
NeuroFPGA - Implementing Artificial Neural Networks on Programmable Logic
Devices

Daniel Ferrer, Ramiro González, Roberto Fleitas, Julio Pérez Acle, Rafael Canetti
doger@fing.edu.uy,{ramg,robfleitas}@adinet.com.uy,{julio,canetti}@fing.edu.uy

Instituto de Ingenierı́a Eĺectrica
Facultad de Ingenierı́a - UDELAR

Montevideo - Uruguay

Abstract

An FPGA implementation of a multilayer perceptron
neural network is presented. The system is parameterized
both in network related aspects (e.g.: number of layers and
number of neurons in each layer) and implementation pa-
rameters (e.g.: word width, pre-scaling factors and num-
ber of available multipliers). This allows to use the design
for different network realizations, or to try different area-
speed trade-offs simply by recompiling the design. Fixed
point arithmetic with pre-scaling configurable in a per layer
basis was used. The system was tested on an ARC-PCI
board from AlteraTM. Several examples from different ap-
plication domains were implemented showing the flexibility
and ease of use of the obtained circuit. Even with the rather
old board used, an appreciable speed-up was obtained com-
pared with a software-only implementation based on Mat-
lab neural network toolbox.

1. Introduction

Hardware implementation of neural networks has been
in use for a long time as a means to accelerate the calcu-
lations. Technology used ranks from VLSI (Hammerstrom
[7]) to programmable logic (e.g.: Arroyo et al. [3], Cox et
al. [5], Girau et al. [8]).

Most of the previous works are focused on the resolu-
tion of a particular problem with stiff network parameters
(e.g.: Aguilera et al. [4]). In that case, each problem requires
a new design effort to take into account differences in net-
work parameters. In order to obtain a general solution suit-
able for a wide range of problems, one of the major diffi-
culties lie in the design of the automata controlling the cir-
cuit.

In the work presented here the reprogramability of FP-
GAs is used to implement a whole family of multilayer per-

ceptron neural networks modifying only a set of parameters
in compilation time.

The system is parameterized both in network related as-
pects and implementation parameters. The first group of pa-
rameters (number of layers, neurons per layer, etc.) are se-
lected based on the particular problem to be solved. The sec-
ond kind of parameters are chosen in order to optimize the
area usage and throughput according to device limitations.
This allows to use the design with different network dimen-
sions and different area-speed trade-offs by simply recom-
piling the design.

The activation function was synthesized as a piecewise
linear function, where the slopes of the sections are negative
powers of two. This function is also parametric, and pro-
vides a good approximation to thetanh(x) function. An-
other parameter allows to disable the activation function
in the output layer, so the network output values are not
bounded to the range of activation function output.

The obtained design is described in AHDL which as-
sures its portability to other Altera programmable logic de-
vices. The resulting circuit was synthesized using commer-
cial Altera design tools and was tested on the ARC-PCI
board for several network examples.

2. Mathematical model of neural networks

A multilayer perceptron consists of a set of units called
neurons interconnected configuring a network. Each neuron
has a set of inputsxi, and one outputyj ; each input is af-
fected by a weight coefficientwji. The subscriptij refers to
the inputi in neuronj.

yj = ϕ(v) = ϕ
(∑

i

wjixi + bj

)
(1)

The computation made by each neuron is a sum of prod-
ucts affected by a nonlinear function, given by the equation
1. The functionϕ is a limited nonlinear function usually re-
ferred as activation function.

1530-1591/04 $20.00 (c) 2004 IEEE

x j

y jy j

w j i

j

Output

Weight or sinapsis

Inputs

Figure 1. Mathematical model of an artificial
neuron

Neurons are arranged in layers. The outputs of each
layer’s neurons are inputs of the neurons in the following
layer. The outputs of the network are provided by neurons
in the output layer.

3. Circuit Design

The implemented topology network is the “feed-
forward”, fully connected network.

