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Abstract

This paper describes a customisable architecture and
the associated tools for a prototype EPIC (Explicitly Par-
allel Instruction Computing) processor. Possible customi-
sations include varying the number of registers and func-
tional units, which are specified at compile-time. This facil-
itates the exploration of performance/area trade-off for dif-
ferent EPIC implementations. We describe the tools for this
EPIC processor, which include a compiler and an assem-
bler based on the Trimaran framework. Various pipelined
EPIC designs have been implemented using Field Pro-
grammable Gate Arrays (FPGAs); the one with 4 ALUs at
41.8 MHz can run a DCT application 5 times faster than
the StrongARM SA-110 processor at 100 MHz.

1. Introduction

Rapid advances in reconfigurable hardware technology
have enabled the implementation of instruction processors
using Field Programmable Gate Arrays (FPGAs). Such
implementations can often be customised to meet the re-
quirements for a particular application. Examples of these
reconfigurable instruction processors include Nios [1] and
MicroBlaze [15], and various architectures based on mi-
crocontrollers, MIPS processors and Java virtual machines.
There are also commercial offerings [11, 12] for rapid de-
velopment of customisable instruction processors, targeting
mainly implementations using ASIC (Application Specific
Integrated Circuit) technology.

Customisable instruction processors offer the potential
advantage of improved performance with reduced resource
usage [9]. This is achieved by eliminating unused instruc-
tions, or by creating a new custom instruction to replace a
group of frequently-used instructions. Such optimisations
allow unnecessary hardware to be removed, and the over-
head of instruction fetch and decode to be reduced [10].

Many contemporary instruction processors are super-
scalar: they execute multiple instructions concurrently
by exploiting Instruction Level Parallelism (ILP). This is

achieved by replicated functional units and sophisticated
scheduling hardware to perform dependence analysis at run
time.

The complexity of run-time dependence analysis, how-
ever, militates against implementation of customisable su-
perscalar processors in FPGA technology. For effective
handling of demanding applications, such as those involv-
ing real-time operations, an alternative architecture is de-
sirable. Explicitly Parallel Instruction Computing (EPIC)
architectures [8], together with the corresponding adaptive
variations [5], appear to be promising candidates [3].

EPIC processors are also designed to exploit ILP. Like
superscalar processors, they contain multiple independent
units for processing instructions in parallel. However, they
avoid run-time dependence analysis by performing such
analysis at compile-time. By shifting the burden of schedul-
ing from run-time to compile-time, the resultant hardware
simplicity enables the implementation of EPIC processors
in FPGA technology.

To make it scalable and extensible, the architecture of
the customisable EPIC processor is designed in a parametric
and modular way. Possible parameterisations include vary-
ing the number of registers and functional units, which are
specified at compile-time. In addition, as a result of its mod-
ularity, inclusion or exclusion of a custom instruction only
requires modifications of the concerned functional unit. El-
ements such as the ALU can be readily customised to cover
particular application requirements.

Such customisable designs provide a platform for de-
signers to explore performance/area trade-offs for a specific
application using different implementations; they are par-
ticularly useful in system environments for reconfigurable
computing. Moreover, instead of designing a separate pro-
cessor for each application, a parameterised description al-
lows the same design to be customised in various ways to
meet application requirements. This ensures that the invest-
ment in the design is preserved.

The purpose of this paper is to describe the architecture
of a customisable EPIC processor. We also describe the as-
sociated tools, which include a compiler and an assembler
based on the Trimaran framework [13]. Moreover, the per-
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formance of our EPIC architecture is empirically compared
with the StrongARM SA-110 processor.

The rest of the paper is organised as follows. Section 2
introduces the background for an EPIC processor. Section 3
describes the customisable architecture of our processor, for
which the compiler and assembler are presented in Sec-
tion 4. Section 5 summarises performance and resource us-
age results. Finally, Section 6 covers concluding remarks.

2. Background

To speed up processor execution, researchers are work-
ing on two main architectural styles: superscalar and Ex-
plicitly Parallel Instruction Computing (EPIC).

Superscalar processors contain replicated functional
units such that multiple instructions can be executed con-
currently. In the meantime it still provides a sequential pro-
cessor model to both programmers and compilers. Concur-
rent execution is achieved by exploiting Instruction Level
Parallelism (ILP) via run-time dependence analysis.

EPIC processors, on the other hand, also have multiple
functional units and aim for maximum exploitation of ILP.
However, what differentiates EPIC and superscalar proces-
sors is the way that this parallelism is discovered: Super-
scalar processors use logic to schedule instructions at run-
time, while EPIC processors rely on compilers that can stat-
ically expose parallelism at compile time. The EPIC ap-
proach allows the elimination of the scheduling logic and
thus simplification of the processor organisation. To en-
able dependence analysis at compile-time, relevant infor-
mation on the processor organisation is made available to
EPIC compilers for scheduling purposes.

