
Project Space Exploration on the 2-D DCT Architecture of a
JPEG Compressor Directed to FPGA Implementation

Roger Endrigo Carvalho Porto, Luciano Volcan Agostini

Group of Architectures and Integrated Circuits
Universidade Federal de Pelotas – UFPel, DMEC, Pelotas, Rio Grande do Sul, Brazil

Campus Universitário, s/nº – Caixa Postal 354 – CEP 96010-900
{rogerecp, agostini}@ufpel.edu.br

Abstract

This paper presents a project space exploration
on the baseline JPEG compressor proposed and
implemented in previous works. This exploration took as
basis the substitution of the operators used in the 2-D
DCT calculation architecture of the compressor and the
consequent evaluation of impact in terms of performance
and resources utilization. This substitution was made with
main focus in the carry lookahead, hierarchical carry
lookahead and carry select architectures, with the
objective to increase the JPEG compressor performance.
As the compressor architecture was designed in an
hierarchical mode the operators substitution was an
activity quite simple, because it has not involved the other
hierarchy levels. The operators were described in VHDL,
synthesized and validated. They were inserted in the 2-D
DCT architecture for synthesis in the whole module. The
2-D DCT was synthesized for an Altera FPGA. With this
project space exploration, the highest performance
obtained for the 2-D DCT was 23% higher than the
original, using 11% more logic cells.

1. Introduction

Discrete Cosine Transform (DCT) is a mathematical

tool that has a lot of electronic applications, from audio
filters to video compression hardware. DCT transforms
the information from the time or space domains to the
frequency domain, such that other tools and transmission
media can be run or used more efficiently to reach
application goals: compact representation, fast
transmission, memory savings, and so on.

The JPEG image compression standard [1, 9] was
developed by Joint Photographic Expert Group [10]. The
JPEG compression principle is the use of controllable
losses to reach high compression rates. In this context, the
information is transformed to the frequency domain
through DCT. Since neighbor pixels in an image have

high likelihood of showing small variations in color, the
DCT output will group the higher amplitudes in the lower
spatial frequencies [11]. Then, the higher spatial
frequencies can be discarded, generating a high
compression rate and a small perceptible loss in the image
quality.

The JPEG compression of gray scale images can be
divided into three main steps, as shown in Fig. 1:
2-D DCT, quantization and entropy coding.

Fig. 1 – JPEG baseline compression

In the JPEG compressor, the 2-D DCT is the most

critical module to be implemented because of its high
algorithm complexity. In the architectural level this
critical point is responsibility of the sum operations on
wide inputs and of the consequent delay generated by the
carry propagation in the ripple carry architecture used in
the adders [2].

Thus, the main objective of this work was to increase
the JPEG compressor performance through the
substitution of the architectures used in the adders, with
main focus in the carry lookahead, hierarchical carry
lookahead and carry select architectures [4, 5, 6]. Were
evaluated, too, the impacts in terms of performance and
resources utilization.

The paper sections present the 2-D DCT and 1-D DCT
architectures, the alternative architectures of operators
used in this work, the description and validation of the
operators, the synthesis results and conclusions.

2. Two dimensional DCT architecture

The 2-D DCT architecture used in the JPEG

compressor is generically presented in Fig. 2. This
architecture was designed to reach a high operating
frequency and to allow the use of pipeline techniques and

1530-1591/04 $20.00 (c) 2004 IEEE

is based on the architecture proposed in [12] with some
modifications. Thus, the architecture was divided into two
1-D DCT architectures and one transpose buffer. The two
1-D DCT architectures are similar but the bit widths at
each pipeline stage are different. The 1-D DCT
architectures are organized in a six stage pipeline, one
stage for each algorithm step [2]. The transpose buffer
operates like a temporal barrier between the first and the
second 1-D DCT, allowing the use of a 2-D DCT global
pipeline.

Fig. 2 – Generic 2-D DCT architecture

The 2-D DCT inputs in our design are matrixes of 8x8

elements eight-bit wide each. The first 1-D DCT receives
and processes these matrixes in a row-wise order. The
transpose buffer receives the row-wise results and gives
the column-wise inputs to the second 1-D DCT
architecture. The second architecture processes the
column-wise data and gives a column-wise data output.

2.1. One dimensional DCT architecture

The 1-D DCT architecture proposed in [12] and used in

this paper is presented in the Fig. 3
Considering the 1-D DCT algorithm steps, the use of a

pipelined architecture between these steps becomes
natural. Since the algorithm has six steps, the pipeline will
have six stages, where five perform additions/subtractions
and one performs multiplications.