In order to have a flexible and scalable neural network
implementation, many parameters were defined: they ar-
range in two main groups. The first one is related to the ar-
chitecture of the network: the number of layers (ncapas),
the number of inputs (nent), the number of neurons in each
layer (nneu1 , nneu2 and so on), and the option of by-
passing the activation function in the output layer to obtain
a linear output (salida lineal). An example of the ar-
chitecture parameters is shown in figure 2 for a three layer
network.

nneu1 = 3 nneu2 = 4 nneu3 = 2

ncapas = 3

nent = 3

Figure 2. Example parameters for a 3 layer
network

The second group of parameters is related to implemen-
tation restrictions: word width (n), internal word width (l),
number of available multipliers (mx max / mult), max-
imum pre-scaling factor (esc max), pipeline deep

(pipe deep), clock frequency divider (nclks) and acti-
vation function slope (p).

Calculations are performed in fixed point arithmetic and
the inputs and weights are numbers normalized to the range
[−1, 1) represented using two’s complement fixed point
words ofn + 1 bits.

For a given a problem, the input and output patterns can
always be scaled within the interval[−1, 1). On the other
hand a trained net may have weights or biases laying outside
this interval. In that case an offline pre-scaling of weights
and biases is performed, compensated by a post-scaling in
the argument of the activation function provided by the cir-
cuit. This scaling is an integer number power of two, and
must be constant for each layer.

The activation function synthesis is discussed later.

3.1. Architecture and Data Path

To obtain a general solution, even under area restrictions,
the multipliers that fit in the chip are reused as many times
as necessary to obtain the result of a complete neuron. The
process is iterated for all the neurons of a layer and for all
the layers, until obtaining the outputs of the complete net-
work.

The biases and weights are used in the calculation for
each input pattern. They are stored in the on-chip RAM
memory. A RAM block (weights RAM) is associated to
each multiplier, for storing the weights corresponding to all
the synapsis computed by it. The weights are stored at the
beginning of the operation and the RAM block is operated
as a circular queue.

Analogously, another on-chip RAM block (biases RAM)
is used to store the biases of all the network neurons.

The board has two RAM chips connected to independent
buses (bus 1 and bus 2) which are used to store the inputs
and outputs of the network respectively. To start the calcula-
tion corresponding to a set of input patterns, these patterns
are loaded by the host in the RAM connected to bus 1.

Two other register blocks implemented on-chip (tempo-
rary storage REG 1 and REG 2 in figure 3) are used al-
ternately to store neuron inputs and outputs respectively.
At each layer computation, one of the blocks contains the
layer’s inputs. As the layer outputs are obtained, they are
stored in the other block. For the next layer computation the
recently obtained results are used as inputs and the block
that initially had the inputs is used to store the new layer
outputs. When the results of the output layer are obtained,
they are written directly to external memory through bus 2,
and simultaneously the next network inputs are read from
external memory to a RAM block through bus 1.

The multipliers receive as inputs the data in the weights
RAM and one of the temporary RAMs. To evaluate each
neuron, in the initial pass the content of the biases RAM is

∼

∼

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

weights
RAM

RAM
weights

bias
RAM

CONTROL

ACUM
D Q D Q

bus 1 bus 2

COUNTER

COUNTER

pre−scaling factors

shifter
barrel

COUNTER

REG 1
REG 2

Figure 3. Circuit block diagram

added to the outputs of the multipliers and stored in an ac-
cumulator register. In case the neuron has more inputs than
the available number of multipliers, additional passes are
needed adding the accumulator register content instead of
the bias.

When all the inputs were added the output of the neu-
ron can be obtained from the activation function block con-
nected to the accumulator.

The timing of this process is shown in figure 5 (section
3.3) for an example network with 3 layers.

The inputs and weights are represented inn+1 bits fixed
point arithmetic. When multiplied, the result grows to2n +
1 bits. The output of the multipliers can be truncated tol +
1 bits, withn ≤ l ≤ 2n, beingl a parameter.

