
time reconfiguration of the system, the configurable SoC 
(system-on-chip) [1] offers great room for system 
architecture innovations. Due to the ability to customize 
hardware modules, it is possible to optimize control, 
datapath and interconnections according to specific 
algorithm requirements. Run-Time Reconfigurable (RTR) 
systems in particular can achieve outstanding benefits from 
this paradigm, adapting to the instantaneous needs of an 
application. 

Reconfigurable architectures bring the possibility to 
combine the post-fabrication programmability of processors 
with the performance, area savings and power consumption 
of specific circuits (ASICs, ASIPs – application specific 
instruction-set processors) [2]. As a mid-range solution 
between generic (software) and specific (hardware) 
approaches, reconfigurable architectures are a valuable tool 
for design space exploration.  

Contemporary multimedia and telecommunication 
applications bring new challenges to designers. Besides the 
high performance demanded by complex algorithms, two 
increasingly important design aspects must be considered: 
power consumption per function and hardware flexibility to 
reconfigure for specific tasks. The success of many 
embedded systems is directly related to a low-power design 
that maximizes the device autonomy. In [3,4] 
reconfigurable computing is presented as a mechanism to 
build energy-efficient architectures. The flexibility of 
reconfigurable systems is also a key factor. It allows the 
modification of deployed products through the addition of 
new services or the redefinition of algorithms functionality 
resulting in important commercial advantages that are not 
found in ASICs. Multimedia operations include algorithms 
that require heavy real-time processing. Image analysis and 
machine vision solutions are important in many industrial 
applications such as robotics, security, medical imaging, 
and scene inspection. These applications have regular 
characteristics and an inherent level of parallelism that can 
be exploited by reconfigurable systems. Complete 
infrastructure for relocating tasks in hardware in a run-time 
environment for a complete SoC is presented in [5], 
specifically targeting image processing applications as a 
first demonstrator. 

In this paper we present a new implementation of the 
reconfigurable neighborhood processor DRIP [6]. The 
DRIP structure is inspired in the functional programming 
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(FP) paradigm [7]. A great advantage of this approach is the 
ability to express complex problems with simple basic 
functions, allowing the efficient implementation of a large 
number of image processing algorithms. In the FP style a 
program can be naturally expressed by an equivalent data 
flow graph [8]. 

This work is organized as follows. Section 2 introduces 
the architecture, presenting the general structure and the 
processing elements, discusses enhancements made in the 
datapath processing elements and the dynamic 
reconfiguration mechanism. Section 3 presents performance 
results obtained with the reconfigurable datapath for 
important image processing algorithms. Conclusions are 
drawn in Section 4. 

 

2. Architecture 
 

A neighborhood processor is similar to an array processor 
[9]. It processes an input image, generating a new image, 
where each output pixel is a function of its correspondent in 
the input image and the nearest neighbors. Using a standard 
neighborhood (e.g.: 3x3, 5x5 or 7x7 pixels), it scans the 
image line by line. The general DRIP architecture (a block 
diagram representation is shown in figure 1) can be adapted 
to any of these neighborhood ranges. The implementation 
discussed here uses 3x3 pixel windows. 

 

 

Figure 1. General architecture. 

The I/O processor is responsible for the communication 
with the frame buffer. It comprises the neighborhood 
generator that provides 3x3 pixel windows to the datapath. 
In our experiments the PCI interface and I/O processor are 
the speed bottleneck. The I/O processor additionally 
receives new configurations to be stored in the context 
memory area. Each configuration for the datapath is 
specified by a very compact (405 bits only) representation 
of the whole datapath configuration bits. 

2.1 Reconfigurable Datapath 
 

The datapath is composed of a bidimensional (9x9) 
matrix of processing elements (PEs). The structure of the 

pipeline follows a data flow graph represented by a class of 
non-linear filters widely used in digital image processing. 
[8]. The hardware implementation of these filters is based 
on a parallel sorting network, more specifically on the odd-
even transposition sort algorithm [10], which achieves a 
good trade-off between parallelism, regularity and 
execution time. Figure 2 presents a high level view of the 9-
stage pipelined datapath.  
 