In order to make the processor’s behaviour more pre-
dictable by the compiler, out of order executions are not
supported in EPIC processors. Even though the program-
mer can still regard the underlying processor as a sequential
machine with the abstraction provided by the compiler, the
compiler itself can no longer remain ignorant of the proces-
sor organisation.

One of the most significant architectural innovations of
EPIC is the inclusion of predicated instructions [8]. Pred-
icated instructions transform control dependence to data
dependence, so that the processor need not execute in-
structions such as branch instructions speculatively. In-
stead, while waiting for the result on whether to branch or
not, multiple branches are executed simultaneously. These
branch instructions are associated with appropriate predi-
cate registers, which are one-bit flags recording branching
conditions. Only those instructions associated with a pred-
icate register showing a true condition will be committed;
others will be discarded.

OPCODE DEST1 DEST2 SRC1 SRC2 PRED

15 bits 6 bits 6 bits 16 bits 16 bits 5 bits

Figure 1. The instruction format

Other EPIC features include:

• Speculative loading, which involves retrieving data
from memory before it is required.

• Data placement in memory hierarchy, which is con-
trolled explicitly by the compiler.

• Simple run-time decisions, to reduce cycle time with a
high level of ILP.

3. EPIC Processor Design

By varying the number of registers and functional units,
our customisable EPIC architecture can easily be scaled to
tackle the task in hand. Moreover, its parametric and mod-
ular design facilitates both inclusion of custom instructions
and exclusion of unused instructions. Such a design pro-
vides a platform for designers to explore performance/area
trade-offs for a particular application.

3.1. Instruction Set Architecture

The instruction set supported in our EPIC processor is
a proper subset of operations specified in the HPL-PD ar-
chitecture [4], a meta-architecture encompassing a space of
machines, each of which has a different amount of ILP and
a different instruction set architecture. This chosen sub-
set of instructions focuses on integer operations, including
multiplication and division, which can be implemented effi-
ciently on FPGAs. In our design, a big-endian architecture
is adopted.

The instruction consists of 6 fields, which is shown in
Fig. 1. DEST1, DEST2 are indices to general purpose reg-
isters, SRC1 and SRC2 are either literals or indices to reg-
isters, and PRED specifies a predicate register.

Each individual instruction has a fixed width of 64 bits,
regardless of its type. This regularity facilitates instruction
fetching and decoding, which eliminates the need to look
ahead to determine the exact length of the next instruc-
tion. Besides, the opcode has been designed to minimise
the Hamming distance between two instructions of the same
type.

3.2. Processor Organisation

To make the design more customisable, our EPIC ar-
chitecture, captured in the Handel-C language [2], is de-
signed in a modular way. The architecture contains four
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main types of elements: a collection of arithmetic and logic
units (ALUs), a load/store unit (LSU), a comparison unit
(CMPU), and a branch unit (BRU). These elements are
sandwiched between a Fetch/Decode/Issue unit and a write
back unit, which connect to a general purpose register file.

The organisation of the datapath is illustrated in Fig. 2.
BTR stands for branch target register, which stores desti-
nation addresses which are calculated in advance and are
likely to be required in the near future. The thick broken line
in the middle signifies the division of the pipeline. Units of
ALUs are denoted with a thin broken line as the exact num-
ber is customisable.

Currently, the prototype is a 2-stage pipeline implemen-
tation without cache. The Fetch/Decode/Issue unit consti-
tutes the first stage of pipeline, with other units constituting
the second.

As up to four instructions are issued per clock cycle, in
this 2-stage pipeline design a maximum of eight reads from
the Fetch/Decode/Issue unit and four writes from Write
Back unit will come up simultaneously. However, being
implemented with dual-port memory, which allows simul-
taneous read and write, the register file allows only two
read/write operations in each cycle.

To tackle this challenge, a register file controller, which
runs at quadruple the clock rate of the EPIC processor, is
implemented. Therefore, any combinations of reads and
writes amounting to eight operations are permitted in each
processor cycle. Exceeding this limit would result in pro-

cessor stall. Fortunately, this limitation is mitigated by for-
warding of recently calculated results, which is also handled
by the register file controller.

Regarding the access to memory, our design assumes
that there are 4 external banks of memory, each 32-bits
wide. Since each instruction is of 64 bits wide and a maxi-
mum of four instructions are issued per cycle, 256 bits must
be read from the external memory in each cycle. To provide
enough bandwidth, a memory controller which runs at twice
the speed of the EPIC processor is implemented to oversee
access to the main memory.