Before evaluating the activation function, the previous
optional scaling in weights and biases is compensated by
shifting the same displacement for all the neurons in a layer.
This is done using a barrel shifter.

As the combinatorial logic evaluating the sum of prod-
ucts is the critical path, it was provided with a configurable
deep pipeline to reduce the maximum delay between regis-
ters.

3.2. Control unit

The neural network is mainly controlled by a state ma-
chine. Its simplified diagram is shown in the figure 4.

Once the FPGA device is configured, the circuit “borns”
in an idle state, waiting a command signal to start the
configuration of the network (stateinitialize) or to start
the evaluation of a set of input patterns (statecalculus).
This commands are issued from the host by writing in re-
served memory addresses (input signals:start_inic or
start_calc).

When entering stateinitialize, the circuit requests access
to bus 1, and once acknowledged, reads in sequence starting
from address 0 (one word each time, one word by memory
address) the weights, biases and scale values for each layer.
It stores them in the weights RAM, biases RAM and ded-
icated registers respectively. Once this stage is completed,
the circuit returns to theidle state.

start_calcstart_inic

idle

initialize calculus

Figure 4. Simplified state diagram of the cir-
cuit

On the other hand, in thecalculusstate, the circuit re-
quests both buses and when it gains them it begins to read
from the memory connected to bus 1 the amount of input
patterns to process (in the address 0) and the first of them.
After this pattern is processed, the circuit starts the itera-
tion process explained in the previous section. This itera-
tion is repeated until the amount of sets stored in the mem-
ory is processed, returning again to the idle state.

write A

read MEM1 read MEM1

write B

inic_set calccalc calc_ult

read B

write A

layer 2

read A

layer 3 layer 1

read B

nneu1 nneu2 nneu1nneu3

layer 1

latency

read A

write B write write A

. . .

MEM2

set 1 set 2

Figure 5. Simplified timing diagram of the circuit

3.3. Timing diagram

Figure 5 shows an example of the operation for a 3 layer
network, havingnneu1 , nneu2 and nneu3 neurons in
each layer, respectively. Thecalculusstate in the simpli-
fied diagram in figure 4 is divided in 2 stages:calc and
calc ult . Layers 1 and 2 are processed in stagecalc
and the last layer incalc_ult . The two temporary RAMs
described above are designated “A” and “B”.

3.4. Activation function

An activation function with sigmoidal shape that approx-
imates very well the following function was obtained:

ϕ(v, a) =
1− e−av

1 + e−av
(2)

As in Aguilera et al. [4], it was implemented as a piece-
wise linear function. However, in the work presented here
the slopes of each segment are negative and consecutive
powers of 2 synthesized with a simple combinatorial cir-
cuit, optimizing input-output delay. All the operations are
performed using barrel shifters and OR-AND logic gates.

This approximation is shown in figure 6.

4. Hardware platform

Several test networks and application examples were
synthesized and tested to validate the design. An ARC-PCI
board from Altera was used. This board plugs in a personal
computer’s PCI slot and has 3 EPF10K50 FPGA chips.
Each FPGA has 2880 logic cells (50,000 gates) and 20Kbits
of on-chip memory (EABs).

The board can also be equipped with up to 4 static mem-
ory banks, that can be accessed from the FPGA chips.

One of the chips is connected to the PCI bus and thus
hosts the PCI interface and the memory buses arbitration
logic. Previous designs from Oliver [9] and Bishop [10]
were used for the interface chip allowing data transfer be-
tween the host PC and the memory banks.

−15 −10 −5 0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Sigmoidal functions. 8 bits output, 12 input with scaling 2^(−7)

v

y(
v)

p = 10

p = 9

p =1
p =2
p =3
p =4
p =5
p =6
p =7
p =8
p =9
p =10

Figure 6. Family of sigmoidal functions ob-
tained

One of the FPGA chips was used to accommodate the

neural network circuitry. Two memory banks were used in
order to allow writing the results for the current set at the
same time that the input values for the following set are
read.

