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Abstract 
 
This paper presents a project space exploration 
on the baseline JPEG compressor proposed and 
implemented in previous works. This exploration took as 
basis the substitution of the operators used in the 2-D 
DCT calculation architecture of the compressor and the 
consequent evaluation of impact in terms of performance 
and resources utilization. This substitution was made with 
main focus in the carry lookahead, hierarchical carry 
lookahead and carry select architectures, with the 
objective to increase the JPEG compressor performance. 
As the compressor architecture was designed in an 
hierarchical mode the operators substitution was an 
activity quite simple, because it has not involved the other 
hierarchy levels. The operators were described in VHDL, 
synthesized and validated. They were inserted in the 2-D 
DCT architecture for synthesis in the whole module. The 
2-D DCT was synthesized for an Altera FPGA. With this 
project space exploration, the highest performance 
obtained for the 2-D DCT was 23% higher than the 
original, using 11% more logic cells.  

 
 

1. Introduction 
 
Discrete Cosine Transform (DCT) is a mathematical 

tool that has a lot of electronic applications, from audio 
filters to video compression hardware. DCT transforms 
the information from the time or space domains to the 
frequency domain, such that other tools and transmission 
media can be run or used more efficiently to reach 
application goals: compact representation, fast 
transmission, memory savings, and so on. 

The JPEG image compression standard [1, 9] was 
developed by Joint Photographic Expert Group [10]. The 
JPEG compression principle is the use of controllable 
losses to reach high compression rates. In this context, the 
information is transformed to the frequency domain 
through DCT. Since neighbor pixels in an image have 

high likelihood of showing small variations in color, the 
DCT output will group the higher amplitudes in the lower 
spatial frequencies [11]. Then, the higher spatial 
frequencies can be discarded, generating a high 
compression rate and a small perceptible loss in the image 
quality. 

The JPEG compression of gray scale images can be 
divided into three main steps, as shown in Fig. 1:  
2-D DCT, quantization and entropy coding. 

 

 

Fig. 1 – JPEG baseline compression 
 
In the JPEG compressor, the 2-D DCT is the most 

critical module to be implemented because of its high 
algorithm complexity. In the architectural level this 
critical point is responsibility of the sum operations on 
wide inputs and of the consequent delay generated by the 
carry propagation in the ripple carry architecture used in 
the adders [2]. 

Thus, the main objective of this work was to increase 
the JPEG compressor performance through the 
substitution of the architectures used in the adders, with 
main focus in the carry lookahead, hierarchical carry 
lookahead and carry select architectures [4, 5, 6]. Were 
evaluated, too, the impacts in terms of performance and 
resources utilization. 

The paper sections present the 2-D DCT and 1-D DCT 
architectures, the alternative architectures of operators 
used in this work, the description and validation of the 
operators, the synthesis results and conclusions. 

 
2. Two dimensional DCT architecture 

 
The 2-D DCT architecture used in the JPEG 

compressor is generically presented in Fig. 2. This 
architecture was designed to reach a high operating 
frequency and to allow the use of pipeline techniques and 
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is based on the architecture proposed in [12] with some 
modifications. Thus, the architecture was divided into two 
1-D DCT architectures and one transpose buffer. The two 
1-D DCT architectures are similar but the bit widths at 
each pipeline stage are different. The 1-D DCT 
architectures are organized in a six stage pipeline, one 
stage for each algorithm step [2]. The transpose buffer 
operates like a temporal barrier between the first and the 
second 1-D DCT, allowing the use of a 2-D DCT global 
pipeline.  

 

 

Fig. 2 – Generic 2-D DCT architecture 
 
The 2-D DCT inputs in our design are matrixes of 8x8 

elements eight-bit wide each. The first 1-D DCT receives 
and processes these matrixes in a row-wise order. The 
transpose buffer receives the row-wise results and gives 
the column-wise inputs to the second 1-D DCT 
architecture. The second architecture processes the 
column-wise data and gives a column-wise data output. 

 
2.1. One dimensional DCT architecture 

 
The 1-D DCT architecture proposed in [12] and used in 

this paper is presented in the Fig. 3  
Considering the 1-D DCT algorithm steps, the use of a 

pipelined architecture between these steps becomes 
natural. Since the algorithm has six steps, the pipeline will 
have six stages, where five perform additions/subtractions 
and one performs multiplications. 