The five adders in the original DCT architecture are
ripple-carry and the multiplier is based on shift-add
operations. This architecture uses a single arithmetic unit
in each stage to perform all the necessary operations at
that stage.

Then the unit inputs are connected by multiplexers to
select which value must be used in each clock cycle. The
multiplexers’ controls are generated following the
algorithm order. Temporal barriers to allow the pipeline
design are obtained with the use of ping-pong registers.
The control block generates the signals to control the
pipeline fill-up and emptying through an external signal
that indicates if the input values are valid values for the
image.

The adders’ architecture used in the original 1-D DCT
is ripple carry [4].

Fig. 4 – Block diagram of a ripple carry adder

This architecture of adders is quite simple and widely
spread. Its main advantage is the reduced occupied area.
Even so, there is the disadvantage of the low performance
provoked by the slow carry propagation. This slow carry
propagation is that defines the critical path of the
architecture of 1-D DCT calculation and, for consequence,
of own 2-D DCT architecture. Fig. 4 presents the
architecture in blocks of a ripple carry adder.

Fig. 3 – One dimensional DCT architecture

Being Ci-1 the stage carry in, Ai and Bi the adder inputs,
Ci the stage carry out and Si the resulting sum, we can
write the equation that determines the sum as:

1 1 1 1S A B C A B C A B C A B Ci i i i i i i i ii i i i= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅− − − −

This can be factored in the following way:

() ()1 1

1

S C A B A B C A B A Bi i i i i i i i ii i

A B Ci i i

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅− −

= ⊕ ⊕ −

The equation that determines the carry can be written

as:

1 1C A B A C B Ci i i i ii i= ⋅ + ⋅ + ⋅− −

This, also, can be factored in the following way:

()1C A B C A Bi i i i ii= ⋅ + ⋅ +−

By the fact that each stage needs the carry produced in

the previous stage to make the sum, the total time delay is
linearly proportional to the length n of the adder.

In [2] a small logic was developed (that can be seen in
the Tab. 1) involving the input B, the adder carry in and
the operation control signal AddSub. With this logic a
same arithmetic operator can operate in addition mode or
in subtraction mode.

Tab. 1 – Adders operation mode control logic

AddSub Carry In Input B Operation
0 0 B A + B
1 1 ~B A + (~B + 1) or A – B

Besides, it was possible to determine the maxima

values generated by each operator and, like this, to
identify which adders would not generate, in any
hypothesis, a significant carry out. This way, it was
possible to use the minimum bit width in each stage and,
in consequence, the minimum of resources.

In the Tab. 2 are presented, for each stage of the two
architectures of 1-D DCT, the bit width of each adder,
which adders have the generation of carry out and which
adders can operate in the subtraction way. In this table, the
stage of the multiplier (stage 4) presents the three adders
used by its architecture.

3. Some alternative adder architectures

This section will present the alternative adder

architectures that were used in this work.

Tab. 2 – Adders used in each stage of the first and
the second 1-D DCT

1st 1-D DCT 2nd 1-D DCT
Stage

Bits Carry
out

Add /
Sub Bits Carry

out
Add /
Sub

1 8 yes yes 12 yes yes
2 9 yes yes 13 yes yes
3 10 yes yes 14 yes yes

16 no no 20 no no
16 yes no 20 yes no 4
20 no no 24 no no

5 11 yes yes 15 no yes
6 12 no yes 15 no yes

3.1. Carry Lookahead Adders

This kind of adder architecture use a technique called

carry lookahead that have as purpose to speed up the carry
propagation in an adder [6]. This technique bases on
examining all the input stages of an adder and,
simultaneously, to produce the appropriate carries for each
one of these stages, that is to say, all the carries are
calculated at the same time, in parallel.

Being Ai and Bi the inputs in a n-bit adder, Ci-1 the
carry in of the stage; C-1 the carry into the least significant
position and Si and Ci the sum and carry out of the stage;
we can define two auxiliary functions:

G A Bi i i= ⋅

P A Bi i i= ⊕

The carry generate function (Gi) reflects the condition

that a carry is originated at the i-th stage. The function Pi,
called carry propagate, is true when the i-th stage will pass
the incoming carry (Ci-1) to the next higher stage.
Substituting Pi e Gi into ripple carry equations, we obtain

1

1

S A B Ci i i i

P Ci i

= ⊕ ⊕ −
= ⊕ −

() 1

1

C A B A B Ci i i i i i

G P Ci i i

= ⋅ + ⊕ ⋅ −
= + ⋅ −

Thus, the sum operation, being used carry lookahead, is

composed by three stages, as it can be observed in Fig. 5.
First, all the signals generate and propagate are

generated simultaneously. After, and also in a
simultaneous way, the carries are generated. Finally,
having all the carries and signals Gi, the sum is generated.