Once the target hardware is given, several bounds are im-
posed by the available memory and area. On one hand the
available area limits the number of multipliers that can be
synthesized on the chip for a given word width. This lim-
itation can be avoided by repeatedly using the same hard-
ware as explained above. The available external memory
sets an upper bound to the number of input sets that can be
processed without host intervention. The available on chip
memory, on the other hand, limits the amount of weights
and biases that can be stored and thus sets a bound to the
neural network size.

Figure 7. ARC-PCI board

5. Example applications

In order to demonstrate the ease of use of the system,
several example applications were selected from different
areas. Furthermore, for a given platform there is a trade-
off between the selected data word width (affecting the nu-
meric precision) and the number of multipliers that fits in
the available area, and consequently the processing speed.
In each example, given the trained network description, sev-
eral compilations were performed to select the fastest solu-
tion with an acceptable error. All this process was done in
a very short time (within one working day for each exam-
ple), showing the flexibility of the obtained environment.

The results for two applications that were compiled and
ran on the ARC-PCI board are shown. The first one is a clas-
sic pattern classification problem, and the second one is a
function approximation. Besides the applications tested on
the ARC-PCI board, several networks were compiled for

more recent chips and the resulting processing speed was
evaluated.

5.1. Classification problem

The application consists in recognizing the five Spanish
language vowel phonemes given a set of characteristics ex-
tracted from a sampled voice signal.

The architecture of the network is the following: 2 lay-
ers, 8 inputs, 6 neurons in the input layer and 5 neurons
in the output layer, one activated for each vowel. The pres-
ence (or absence) of a vowel is coded as a ’1’ value (or ’-1’
value) in the corresponding output.

The starting point was a trained network with normal-
ized patterns in the range[−1, 1), using the hyperbolic tan-
gent as activation function. The circuit was synthesized for
different combinations of parameters. The obtained perfor-
mance was 490 thousands sets per second (about 38 million
products weight-input per second), using a clock of 16,67
MHz in a circuit with 8 multipliers of 8 bits. It correctly
classified all the sets of inputs tested.

The problem was taken from a bigger application devel-
oped as a final project in a graduate course (Facciolo et al.
[11]).

5.2. Function approximation problem

This problem was obtained from PROBEN1 (Prechelt
[6]), and it consists in the forecast of energy consumption
in a building. The goal is to predict the per hour consump-
tion of electrical energy, hot water and cold water, as a func-
tion of the date, hour of the day, room temperature, ambient
humidity, solar radiation and wind speed. The network has
14 inputs, 3 layers with 8, 8 and 3 neurons in the first, sec-
ond and output layer respectively, and the activation func-
tion is bypassed in the output layer.

The network was trained in Matlab with a set of 2104 ex-
amples, using thetanh(x) activation function.

The circuit was synthesized for several parameter com-
binations. The selected configuration resulted in a perfor-
mance of 231 Ksets/s or 46,3 Mproducts/s (Million weight-
input products per second) for the same 16,67 MHz clock
frequency and also using 8 multipliers of 8 bits. The numer-
ical error was less than 0,77 percent of the full range.

6. Results

As a summary, the table 1 shows a performance compar-
ison between the circuit synthesized in the ARC-PCI board
and software-only solutions developed using the neuronal
networks toolbox of Matlab, for the two applications men-
tioned above.

Although Matlab uses a different numerical representa-
tion, it is presented here because as a widely used simula-
tion tool, is an easily understood reference.

ARC-PCI Matlab

Classification problem 490.3 Ksets/s 117 Ksets/s
38.24 Mprod/seg 9.13 Mprod/s

Functional 231.5 Ksets/s 43 Ksets/s
approximation 46.31 Mprod/seg 8.60 Mprod/s

Table 1. Summary of performance obtained in
ARC-PCI compared with Matlab

The circuit in both cases uses 8 multipliers of 8 bits
each and a 16,67 MHz clock, resulting in an occupation of
85% and 91% of area of FLEX10K50 FPGA in each case.
The performance obtained in Matlab was measured using
the functionsim from the neural networks toolbox (calcu-
lation made with all the precision of Matlab, 64 bits float-
ing point), running Windows XP on an Athlon XP 1700+
cpu with 256MB of RAM.