The five adders in the original DCT architecture are 
ripple-carry and the multiplier is based on shift-add 
operations. This architecture uses a single arithmetic unit 
in each stage to perform all the necessary operations at 
that stage. 

Then the unit inputs are connected by multiplexers to 
select which value must be used in each clock cycle. The 
multiplexers’ controls are generated following the 
algorithm order. Temporal barriers to allow the pipeline 
design are obtained with the use of ping-pong registers. 
The control block generates the signals to control the 
pipeline fill-up and emptying through an external signal 
that indicates if the input values are valid values for the 
image. 

The adders’ architecture used in the original 1-D DCT 
is ripple carry [4]. 

 

 

Fig. 4 – Block diagram of a ripple carry adder 
 

This architecture of adders is quite simple and widely 
spread. Its main advantage is the reduced occupied area. 
Even so, there is the disadvantage of the low performance 
provoked by the slow carry propagation. This slow carry 
propagation is that defines the critical path of the 
architecture of 1-D DCT calculation and, for consequence, 
of own 2-D DCT architecture. Fig. 4 presents the 
architecture in blocks of a ripple carry adder. 

 

 
 

Fig. 3 – One dimensional DCT architecture 
 



Being Ci-1 the stage carry in, Ai and Bi the adder inputs, 
Ci the stage carry out and Si the resulting sum, we can 
write the equation that determines the sum as: 

 

1 1 1 1S A B C A B C A B C A B Ci i i i i i i i ii i i i= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅− − − −
 

 
This can be factored in the following way: 

 

( ) ( )1 1

1

S C A B A B C A B A Bi i i i i i i i ii i

A B Ci i i

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅− −

= ⊕ ⊕ −

 

 
The equation that determines the carry can be written 

as: 
 

1 1C A B A C B Ci i i i ii i= ⋅ + ⋅ + ⋅− −
 

 
This, also, can be factored in the following way: 
 

( )1C A B C A Bi i i i ii= ⋅ + ⋅ +−
 

 
By the fact that each stage needs the carry produced in 

the previous stage to make the sum, the total time delay is 
linearly proportional to the length n of the adder. 

In [2] a small logic was developed (that can be seen in 
the Tab. 1) involving the input B, the adder carry in and 
the operation control signal AddSub. With this logic a 
same arithmetic operator can operate in addition mode or 
in subtraction mode. 

 
Tab. 1 – Adders operation mode control logic 

AddSub Carry In Input B Operation  
0 0 B A + B 
1 1 ~B A + (~B + 1) or A – B 

 
Besides, it was possible to determine the maxima 

values generated by each operator and, like this, to 
identify which adders would not generate, in any 
hypothesis, a significant carry out. This way, it was 
possible to use the minimum bit width in each stage and, 
in consequence, the minimum of resources. 

In the Tab. 2 are presented, for each stage of the two 
architectures of 1-D DCT, the bit width of each adder, 
which adders have the generation of carry out and which 
adders can operate in the subtraction way. In this table, the 
stage of the multiplier (stage 4) presents the three adders 
used by its architecture. 

 
3. Some alternative adder architectures 

 
This section will present the alternative adder 

architectures that were used in this work. 

Tab. 2 – Adders used in each stage of the first and 
the second 1-D DCT  

1st 1-D DCT  2nd 1-D DCT  
Stage 

Bits Carry 
out 

Add / 
Sub Bits Carry 

out 
Add / 
Sub 

1 8 yes yes 12 yes yes 
2 9 yes yes 13 yes yes 
3 10 yes yes 14 yes yes 

16 no no 20 no no 
16 yes no 20 yes no 4 
20 no no 24 no no 

5 11 yes yes 15 no yes 
6 12 no yes 15 no yes 

 
3.1. Carry Lookahead Adders 

 
This kind of adder architecture use a technique called 

carry lookahead that have as purpose to speed up the carry 
propagation in an adder [6]. This technique bases on 
examining all the input stages of an adder and, 
simultaneously, to produce the appropriate carries for each 
one of these stages, that is to say, all the carries are 
calculated at the same time, in parallel. 

