

A Run-Time Reconfigurable Datapath Architecture for Image Processing

Applications

Marcos R. Boschetti, Ivan S. Silva*, Sergio Bampi
Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

*Informatics and Applied Mathematics Department, Federal University of Rio Grande do Norte,
Natal, Brazil

{marcosrb,bampi}@inf.ufrgs.br
ivan@dimap.ufrn.br

Abstract
This paper describes a run-time reconfigurable
architecture targeted to flexible low-level image processing
functions. The purpose is to present the evolution of the
DRIP (Dynamically Reconfigurable Image Processor)
architecture from a statically configurable datapath design
to a dynamically reconfigurable approach. The
methodology used to redefine the datapath basic building
blocks and the hardware units developed to provide an
efficient and flexible image processing system are also
discussed. An important issue is the granularity of the basic
processing elements of the datapath, in view of the
combination of programmable function by hardware
control - the classical datapath paradigm - and the
dynamic reconfiguration. DRIP can perform a large set of
digital image processing algorithms with real-time
performance to fulfill the requirements of contemporary
complex applications.

1. Introduction

In recent years the reconfigurable computing machines
introduced a new set of alternatives for hardware and
systems designers. Fueled by the increasing FPGA densities
and the combination of software targeted tasks with run-
time reconfiguration of the system, the configurable SoC
(system-on-chip) [1] offers great room for system
architecture innovations. Due to the ability to customize
hardware modules, it is possible to optimize control,
datapath and interconnections according to specific
algorithm requirements. Run-Time Reconfigurable (RTR)
systems in particular can achieve outstanding benefits from
this paradigm, adapting to the instantaneous needs of an
application.

Reconfigurable architectures bring the possibility to
combine the post-fabrication programmability of processors
with the performance, area savings and power consumption
of specific circuits (ASICs, ASIPs – application specific
instruction-set processors) [2]. As a mid-range solution
between generic (software) and specific (hardware)
approaches, reconfigurable architectures are a valuable tool
for design space exploration.

Contemporary multimedia and telecommunication
applications bring new challenges to designers. Besides the
high performance demanded by complex algorithms, two
increasingly important design aspects must be considered:
power consumption per function and hardware flexibility to
reconfigure for specific tasks. The success of many
embedded systems is directly related to a low-power design
that maximizes the device autonomy. In [3,4]
reconfigurable computing is presented as a mechanism to
build energy-efficient architectures. The flexibility of
reconfigurable systems is also a key factor. It allows the
modification of deployed products through the addition of
new services or the redefinition of algorithms functionality
resulting in important commercial advantages that are not
found in ASICs. Multimedia operations include algorithms
that require heavy real-time processing. Image analysis and
machine vision solutions are important in many industrial
applications such as robotics, security, medical imaging,
and scene inspection. These applications have regular
characteristics and an inherent level of parallelism that can
be exploited by reconfigurable systems. Complete
infrastructure for relocating tasks in hardware in a run-time
environment for a complete SoC is presented in [5],
specifically targeting image processing applications as a
first demonstrator.

In this paper we present a new implementation of the
reconfigurable neighborhood processor DRIP [6]. The
DRIP structure is inspired in the functional programming

1530-1591/04 $20.00 (c) 2004 IEEE

(FP) paradigm [7]. A great advantage of this approach is the
ability to express complex problems with simple basic
functions, allowing the efficient implementation of a large
number of image processing algorithms. In the FP style a
program can be naturally expressed by an equivalent data
flow graph [8].

This work is organized as follows. Section 2 introduces
the architecture, presenting the general structure and the
processing elements, discusses enhancements made in the
datapath processing elements and the dynamic
reconfiguration mechanism. Section 3 presents performance
results obtained with the reconfigurable datapath for
important image processing algorithms. Conclusions are
drawn in Section 4.

2. Architecture

A neighborhood processor is similar to an array processor
[9]. It processes an input image, generating a new image,
where each output pixel is a function of its correspondent in
the input image and the nearest neighbors. Using a standard
neighborhood (e.g.: 3x3, 5x5 or 7x7 pixels), it scans the
image line by line. The general DRIP architecture (a block
diagram representation is shown in figure 1) can be adapted
to any of these neighborhood ranges. The implementation
discussed here uses 3x3 pixel windows.