Fig. 5 – Block diagram of an 8-bit
carry lookahead adder

3.2. Hierarchical Carry Lookahead Adders

Another architecture to be analyzed is the hierarchical

carry lookahead. The purpose of this approach, besides to
increase the speed of carry propagation, is to decrease the
complexity of the produced equations when carry
lookahead is used in an adder. As consequence, is had an
hierarchical adder equivalent to a carry lookahead but
reaching a better performance than this last one.

In this architecture type a control block is used to
group m adders of n-bits width, that we will call adder
blocks, forming a m x n-bits adder. The behavior of the
adder blocks is common to the behavior of the carry
lookahead adders except for the generation of the signals
P* (block carry propagate) and G* (block carry generate).
These signals can be written as:

*

1 2 1 0n nP P P P P− −= ⋅ ⋅ ⋅ ⋅K

*

1 1 2 1 2 3

1 1 0

n n n n n n

n

G G P G P P G

P P G

− − − − − −

−

= + ⋅ + ⋅ ⋅ +

+ ⋅ ⋅ ⋅

K

K

The control block, for its time, generates the

appropriate carries out. These carries out are used as
carries in in the subsequent adders blocks and can be
written as:

* *Cout G P Cin= + ⋅

where P* and G* are produced in the actual stage and Cin
in the previous stage.

For clarity, Fig. 6 illustrates an example of this kind of
adder.

Fig. 6 – Block diagram of an 8-bit
hierarchical carry lookahead

3.3. Carry Select Adders

An additional approach to speed up the carry

propagation are the carry select adders [4]. Usually, an
carry select adder is divided in two adder sessions. Ripple
carry propagation is assumed within the adder sections.
Each adder section is in duplicate, one with a carry and
one without carry into the lowest-order bit in the section
[6]. A multiplexer selects the appropriate sum in each
section. The basic scheme of an 8-bit carry select adder is
shown in the Fig. 7.

Fig. 7 – Block diagram of an 8-bit
carry select adder

4. VHDL adders description

The description of the operators designed in this work

was made in VHDL, using the Max Plus II environment
[8]. Were designed 18 descriptions files for the carry
lookahead architecture, 38 for the hierarchical carry

lookahead architecture and 19 for the carry select
architecture, totaling 75 description files for the three
presented alternative architectures.

The amount of descriptions implemented for each
architectural alternative differs of the original amount (15
descriptions). This is due to the need of auxiliary files so
that the specific characteristics of each architecture were
respected. In the case of the hierarchical carry lookahead
architecture two alternatives were designed for each
operator.

In the implementation of the hierarchical carry
lookahead and carry select architectures the advantage of
the hierarchization was used through the reuse of the code
of another descriptions. In other words, blocks common to
several operators were described in a separate way so that
they could be referenced as components in these adders.
Herewith the code of the descriptions was, besides shorter,
clearer. The Fig. 8 presents, as example, the hierarchy of
the descriptions used for a 8-bit hierarchical carry
lookahead adder/subtractor. This operator is formed by
three components: two adders grouped by a control block.

Fig. 8 – Example of description hierarchy of one 8-bit
hierarchical carry lookahead adder / subtractor

Later on, the original operators of 2-D DCT (ripple

carry adders) were substituted by the new implemented
operators so that it was made the synthesis and evaluation
of results.

5. Synthesis results

Initially, all the described operators were synthesized

separately. After that, they were synthesized inside of the
first and second 1-D DCT modules. Finally, 2-D DCT was
synthesized with the new described operators.

The results of the synthesis for Altera ACEX1K
FPGAs [8] are presented in the following tables. The
synthesis results for the first 1-D DCT, architecture by
architecture, can be compared in the Tab. 3. Tab. 4
presents the same comparison type but for second
1-D DCT. The general results, that is to say, for the
2-D DCT module, are shown in tab.5.

Tab. 5 shows the general results, that is to say, a
comparison of the 2-D DCT synthesis results for an Altera
FPGA of ACEX1K family (EP1K100QC208-1) being
used the three designed alternative architectures.