 

Figure 2.  Reconfigurable datapath. 

 

2.2 Processor Elements 
 

The processor element (Figure 3) is the basic 
programming block of the processor. In spite of being a 
simple cell, its connection in the DRIP architecture provides 
all the flexibility needed to implement a wide number of 
digital image processing algorithms. The processor 
elements execute only two basic operations: MAX, 
representing the class of non-linear operations and ADD 
representing the class of linear algorithms. Each PE 
receives two input pixels X1 and X2, which are 9-bit wide 
in our experiments. To increase PE’s logical capabilities an 
integer weight (-1, 0 or 1) is associated to each input. 

The simplified view and the corresponding hardware 
structure of the PE are shown in Figure 3. The 2C block 
represents the circuit for negative numbers generation. As 
an example, suppose that for some PE the MAX function is 
programmed and the multiplexors have, respectively, the 
first and second inputs selected, in this case the output S 
will correspond to MAX(-X1,X2). 

 

 

Figure 3.  Processor element. 



Datapath (re)configuration consists in the customization 
of the PE network. According to the mentioned parameters 
(2 possible functions, 2 inputs and 3 possible integer 
weights) we are allowed to apply 18 different 
configurations to a single PE. However, many of them are 
symmetrical, for example MAX(X1*1,X2*0) is the same as 
MAX(X1*0,X2*1). This property defines a set of 11 really 
unique functions, which, in turn, are capable to support that 
large class of image filtering applications. These 11 
functions are shown in Table 1. 

Table 1. Configurations. 

Configuration Function 

Add(0,0); Max(0,0) 0 

Add(0,X2); Add(X1,0) X1(2) 

Add(-X1,0); Add(0,-X2) -X1(2) 

Add(X1,X2) addition 

Add(-X1,X2); Add(X1,-X2) subtraction 

Add(-X1,-X2) -X1 – X2 

Max(0,X2); Max(X1,0) If X1(2) > 0 then X1(2) else 0 

Max(0,-X2); Max(-X1,0) If X2(1) < 0 then X2(1) else 0 

Max(X1,X2) Max(X1,X2) 

Max(-X1,X2);Max(X1,-X2) If X1(2) > X2(1) then X1(2) 

Max(-X1,-X2) -Min(X1,X2) 

 

2.3 Processor Elements Granularity 
 

The term granularity, in this work, is being used to 
define the complexity of a cell. Thus, an increase in the 
granularity of a PE means that it has more hardware 
resources than before, however, it still processes 9-bit 
pixels.  

The DRIP architecture evolved from a straightforward 
pipelined neighborhood processor NP9 [11] with an array 
of 9x9 processor elements arranged in a 9-stage pipeline, 
towards a fully reconfigurable datapath. In the previous 
DRIP version [6] the PE was synthesized for very specific 
image processing algorithms – hence a low granularity, 
super-specialized cell to the bit-level processing. Each PE 
was optimized and mapped to only one of the functions of 
Table 1 and could not be reprogrammed (no programmable 
hardware structures such as the multiplexors in figure 3 
were used in low-grain PEs). The reconfiguration strategy 
demanded that the image processing task ended (for a 
complete image buffer, for instance), in order to fully 
reconfigure the entire processor datapath elements, down to 
the bit-level. The loading of the new configuration 
introduces considerable reconfiguration overhead, in 
particular in view of the limited support present in the 
FPGAs for partial reconfiguration. Our experiments with 

the FLEX10k Altera device have shown that one spends 
considerable time (hundreds of milliseconds) and energy to 
fully reconfigure the entire device. By direct measurements 
on pin-currents, we noticed a large circuit activity, hence 
power dissipation during reconfiguration. 

A higher granularity level was added with the inclusion 
of extra hardware, increasing both the PE grain size and the 
program-control support for RTR. Besides conventional 
datapath control by programming, larger grain size can 
bring other benefits such as less routing complexity [12] for 
the reconfigurable datapath. 

Nevertheless, our approach is still radically distinct from 
other much more coarse-grained architectures. For instance, 
Morphosys [16] system-on-chip, a SIMD multiprocessor 
architecture composed by 64 reconfigurable cells, also 
targeting image and DSP applications. 