Figure 1. General architecture.

The I/O processor is responsible for the communication
with the frame buffer. It comprises the neighborhood
generator that provides 3x3 pixel windows to the datapath.
In our experiments the PCI interface and I/O processor are
the speed bottleneck. The I/O processor additionally
receives new configurations to be stored in the context
memory area. Each configuration for the datapath is
specified by a very compact (405 bits only) representation
of the whole datapath configuration bits.

2.1 Reconfigurable Datapath

The datapath is composed of a bidimensional (9x9)
matrix of processing elements (PEs). The structure of the

pipeline follows a data flow graph represented by a class of
non-linear filters widely used in digital image processing.
[8]. The hardware implementation of these filters is based
on a parallel sorting network, more specifically on the odd-
even transposition sort algorithm [10], which achieves a
good trade-off between parallelism, regularity and
execution time. Figure 2 presents a high level view of the 9-
stage pipelined datapath.

Figure 2. Reconfigurable datapath.

2.2 Processor Elements

The processor element (Figure 3) is the basic
programming block of the processor. In spite of being a
simple cell, its connection in the DRIP architecture provides
all the flexibility needed to implement a wide number of
digital image processing algorithms. The processor
elements execute only two basic operations: MAX,
representing the class of non-linear operations and ADD
representing the class of linear algorithms. Each PE
receives two input pixels X1 and X2, which are 9-bit wide
in our experiments. To increase PE’s logical capabilities an
integer weight (-1, 0 or 1) is associated to each input.

The simplified view and the corresponding hardware
structure of the PE are shown in Figure 3. The 2C block
represents the circuit for negative numbers generation. As
an example, suppose that for some PE the MAX function is
programmed and the multiplexors have, respectively, the
first and second inputs selected, in this case the output S
will correspond to MAX(-X1,X2).

Figure 3. Processor element.

Datapath (re)configuration consists in the customization
of the PE network. According to the mentioned parameters
(2 possible functions, 2 inputs and 3 possible integer
weights) we are allowed to apply 18 different
configurations to a single PE. However, many of them are
symmetrical, for example MAX(X1*1,X2*0) is the same as
MAX(X1*0,X2*1). This property defines a set of 11 really
unique functions, which, in turn, are capable to support that
large class of image filtering applications. These 11
functions are shown in Table 1.

Table 1. Configurations.

Configuration Function

Add(0,0); Max(0,0) 0

Add(0,X2); Add(X1,0) X1(2)

Add(-X1,0); Add(0,-X2) -X1(2)

Add(X1,X2) addition

Add(-X1,X2); Add(X1,-X2) subtraction

Add(-X1,-X2) -X1 – X2

Max(0,X2); Max(X1,0) If X1(2) > 0 then X1(2) else 0

Max(0,-X2); Max(-X1,0) If X2(1) < 0 then X2(1) else 0

Max(X1,X2) Max(X1,X2)

Max(-X1,X2);Max(X1,-X2) If X1(2) > X2(1) then X1(2)

Max(-X1,-X2) -Min(X1,X2)

2.3 Processor Elements Granularity

The term granularity, in this work, is being used to
define the complexity of a cell. Thus, an increase in the
granularity of a PE means that it has more hardware
resources than before, however, it still processes 9-bit
pixels.

The DRIP architecture evolved from a straightforward
pipelined neighborhood processor NP9 [11] with an array
of 9x9 processor elements arranged in a 9-stage pipeline,
towards a fully reconfigurable datapath. In the previous
DRIP version [6] the PE was synthesized for very specific
image processing algorithms – hence a low granularity,
super-specialized cell to the bit-level processing. Each PE
was optimized and mapped to only one of the functions of
Table 1 and could not be reprogrammed (no programmable
hardware structures such as the multiplexors in figure 3
were used in low-grain PEs). The reconfiguration strategy
demanded that the image processing task ended (for a
complete image buffer, for instance), in order to fully
reconfigure the entire processor datapath elements, down to
the bit-level. The loading of the new configuration
introduces considerable reconfiguration overhead, in
particular in view of the limited support present in the
FPGAs for partial reconfiguration. Our experiments with

the FLEX10k Altera device have shown that one spends
considerable time (hundreds of milliseconds) and energy to
fully reconfigure the entire device. By direct measurements
on pin-currents, we noticed a large circuit activity, hence
power dissipation during reconfiguration.