For the carry lookahead architecture the 2-D DCT used
4192 logic cells and reached 22,67 MHz as maximum

operating frequency. In the case of hierarchical carry
lookahead, were used 4343 logic cells, reaching a
maximum frequency of 24,03 MHz. Finally, for the carry
select architecture were used 4621 logic cells to obtain a
maximum frequency of 27,10 MHz.

Tab. 3 - Comparative synthesis results

for the first 1-D DCT

1st 1-D DCT RCA CLA H. CLA CSA
Logic Cells 1660 1664 1734 1842
Period (ns) 37,8 35,3 34,8 34,3

Frequency. (MHz) 26,45 28,32 28,73 29,15
Frequency Gain (%) - 7,08 8,62 10,21
Resources Loss (%) - 0,24 4,46 10,96

Tab. 4 - Comparative synthesis results

for the second 1-D DCT

2nd 1-D DCT RCA CLA H. CLA CSA
Logic Cells 2241 2243 2331 2490
Period. (ns) 41,1 39,6 40,8 40,1

Frequency (MHz) 24,33 25,25 24,5 24,93
Frequency Gain (%) - 3,78 0,7 2,47
Resources Loss (%) - 0,09 4,02 11,11

Tab. 5 - Comparative synthesis results

for the 2-D DCT

2-D DCT RCA CLA H. CLA CSA
Logic Cells 4181 4192 4343 4621
Period (ns) 45,7 44,1 41,6 36,9

Frequency (MHz) 21,88 22,67 24,03 27,10
Frequency Gain (%) - 3,61 9,83 23,86
Resources Loss (%) - 0,26 3,87 10,52

6. Operators validation

The operators’ validation considered the results of
synthesis and of the simulation. The simulation of the
operators was made with the aid of the Max Plus II
waveform editor (Fig. 9).

Fig. 9 - The Max Plus II waveform editor

In the simulation process the correct operation of the
operators was evaluated being observed the behavior of
the output in function of the input values.

Not only the operators were simulated but also all the
implemented descriptions including the auxiliary files.

7. Conclusions

This paper presented the design of adder architectures

for use in JPEG compression, more specifically for use in
the 2-D DCT of the JPEG compressor.

Were designed 75 VHDL descriptions for the three
architectural alternatives used in the implementation of
the operators. The results of the synthesis were presented
too.

The maxima DCT 2-D operating frequencies, obtained
as result for each one of the implemented alternative
architectures, were all larger ones than to original
maximum operating frequency obtained, for example, a
gain in performance around 24% to the carry select
architecture.

Being considered that the main objective of the work
were increase the performance of the JPEG compressor,
the obtained results were considered satisfactory.

8. References

[1] The International Telegraph and Telephone Consultative
Committee (CCITT). “Information Technology – Digital
Compression and Coding of Continuous-Tone Still Images –
Requirements and Guidelines”. Rec. T.81, 1992.

[2] L. Agostini. Design of Architectures for JPEG Image
Compression (Portuguese). Master Dissertation – Federal
University of Rio Grande do Sul. Informatics Institute. Pos-
Graduation in Computer Science Program, Porto Alegre, Brazil-
RS, 2002. 143p.

[3] L. Agostini, I. Silva, S. Bampi . “Pipelined Fast 2-D DCT
Architecture for JPEG Image Compression”. In: SBCCI2001 -
XIV Symposium on Integrated Circuits and System Design,
2001, Pirinópolis - GO - Brazil. p. 226-231.

[4] N. Weste and K. Eshraghian. Principles of CMOS VLSI
Design.- Second Edition, Addison-Wesley, USA, 1995.

[5] J. Rabaey. Digital Integrated Circuits : A Design
Perspective, Prentice Hall, USA, 1996.

[6] K. Hwang. Computer Arithmetic: Principles, Architecture
and Design, John Wiley & Sons, USA, 1979.

[7] R. Airan, J. Berge and V. Olive. Circuit Synthesis with
VHDL, USA, 1994.

[8] “Altera: The Programmable Solutions Company”. San
Jose, Altera Corporation, 2002. <http://www.altera.com>.

[9] W. Pennebaker and J. Mitchell. JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, USA, 1992.

[10] “Home site of the JPEG and JBIG committees”
<http://www.jpeg.org>

[11] V. Bhaskaran and K. Konstantinides. Image and Video
Compression Standards Algorithms and Architectures – Second
Edition, Kluwer Academic Publishers, USA, 1999.

[12] M. Kovac and N. Ranganathan. “JAGAR: A Fully Pipeline
VLSI Architecture for JPEG Image Compression Standard”.
Proceedings of the IEEE, vol. 83, n°. 2, 1995, pp. 247-258.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