Besides, the design was compiled for current APEX II,
ACEX and Stratix Altera’s technologies, which are bigger
and faster than the ARC-PCI chips. The best results were
for a Stratix chip where the synthesis tools reported an ex-
pected performance of360 million products per second
for a big network using 48 multipliers of 16 bits each and
a 35 MHz clock. Currently, the price of this chip is about
USD 1200 in small quantities.

7. Conclusions

A flexible and scalable design was obtained for a whole
family of multilayer perceptron neural networks. The cir-
cuit for each new application can easily be generated by
setting the parameter values to match the particular net-
work sizes and running the synthesis. Similarly for a par-
ticular network, different parameter combinations can eas-
ily be synthesized to select the best solution for a given tar-
get hardware.

The examples showed that very short design cycles can
be achieved allowing to obtain a running application in a
very short period since its conception.

The design was hardware validated on an FPGA board.
Even with the rather old board used, an appreciable speed-
up was obtained compared with a software-only implemen-
tation based on Matlab neural network toolbox.

8. Acknowledgements

We wish to thank Altera for providing the ARC-PCI
board where this work was implemented, and also Juan
Pablo Oliver from our University for kindly furnishing the
PCI core.

References

[1] Haykin, Simon,Neural networks: a comprehensive founda-
tion. Second edition, Prentice-Hall 1991, ISBN 0-13-273350-
1.

[2] James A. Freeman/David M. Skapura,Neural Networks
- Algorithms, Applications, and Programming Techniques.
Addison-Wesley, 1992, ISBN 0-201-51376-5.

[3] Marco A. Arroyo Léon, Arnoldo Ruiz Castro, Raúl R. Leal
Ascencio, An Artificial Neural Network on a Field Pro-
grammable Gate Array as a virtual sensor,Proceedings of
the International Symposium on Robotics and Automation -
ISRA’98, Saltillo, Coahuila, Mexico, 1998.

[4] Cuauhtemoc Aguilera Galicia, Raúl R. Leal Ascencio, A
CPLD Implementation of an Artificial Neural Network for In-
strumentation Applications,Second International Workshop
on design of Mixed-Mode Integrated and Applications, Gua-
najuato, Ḿexico, 1998.

[5] Charles E. Cox and W. Ekkehard Blanz. GANGLION - A
Fast Field Programmable Gate Array Implementation of a
Connectionist Classifier,IEEE Journal of Solid-State Circuits,
27(3):288-299, March 1992.

[6] Lutz Prechelt,Proben1 - A Set of Neural Network Benchmark
Problems and Benchmarking Rules. Fakulẗat für Informatik,
Universiẗat Karlsruhe, Germany, 1994 Technical Report.

[7] D. Hammerstrom,A VLSI Architecture for High-Performance,
Low-Cost, On-chip Learning. Proceedings of the International
Joint Conference on Neural Networks. 1990

[8] B. Girau, A. Tisserand,On-line Arithmetic based Repro-
grammable Hardware Implementation of Multilayer Percep-
tron Back-Propagation. IEEE Computer Society, 5th Interna-
tional Conference on Microelectronics for Neural Networks
and Fuzzy Systems (MicroNeuro96). 1996

[9] Juan Pablo Oliver, Algoritmos en lógica programable,Ongo-
ing Master Thesis, http://iie.fing.edu.uy/∼jpo

[10] William Bishop, The ARC-PCI board page,
http://www.pads.uwaterloo.ca/∼wdbishop/arc-pci/

[11] Gabriele Facciolo/Diego Rother,Reconocimiento de Voz.
Final project for course “Sistemas Neuro-Fuzzy”, 2002.
http://iie.fing.edu.uy/ense/asign/neurofuzzy/

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