 

2.4 Environment for Algorithm Prototyping 
 

Considering successive algorithms mapped on the 
datapath it seems natural that the less modifications needed 
from one configuration to another the less reconfiguration 
overhead will be produced. Besides, all possible algorithms 
are composed of only 11 different functions, which results 
in a considerable PE reuse. 

The RRANN (Run-time Reconfigurable Array Neural 
Network) [13] project uses partially reconfigurable FPGAs 
and great part of the design effort is concentrated in 
reducing the amount of hardware to be reconfigured. In this 
context, three different types of blocks can be defined: 
static, dynamic and semi-static. Static blocks remain 
unchanged between configurations. Dynamic cells are the 
ones that change completely or almost completely, while 
semi-static cells present very few structural differences. 

Analyzing the different digital image processing 
algorithms mapped on DRIP datapath it is readily seen that 
a significant similarity level exists, which reflects in a huge 
number of static and semi-static PEs. Therefore, we can 
map only the really needed elements to the reconfigurable 
fabric reducing resources usage significantly and, at the 
same time, minimizing the logic depth of the cells that leads 
to higher operational frequencies.    

We developed a specific CAD tool [14] for targeting 
different image processing algorithms into the DRIP 
datapath. The tool performs, at pre-synthesis time, a 
similarity analysis through a topological comparison 
between target algorithms. As a result an optimized VHDL 
model for the application is generated. Hence, the 
synthesized design is optimized for a large range of image 
processing algorithms. Figure 4 shows, as an example, a PE 
that supports MAX(X1,X2) and MAX(X1,0). In this case, 
the CAD tool identified that the multiplexor of the first 



input and 2C negative number generators were not needed, 
besides the second multiplexor could be a 2:1 multiplexor. 

 

Figure 4. Custom processor element. 

2.5 I/O Processor and Reconfiguration Control 
 

The I/O processor communicates with the frame buffer 
through a PCI bus. It is responsible for providing the pixels 
to the datapath and to send new configurations to the 
multicontext memory area. It also comprises the 
neighborhood generator with its data buffer. The data buffer 
stores the pixels needed for the algorithm processing. We 
identified that 2n+3 pixels is the maximum buffer size 
necessary, where n is the image line width. The 3x3 
neighborhood generator is a FIFO-like structure as can be 
seen in figure 5. 

 

 

Figure 5.  Neighborhood generator. 

The multicontext control management unit (MCMU) is 
responsible for the reconfiguration process. It 
communicates with the context buffers in the context 
memory area, where complete datapath configurations are 
stored. The context memory area comprises 16 
configuration buffers. An entire configuration for the 
datapath requires only 405 bits that are divided in 9 slices 
of 45 bits. Each slice contains the configuration of an 
individual column, which is a DRIP pipeline stage. 

The replacement of a configuration can be performed in 
parallel or in a pipelined fashion. In parallel mode the 
configuration data is transferred from a context buffer to the 
datapath in one clock cycle. In pipelined mode, the columns 
from 1 to 9 are reconfigured one at each clock cycle. The 
MCMU is able to manage new configurations received from 

the I/O processor. This allows the inclusion of new 
algorithms extending the processor functionalities. In this 
situation the context buffers can be seen as a background 
configuration plane [15] that can store new algorithms 
while the current active program is still running. 

3. Results 
 

As explained previously, DRIP can perform a large number 
of image processing operations. Some examples include: 
linear (convolution), non-linear and hybrid filters, binary 
and gray-level morphological operations (dilation, erosion, 
thinning and thickening algorithms, morphological edge 
detectors, gradient), binary and gray-level geodesic 
operations, etc. Table 2 shows the maximum datapath 
frequency achieved for five of these algorithms using two 
different Altera FPGA devices. Apex 20K is roughly twice 
as fast as Flex10K for these circuits. 
 

Table 2.  DRIP datapath performance for FLEX10k and 
APEX20k devices. 