A higher granularity level was added with the inclusion
of extra hardware, increasing both the PE grain size and the
program-control support for RTR. Besides conventional
datapath control by programming, larger grain size can
bring other benefits such as less routing complexity [12] for
the reconfigurable datapath.

Nevertheless, our approach is still radically distinct from
other much more coarse-grained architectures. For instance,
Morphosys [16] system-on-chip, a SIMD multiprocessor
architecture composed by 64 reconfigurable cells, also
targeting image and DSP applications.

2.4 Environment for Algorithm Prototyping

Considering successive algorithms mapped on the
datapath it seems natural that the less modifications needed
from one configuration to another the less reconfiguration
overhead will be produced. Besides, all possible algorithms
are composed of only 11 different functions, which results
in a considerable PE reuse.

The RRANN (Run-time Reconfigurable Array Neural
Network) [13] project uses partially reconfigurable FPGAs
and great part of the design effort is concentrated in
reducing the amount of hardware to be reconfigured. In this
context, three different types of blocks can be defined:
static, dynamic and semi-static. Static blocks remain
unchanged between configurations. Dynamic cells are the
ones that change completely or almost completely, while
semi-static cells present very few structural differences.

Analyzing the different digital image processing
algorithms mapped on DRIP datapath it is readily seen that
a significant similarity level exists, which reflects in a huge
number of static and semi-static PEs. Therefore, we can
map only the really needed elements to the reconfigurable
fabric reducing resources usage significantly and, at the
same time, minimizing the logic depth of the cells that leads
to higher operational frequencies.

We developed a specific CAD tool [14] for targeting
different image processing algorithms into the DRIP
datapath. The tool performs, at pre-synthesis time, a
similarity analysis through a topological comparison
between target algorithms. As a result an optimized VHDL
model for the application is generated. Hence, the
synthesized design is optimized for a large range of image
processing algorithms. Figure 4 shows, as an example, a PE
that supports MAX(X1,X2) and MAX(X1,0). In this case,
the CAD tool identified that the multiplexor of the first

input and 2C negative number generators were not needed,
besides the second multiplexor could be a 2:1 multiplexor.

Figure 4. Custom processor element.

2.5 I/O Processor and Reconfiguration Control

The I/O processor communicates with the frame buffer
through a PCI bus. It is responsible for providing the pixels
to the datapath and to send new configurations to the
multicontext memory area. It also comprises the
neighborhood generator with its data buffer. The data buffer
stores the pixels needed for the algorithm processing. We
identified that 2n+3 pixels is the maximum buffer size
necessary, where n is the image line width. The 3x3
neighborhood generator is a FIFO-like structure as can be
seen in figure 5.

Figure 5. Neighborhood generator.

The multicontext control management unit (MCMU) is
responsible for the reconfiguration process. It
communicates with the context buffers in the context
memory area, where complete datapath configurations are
stored. The context memory area comprises 16
configuration buffers. An entire configuration for the
datapath requires only 405 bits that are divided in 9 slices
of 45 bits. Each slice contains the configuration of an
individual column, which is a DRIP pipeline stage.

The replacement of a configuration can be performed in
parallel or in a pipelined fashion. In parallel mode the
configuration data is transferred from a context buffer to the
datapath in one clock cycle. In pipelined mode, the columns
from 1 to 9 are reconfigured one at each clock cycle. The
MCMU is able to manage new configurations received from

the I/O processor. This allows the inclusion of new
algorithms extending the processor functionalities. In this
situation the context buffers can be seen as a background
configuration plane [15] that can store new algorithms
while the current active program is still running.