3.3. Processor Customisation

There are mainly two ways to customise the EPIC pro-
cessor, by creation of customisable instructions or by the
variation of its parameters.

Elements such as the ALU, the comparison unit and the
load/store unit can be readily customised to cover particular
application requirements. In most cases, only the concerned
units require modification. For instance, ALUs do not need
to support division if this operation is not required by the
particular application program. This provides the basis for
a scalable EPIC design, which can be customised to the ap-
plication in hand.

In addition, our customisable EPIC description supports
the following parameters:

• number of ALU units

• number of general purpose registers

• number of predicate registers

• number of branch target registers

• number of registers each instruction can use

• number of instructions per issue

• width of datapath and registers

• functionality of ALU

The main complication involving parameterisation is the
pre-defined instruction format. The pre-defined instruction
format assumes a range of possible values for some of the
parameters above. For instance, as 6 bits are allocated to in-
dex a register, the maximum number of registers is assumed
to be 64. Exceeding this limit requires a re-design of the
instruction format.

For this reason, provision has been made for such ad-
justment, with the instruction width and the width of each
individual field made parameterisable. The need for this
flexibility is the reason for selecting an instruction width of
64 bits.



By default, the number of ALUs, general purpose reg-
isters, predicate registers and branch target registers are set
to 4, 64, 32 and 16 respectively, with the width of datap-
ath and registers being 32 bits long. Four instructions are
issued in each cycle, provided that there is no resource con-
flict between them. All these parameters are instantiated in
the configuration header file. Due to limited memory band-
width, the number of instructions per issue is constrained
between one and four.

4. Support for Application Development

4.1. Compiler

In the EPIC philosophy, the compiler not only statically
schedules the order of instruction execution, but also con-
trols the precise usage of all the hardware resources. It
is therefore necessary for the compiler to possess detailed
knowledge of the processor organisation, and be able to
perform appropriate optimisations given the statistics of in-
struction usage.

Originally targeting the HPL-PD and ARM architec-
tures, the Trimaran framework [13], which is a system for
ILP research and contains modules for compilation and sim-
ulation, has been adapted to support our EPIC design.

Trimaran consists of three modules. In our current sys-
tem, we employ theIMPACTmodule and theelcor module
to support application compilation in our EPIC design.

Given an application program written in C, theIMPACT
module is employed to perform machine independent opti-
misations. Theelcor module will then statically schedule
the instructions by performing dependence analysis and re-
source conflict avoidance.

Processor organisation information, including number of
functional units, instruction issues per cycle and functional-
ity of each module, is captured in the machine description
languageHMDESand serve as an input toelcor. By modi-
fying the appropriate entries in the machine description file
during customisation, the compiler is able to support our de-
sign, without the need for recompiling the compiler itself.

4.2. Assembler

To map the assembly code produced from Trimaran into
EPIC machine code, an assembler, written in C++, is devel-
oped. To enable the assembler to adapt to EPIC processors
with different customisations, the configuration header file
is made available to the assembler.

While parsing the output from Trimaran, which is inter-
spersed with instructions for its simulator module, the as-
sembler filters the instructions for simulation purpose and
counts the number of instructions actually available to exe-

cute in parallel. If necessary, no-op instructions are used to
make up the difference.

For parameterisations, the assembler is able to support
the design without the need for recompiling itself. Simi-
larly, to create customisable instructions, there is no need
for recompilation of the assembler itself. To adapt to such
customisations, corresponding opcodes should be inserted
into the configuration file.

5. Experimental Results

Experiments are performed to investigate the efficiency
and the resource usage with varying number of ALUs. Xil-
inx Virtex II series devices, each containing up to 46592
configurable logic slices and up to 1.456 megabits of dis-
tributed configurable memory, are chosen as the target tech-
nology.

5.1. Resource Usage

Our design is implemented to evaluate its effectiveness
on resource usage. The main results are summarised below:

• Currently, our prototype runs at 41.8MHz.

• Designs with 1, 2, 3 and 4 ALUs take up 4181, 6779,
9367 and 11931 slices respectively, in which each in-
dividual ALU occupies around 2600 slices.

• As the ALUs are arranged in parallel, varying the num-
ber of ALUs has little impact on the critical path; so is
the case of enlarging the register file.

• The register file is mapped into SelectRam, the on-
chip block RAM provided by Xilinx Virtex II series
devices.

• As long as additional block RAM is available, increas-
ing the size of register file has negligible effects on
number of slices taken up.

• Multiplication is supported by on-chip block multi-
plier.