Being Ai and Bi the inputs in a n-bit adder, Ci-1 the 
carry in of the stage; C-1 the carry into the least significant 
position and Si and Ci the sum and carry out of the stage; 
we can define two auxiliary functions: 

 

G A Bi i i= ⋅  

 

P A Bi i i= ⊕  

 
The carry generate function (Gi) reflects the condition 

that a carry is originated at the i-th stage. The function Pi, 
called carry propagate, is true when the i-th stage will pass 
the incoming carry (Ci-1) to the next higher stage. 
Substituting Pi e Gi into ripple carry equations, we obtain 

 

1

1

S A B Ci i i i

P Ci i

= ⊕ ⊕ −
= ⊕ −

 

 

( ) 1

1

C A B A B Ci i i i i i

G P Ci i i

= ⋅ + ⊕ ⋅ −
= + ⋅ −

 

 
Thus, the sum operation, being used carry lookahead, is 

composed by three stages, as it can be observed in Fig. 5. 
First, all the signals generate and propagate are 

generated simultaneously. After, and also in a 
simultaneous way, the carries are generated. Finally, 
having all the carries and signals Gi, the sum is generated. 



 
 

Fig. 5 – Block diagram of an 8-bit   
carry lookahead adder 

 
3.2. Hierarchical Carry Lookahead Adders 

 
Another architecture to be analyzed is the hierarchical 

carry lookahead. The purpose of this approach, besides to 
increase the speed of carry propagation, is to decrease the 
complexity of the produced equations when carry 
lookahead is used in an adder. As consequence, is had an 
hierarchical adder equivalent to a carry lookahead but 
reaching a better performance than this last one. 

In this architecture type a control block is used to 
group m adders of n-bits width, that we will call adder 
blocks, forming a m x n-bits adder. The behavior of the 
adder blocks is common to the behavior of the carry 
lookahead adders except for the generation of the signals 
P* (block carry propagate) and G* (block carry generate). 
These signals can be written as: 

 
*

1 2 1 0n nP P P P P− −= ⋅ ⋅ ⋅ ⋅K  

 
*

1 1 2 1 2 3

1 1 0

n n n n n n

n

G G P G P P G

P P G

− − − − − −

−

= + ⋅ + ⋅ ⋅ +

+ ⋅ ⋅ ⋅

K

K

 

 
The control block, for its time, generates the 

appropriate carries out. These carries out are used as 
carries in in the subsequent adders blocks and can be 
written as: 

* *Cout G P Cin= + ⋅  
 

where P* and G* are produced in the actual stage and Cin 
in the previous stage. 

For clarity, Fig. 6 illustrates an example of this kind of 
adder. 

 

 
 

Fig. 6 – Block diagram of an 8-bit  
hierarchical carry lookahead 

 
3.3. Carry Select Adders 

 
An additional approach to speed up the carry 

propagation are the carry select adders [4]. Usually, an 
carry select adder is divided in two adder sessions. Ripple 
carry propagation is assumed within the adder sections. 
Each adder section is in duplicate, one with a carry and 
one without carry into the lowest-order bit in the section 
[6]. A multiplexer selects the appropriate sum in each 
section. The basic scheme of an 8-bit carry select adder is 
shown in the Fig. 7. 

 

 
 

Fig. 7 – Block diagram of an 8-bit  
carry select adder 

 
 

4. VHDL adders description 
 
The description of the operators designed in this work 

was made in VHDL, using the Max Plus II environment 
[8]. Were designed 18 descriptions files for the carry 
lookahead architecture, 38 for the hierarchical carry 



lookahead architecture and 19 for the carry select 
architecture, totaling 75 description files for the three 
presented alternative architectures. 

The amount of descriptions implemented for each 
architectural alternative differs of the original amount (15 
descriptions). This is due to the need of auxiliary files so 
that the specific characteristics of each architecture were 
respected. In the case of the hierarchical carry lookahead 
architecture two alternatives were designed for each 
operator. 