Algorithm FLEX10k 
(MHz) 

APEX20k  
(MHz) 

Median Filter 32.89  77.05 

Morph. Edge Detector 48.78 110.45 

Erosion 39.84 78.74 

Dilation 44.12 84.18 

Separable Median Filter 46.30 105.9 

 

These numbers assure real-time performance even for 
significant image resolutions. The parallelism and regularity 
of the datapath and the characteristics of image processing 
applications make DRIP well suited for low-level 
multimedia tasks. 

Figure 6 shows the frame throughput (in frames/sec) for 
3 different situations. The morphological edge detector and 
the median filter represent, respectively, the fastest and the 
slowest configurations when considering only one algorithm 
mapped to the datapath at a given time, as in the previous 
DRIP approach. The inferior line in figure 6 (triangle style 
line) represents DRIP-RTR, in a configuration that supports 
faster reconfiguration, in order to run up to 5 different 
image processing algorithms. All implementations have 
considered the DRIP hardware processing in VGA (640 x 
480), SVGA (800 x 600 and 1024 x 768), and SXVGA 
(2048 x 1536) image resolutions. 
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Fig. 6.  Pixels vs Frames/s for some image resolutions. 

As said before, the values in table 2 were achieved 
considering a datapath implementation that can support 
only the synthesized algorithm, it is a maximum 
performance table. Due to the overheads naturally added 
when allowing run-time reconfiguration, a datapath 
implementation where it’s possible to perform RTR 
reconfiguration between the five algorithms of table 2 needs 
1830 logic cells (LCs) running at 68,2 MHz. 

As can be seen in Figure 6, DRIP-RTR is slower than 
the datapath implementations that can support only one 
algorithm. However, thanks to the new approach, DRIP-
RTR can be reconfigured in one clock cycle what is faster, 
in the order of millions of times, than the statically 
reconfigurable version.    

Table 3 shows the number of Altera logic cells used in 
each version of the neighborhood processor configuration. 
NP9 is statically configured to be capable of performing all 
image processing algorithms. DRIP-RTR uses the medium 
granularity elements, and in this example it also supports 
the five algorithms of table 2. The values for the 
reconfigurable DRIP are based on the worst-case 
application.  

Table 3. Logic cells usage. 

(Re)configurable Processor  # Altera LCs 

NP9 6526 LCs Flex10K100 + 
Flex10K70 [6] 

Reconfigurable DRIP 1113 LCs Flex10K30 [6] 

DRIP - RTR 1830 LCs APEX20k 

 

DRIP-RTR has a data flow oriented architecture with 
medium granularity, allowing reconfiguration for any bit-
width operations. In all results shown in Tables 2 and 3, 9-

bit gray scale pixels are processed. Hence, the comparisons 
are valid for this resolution; however the synthesis method 
can be easily extended for n-bits pixel scales. 

 

4. Conclusions 
 

Reconfigurable architectures are extending products life 
cycles through real time in-system debugging, field-
maintenance and remote upgrades. This flexibility comes 
together with characteristics of special purpose designs such 
as high performance and low power consumption. 

In this context, we presented the evolution of the DRIP 
image processor. From a statically reconfigurable design a 
new flexible run-time reconfigurable system was developed. 
Increasing the processor basic building block grain size, we 
added the extra hardware to support a new level of 
programmability. Our CAD tool is used to determine the 
right amount of hardware needed by each PE in the 
reconfigurable datapath. 

DRIP-RTR achieves a significant performance with very 
little reconfiguration latency. The MCMU can efficiently 
handle the reconfiguration process and is also suited to 
support the extension to new algorithms. This can be done 
for data-flow oriented tasks that allow for highly parallel 
and highly reconfigurable datapaths.  

The results showed that the datapath and control 
overheads introduced in the development of the run-time 
reconfigurable strategy is a price worth paying. There is a 
11% difference in the performance in favor to the statically 
reconfigurable approach (datapath support for only one 
algorithm), however, due to the RTR version 
programmability and the on-chip context buffers, it can be 
reconfigured in one clock cycle, what is much faster 
(millions of times in DRIP) than reprogramming the entire 
FPGA. Considering the development of configurable 
systems-on-chip, DRIP-RTR can be an efficient core 
specialized in general image filtering applications.  
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