3. Results

As explained previously, DRIP can perform a large number
of image processing operations. Some examples include:
linear (convolution), non-linear and hybrid filters, binary
and gray-level morphological operations (dilation, erosion,
thinning and thickening algorithms, morphological edge
detectors, gradient), binary and gray-level geodesic
operations, etc. Table 2 shows the maximum datapath
frequency achieved for five of these algorithms using two
different Altera FPGA devices. Apex 20K is roughly twice
as fast as Flex10K for these circuits.

Table 2. DRIP datapath performance for FLEX10k and
APEX20k devices.

Algorithm FLEX10k
(MHz)

APEX20k
(MHz)

Median Filter 32.89 77.05

Morph. Edge Detector 48.78 110.45

Erosion 39.84 78.74

Dilation 44.12 84.18

Separable Median Filter 46.30 105.9

These numbers assure real-time performance even for
significant image resolutions. The parallelism and regularity
of the datapath and the characteristics of image processing
applications make DRIP well suited for low-level
multimedia tasks.

Figure 6 shows the frame throughput (in frames/sec) for
3 different situations. The morphological edge detector and
the median filter represent, respectively, the fastest and the
slowest configurations when considering only one algorithm
mapped to the datapath at a given time, as in the previous
DRIP approach. The inferior line in figure 6 (triangle style
line) represents DRIP-RTR, in a configuration that supports
faster reconfiguration, in order to run up to 5 different
image processing algorithms. All implementations have
considered the DRIP hardware processing in VGA (640 x
480), SVGA (800 x 600 and 1024 x 768), and SXVGA
(2048 x 1536) image resolutions.

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100 150 200 250 300 350 400

Frames / s

P
ix

el
s

(M
ill

io
n

)
Morph. Edge Detector Median 5 algorithms

Fig. 6. Pixels vs Frames/s for some image resolutions.

As said before, the values in table 2 were achieved
considering a datapath implementation that can support
only the synthesized algorithm, it is a maximum
performance table. Due to the overheads naturally added
when allowing run-time reconfiguration, a datapath
implementation where it’s possible to perform RTR
reconfiguration between the five algorithms of table 2 needs
1830 logic cells (LCs) running at 68,2 MHz.

As can be seen in Figure 6, DRIP-RTR is slower than
the datapath implementations that can support only one
algorithm. However, thanks to the new approach, DRIP-
RTR can be reconfigured in one clock cycle what is faster,
in the order of millions of times, than the statically
reconfigurable version.

Table 3 shows the number of Altera logic cells used in
each version of the neighborhood processor configuration.
NP9 is statically configured to be capable of performing all
image processing algorithms. DRIP-RTR uses the medium
granularity elements, and in this example it also supports
the five algorithms of table 2. The values for the
reconfigurable DRIP are based on the worst-case
application.

Table 3. Logic cells usage.

(Re)configurable Processor # Altera LCs

NP9 6526 LCs Flex10K100 +
Flex10K70 [6]

Reconfigurable DRIP 1113 LCs Flex10K30 [6]

DRIP - RTR 1830 LCs APEX20k

DRIP-RTR has a data flow oriented architecture with
medium granularity, allowing reconfiguration for any bit-
width operations. In all results shown in Tables 2 and 3, 9-

bit gray scale pixels are processed. Hence, the comparisons
are valid for this resolution; however the synthesis method
can be easily extended for n-bits pixel scales.

4. Conclusions

Reconfigurable architectures are extending products life
cycles through real time in-system debugging, field-
maintenance and remote upgrades. This flexibility comes
together with characteristics of special purpose designs such
as high performance and low power consumption.

In this context, we presented the evolution of the DRIP
image processor. From a statically reconfigurable design a
new flexible run-time reconfigurable system was developed.
Increasing the processor basic building block grain size, we
added the extra hardware to support a new level of
programmability. Our CAD tool is used to determine the
right amount of hardware needed by each PE in the
reconfigurable datapath.

DRIP-RTR achieves a significant performance with very
little reconfiguration latency. The MCMU can efficiently
handle the reconfiguration process and is also suited to
support the extension to new algorithms. This can be done
for data-flow oriented tasks that allow for highly parallel
and highly reconfigurable datapaths.