5.2. Comparison with the StrongARM SA-110

To evaluate the performance of the prototype, the perfor-
mance of our EPIC designs equipped with one to four ALUs
is measured against the StrongARM SA-110 processor. It
is measured in terms of number of clock cycles consumed
for executing a particular benchmark.

The number of cycles taken by our EPIC design is mea-
sured by theReaCT-ILPmodule, a cycle-level simulator,
from the Trimaran framework. The number of cycles for
the StrongARM SA-110 processor is obtained by the ARM



Table 1. Summary of the number of clock cy-
cles required for different benchmarks

SHA AES DCT Dijkstra
SA-110 15934277 1505572 140679660 97272080
1 ALU 14252100 8809870 29445100 58877500
2 ALUs 7486250 8513740 22191700 57257400
3 ALUs 5276340 8515610 20647500 57230000
4 ALUs 4172960 8514620 11426500 57219900

simulation program SimIt-ARM [7]. The results are sum-
marised in Table 1.

The operation of these benchmarks is explained below:

• The SHA benchmark calculates the SHA-256 secure
hash of a 256 by 256 image in the PPM format.

• The AES benchmark encrypts ’Hello AES World!’
1000 times and then decrypts it.

• The DCT benchmark does fixed-point Discrete Cosine
Transform (DCT) encoding and decoding of a 256 by
256 image in the PPM format.

• The Dijkstra benchmark finds the shortest path be-
tween every pair of nodes in a large graph represented
by an adjacency matrix using Dijkstra’s algorithm.

From Table 1, we notice that in most cases, our EPIC
designs manage to complete with fewer cycles than the SA-
110. For instance, were the two processors run at the same
clock speed, our EPIC design with 4 ALUs would be 1.7
times, 3.8 times, and 12.3 times faster than the SA-110 in
the benchmarks Dijkstra, SHA and DCT respectively.

Comparing the number of clock cycles is useful when
two processors have the same cycle time. If not, the vari-
ation in cycle time should be taken into account. Compar-
isons in terms of time to execute the benchmarks SHA, DCT
and Dijkstra are shown in Fig. 3, 4 and 5 respectively, given
that the SA-100 runs at 100MHz while our current EPIC
processor runs at 41.8MHz.

These figures show not only the relative performance be-
tween the SA-110 and EPIC designs, but also how the per-
formance varies as the number of ALUs increases. Execu-
tion time is calculated as a product of clock length and the
number of clock cycles taken.

From these experiments, it is observed that EPIC pro-
cessors equipped with several ALUs are able to outperform
the SA-110 in the benchmarks SHA and DCT. For instance,
running SHA the SA-110 takes 0.1593 seconds, while EPIC
with 4 ALUs takes 0.09981 seconds, which is 60% faster.
As for DCT, the EPIC processor with 4 ALUs is 515% faster
than the SA-110. We can observe that in these arithmetic-
intensive applications, the performance of EPIC increases
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Figure 3. Execution time for SHA
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Figure 4. Execution time for DCT
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Figure 5. Execution time for Dijkstra



as the number of ALUs increases. On the other hand, for
AES and Dijkstra, which involve relatively few arithmetic
operations, the performance remains more or less the same
regardless of the number of ALUs deployed.

These results show that the performance of our softcore
EPIC processor is comparable to a hardcore processor. De-
spite the fact that the SA-110 is able to outperform our de-
sign in the benchmarks AES and Dijkstra, the results look
encouraging. While the SA-110 is an established commer-
cial product, the customisable EPIC processors developed
in our research are not highly optimised. With further opti-
misations in the design of the datapath, a speedup in clock
rate should be possible.

Furthermore, the advantage of customisability is demon-
strated: depending on the processor’s intended application,
redundant hardware can be eradicated and additional hard-
ware can be supplemented to optimise the performance/area
trade-offs.

6. Concluding Remarks

Our customisable EPIC processor provides a prototype
architecture which can be customised to a particular appli-
cation. Because of its hardware simplicity, EPIC processors
are well-suited to FPGA implementation.

Moreover, empirical results suggest that with suitable
customisations, the performance of our design is compa-
rable to the performance of a hardcore processor. This
demonstrates the feasibility of implementing EPIC-style
processor for integer computations on programmable logic.
As we are still in the initial phase of research, with further
optimisations in the datapath additional speedup should be
possible.

Current and future work includes parameterising the
level of pipelining, supporting automatic generation of cus-
tom instructions, and customising compiler optimisations
for adaptive EPIC architectures [6]. We are also interested
in characterising the trade-offs in performance, size and
power consumption [14] of our customised EPIC proces-
sors.
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