In the implementation of the hierarchical carry 
lookahead and carry select architectures the advantage of 
the hierarchization was used through the reuse of the code 
of another descriptions. In other words, blocks common to 
several operators were described in a separate way so that 
they could be referenced as components in these adders. 
Herewith the code of the descriptions was, besides shorter, 
clearer. The Fig. 8 presents, as example, the hierarchy of 
the descriptions used for a 8-bit hierarchical carry 
lookahead adder/subtractor. This operator is formed by 
three components: two adders grouped by a control block. 

 

 

Fig. 8 – Example of description hierarchy of one 8-bit 
hierarchical carry lookahead adder / subtractor 

 
Later on, the original operators of 2-D DCT (ripple 

carry adders) were substituted by the new implemented 
operators so that it was made the synthesis and evaluation 
of results. 

 
5. Synthesis results 

 
Initially, all the described operators were synthesized 

separately. After that, they were synthesized inside of the 
first and second 1-D DCT modules. Finally, 2-D DCT was 
synthesized with the new described operators. 

The results of the synthesis for Altera ACEX1K 
FPGAs [8] are presented in the following tables. The 
synthesis results for the first 1-D DCT, architecture by 
architecture, can be compared in the Tab. 3. Tab. 4 
presents the same comparison type but for second  
1-D DCT. The general results, that is to say, for the  
2-D DCT module, are shown in tab.5. 

Tab. 5 shows the general results, that is to say, a 
comparison of the 2-D DCT synthesis results for an Altera 
FPGA of ACEX1K family (EP1K100QC208-1) being 
used the three designed alternative architectures. 

For the carry lookahead architecture the 2-D DCT used 
4192 logic cells and reached 22,67 MHz as maximum 

operating frequency. In the case of hierarchical carry 
lookahead, were used 4343 logic cells, reaching a 
maximum frequency of 24,03 MHz. Finally, for the carry 
select architecture were used 4621 logic cells to obtain a 
maximum frequency of 27,10 MHz. 

 
Tab. 3 - Comparative synthesis results  

for the first 1-D DCT 

1st 1-D DCT RCA CLA H. CLA CSA 
Logic Cells 1660 1664 1734 1842 
Period (ns) 37,8 35,3 34,8 34,3 

Frequency. (MHz) 26,45 28,32 28,73 29,15 
Frequency Gain (%) - 7,08 8,62 10,21 
Resources Loss (%) - 0,24 4,46 10,96 

 
Tab. 4 - Comparative synthesis results  

for the second 1-D DCT 

2nd 1-D DCT RCA CLA H. CLA CSA 
Logic Cells 2241 2243 2331 2490 
Period. (ns) 41,1 39,6 40,8 40,1 

Frequency (MHz) 24,33 25,25 24,5 24,93 
Frequency Gain (%) - 3,78 0,7 2,47 
Resources Loss (%) - 0,09 4,02 11,11 

 
Tab. 5 - Comparative synthesis results 

for the 2-D DCT  

2-D DCT RCA CLA H. CLA CSA 
Logic Cells 4181 4192 4343 4621 
Period (ns) 45,7 44,1 41,6 36,9 

Frequency (MHz) 21,88 22,67 24,03 27,10 
Frequency Gain (%) - 3,61 9,83 23,86 
Resources Loss (%) - 0,26 3,87 10,52 

 
 

6. Operators validation 
 

The operators’ validation considered the results of 
synthesis and of the simulation. The simulation of the 
operators was made with the aid of the Max Plus II 
waveform editor (Fig. 9). 

 

 

Fig. 9 - The Max Plus II waveform editor 
 

In the simulation process the correct operation of the 
operators was evaluated being observed the behavior of 
the output in function of the input values. 



Not only the operators were simulated but also all the 
implemented descriptions including the auxiliary files. 

 
7. Conclusions 

 
This paper presented the design of adder architectures 

for use in JPEG compression, more specifically for use in 
the 2-D DCT of the JPEG compressor. 

Were designed 75 VHDL descriptions for the three 
architectural alternatives used in the implementation of 
the operators. The results of the synthesis were presented 
too. 

The maxima DCT 2-D operating frequencies, obtained 
as result for each one of the implemented alternative 
architectures, were all larger ones than to original 
maximum operating frequency obtained, for example, a 
gain in performance around 24% to the carry select 
architecture. 

Being considered that the main objective of the work 
were increase the performance of the JPEG compressor, 
the obtained results were considered satisfactory. 
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