The results showed that the datapath and control
overheads introduced in the development of the run-time
reconfigurable strategy is a price worth paying. There is a
11% difference in the performance in favor to the statically
reconfigurable approach (datapath support for only one
algorithm), however, due to the RTR version
programmability and the on-chip context buffers, it can be
reconfigured in one clock cycle, what is much faster
(millions of times in DRIP) than reprogramming the entire
FPGA. Considering the development of configurable
systems-on-chip, DRIP-RTR can be an efficient core
specialized in general image filtering applications.

Acknowledgments

The authors acknowledge the support from CAPES and
CNPq, brazilian research agencies for R&D support.

References

[1] Becker J., “Configurable systems-on-chip” . Integrated Circuits
and Systems Design, 2002. Proceedings. 15th Symposium on ,
2002 pp. 379 -384

[2] DeHon A., Wawrzynek J., “Reconfigurable Computing: What,
Why, and Implications for Design Automation” . Design

Automation Conference, 1999. Proceedings. 36th , 1999 Page(s):
610 –615

[3] Rabaey J., "Reconfigurable Processing: The Solution to Low-
Power Programmable DSP”. Proceedings ICASSP 1997, Munich,
April 1997.

[4] David R., Chillet D., Pillement S., Sentieys O., “DART: A
Dynamically Reconfigurable Architecture Dealing with Future
Mobile Telecommunications Constraints” . Parallel and
Distributed Processing Symposium., Proceedings International,
IPDPS 2002,

[5] Mignolet, J-Y., Nollet V., Coene, P., Verkest D., Vernalde S.
and Lauwereins R., “ Infrastructure for Design and Management of
Relocatable Tasks in a Heterogeneous Reconfigurable System-on-
Chip” . In: Design, Automation and Test in Europe, 2003, pp. 986-
991.

 [6] Adário A. M. S, Roehe E. L., Bampi S, “Dynamically
Reconfigurable Architecture for Image Processor Applications” .
In: 36th Design Automation Conference, New Orleans, June
1999. Proceedings, 1999, pp 623-628.

[7] Backus J., “Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Programs” .
Comm. Of the ACM, vol 21, n. 8, Aug. 1978, pp.613-641.

[8] Leite N. J, Barros M. A.,”A Highly Reconfigurable
Neighborhood Processor Based on Functional programming”. In
IEEE International Conference on Image Processing, Nov 1994,
Proceedings… pp. 659-663

[9] Fountain, T.J. “Processor Arrays: Architecture and
Applications” . London: Academic Press, 1987.

[10] Knuth, D. E., “The Art of Computer Programming” ,
Reading, Massachusetts: Addison-Wesley, 1973

[11] Adário A. M. S., “A FPGA Implementation of a
Neighborhood Processor for Image Processing Applications” ,
Master Thesis, Unicamp, Brazil, 1997.

[12] Hartenstein H., “A Decade of Research on Reconfigurable
Architectures - a Visionary Retrospective” . Proc. International
Conference on Design Automation and Testing in Europe 2001
(DATE 2001), Exhibit and Congress Center, Munich, Germany,
March 2001”

[13] Eldredge, J., Hutchings B. L., “RRANN: The Run-Time
Reconfigurable Artificial Neural Network “ . In: Custom
Integrated Circuits Conference, 1994, San Diego, California.
Proceedings pp 77-80.

[14] Boschetti M. R., Adario A. M. S., Silva I. S., Bampi S.,
“Techniques and Mechanisms for Dynamic Reconfiguration in an
Image Processor” . Integrated Circuits and Systems Design
Symposium, SBCCI2002. Proceedings. 15th Symposium on, 2002

[15] Salefski B., Caglar L.,” Re-configurable computing in
wireless” , Design Automation Conference, 2001. Proceedings,
2001

[16] Singh H., Ming-Hau Lee, Guangming Lu, Kurdahi F.J.
,Bagherzadeh N., Chaves Filho E. M., “MorphoSys: an
integrated reconfigurable system for data-parallel and
computation-intensive applications” . Computers, IEEE
Transactions on, Volume: 49 Issue: 5, May 2000
pp 465-481

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

