
RASoC: A Router Soft-Core for Networks-on-Chip

Cesar Albenes Zeferino Márcio Eduardo Kreutz Altamiro Amadeu Susin

UNIVALI – CTTMar
Rua Uruguai, 458

C.P. 360 – CEP 88302-202
Itajaí – SC – BRAZIL

zeferino@inf.univali.br

UFRGS – II – PPGC
Av. Bento Gonçalves, 9500

C.P. 15064 – CEP 91501-970
Porto Alegre – RS – BRAZIL

kreutz@inf.ufrgs.br

UFRGS – II – PPGC
Av. Bento Gonçalves, 9500

C.P. 15064 – CEP 91501-970
Porto Alegre – RS – BRAZIL

susin@eletro.ufrgs.br

Abstract

The building block of a Network-on-Chip (NoCs) is

its router. It is responsible to switch the channels which
forward the messages exchanged by the cores attached
to the NoC, and the costs and performance of the NoC
strongly depends on the router architecture. In this
paper, we present RASoC, a router architecture intended
to be used in the building of low area overhead NoCs for
embedded systems. The difference among RASoC and
current routers relies on its implementation as a
parameterized VHDL model, which improve the reuse of
RASoC in the synthesis of NoCs with different sizes, and
allows the tuning of the NoC parameters in order to
meet the requirements of the target application. The
paper presents details of RASoC architecture, the
structure of the VHDL model and some experimental
results which show the scalability of the soft-core and its
costs.

Keywords: Systems-on-Chip. On-Chip Networks. FPGA.

1. Introduction
Networks-on-Chip (or NoCs) [1] promise to be the

better approach, maybe the only one, that will meet the
communication requirements of future Systems-on-Chip
(SoCs). They are based on the concepts adopted on the
building of interconnection networks for parallel
computers. A NoC is composed by a set of routers and
point-to-point channels interconnecting routers in a
structured way. Each router has a set of ports which are
used to connect routers with its neighbors and with the
processing cores of the system (i.e. scalar processors,
DSPs, controllers, memories, and others). The ports used
to connect the processing cores are named local ports or
terminals (in the network point-of-view).

A NoC can be described by its topology and by the
strategies used for routing, flow control, switching,
arbitration and buffering. The network topology is the
arrangement of nodes and channels into a graph. Routing
determines how a message chooses a path in this graph,
while flow control deals with the allocation of channels
and buffers to a message as it traverses this path.
Switching is the mechanism that removes data from an
input channel and places it on an output channel, while
arbitration is responsible to schedule the use of channels
and buffers by the messages. Finally, buffering defines
the approach used to store messages while they cannot
be scheduled by the router arbitration circuits.

In the point-of-view of a router, routing is the
mechanism that chooses an output channel for a message
arriving at an input channel. Flow control is the
mechanism that regulates the traffic of incoming and
outgoing messages at the channels. Switching defines
how a message passes through the router, while
arbitration decides when this switching can be done.
Finally, buffering determines how and where the
messages will stay while they are waiting to leave the
router.

The router of a NoC can be implemented in a
centralized or a distributed way. In the first one, the
router is composed by: (i) a crossbar; (ii) a collection of
FIFO buffers and link controllers for buffering and flow
control; and (iii) centralized controllers for routing,
arbitration and switching. In the distributed approach,
both the crossbar and the controllers are split into
modules distributed among the input and output channels
of the ports at the router interface, as it is illustrated in
Figure 1.

Typically, the distributed approach is the preferred in
the building of routers for NoCs, and some examples
include RSPIN [2], the router architecture presented by
Dally and Towles [3], and the router of the NoC
CLICHÉ [4].

1530-1591/04 $20.00 (c) 2004 IEEE

Routing
mechanism

Arbiter and
switch controller

Input queue

Link controllerLink controller Distributed
crosbar switch

Figure 1. A distributed router architecture.

This paper presents the architecture of a new router

named RASoC (Router Architecture for SoC), which
was designed to be used in the synthesis of low area
overhead NoCs for embedded SoCs. RASoC is built on a
distributed way. Its architecture is based on the
wormhole switching approach and it uses a deterministic
source-based routing algorithm (the XY) [5]. Also, it
applies the handshake protocol for link flow control, and
uses round-robin arbitration and input buffering.

The difference among RASoC and current routers
(eg. RSPIN [2]) relies on its implementation as a
parameterized VHDL model, which improves the reuse
of RASoC in the synthesis of NoCs with different sizes,
and allows the tuning of the NoC parameters in order to
meet the requirements of the target application. The
paper presents details of RASoC architecture, the
structure of the VHDL model and some synthesis results.

This paper is structured as follows. Section 2 gives a
general overview about the RASoC’s interface and
organization based in two kinds of modules: input
channel and output channel. Section 3 shows the
structure of the VHDL model, and Section 4 presents
some synthesis results. Concluding, we give some final
remarks.

2. RASoC Architecture

Externally, RASoC is a routing switch with up to five
bi-directional ports (Figure 2). These ports are named
L (Local), N (North), E (East), S (South) and W (West).
Depending on the position of a RASoC instance on the
NoC, and on the network topology, one or two of them
need not be implemented, reducing the network area.

W E

S

NL

Figure 2. The interface of RASoC

RASoC ports include two unidirectional opposite

channels (Figure 3), each one with its data, framing and
flow control signals. Each channel includes n bits for
data and two bits for packet framing: bop (begin-of-
packet) is set only at the packet header, and eop (end-of-
packet) is set just in the last payload word, which is the
packet trailer. The n data bits can be extended to include
Higher Level Protocol (HLP) signals, like the ones
typically used for data integrity control (parity and
error). Typical values for n are 8, 16 or 32 bits (not
including HLP signals). Flow control bits are used to
validate data at the channel (val) and to acknowledge the
received data (ack).

n

val
ack

n+2

n+2

bop
eop

data

Figure 3. The channels of a port.

Internally, RASoC is implemented in a distributed

way and it is composed by instances of two kinds of
modules: input channel (in) and output channel (out).
The following subsections describe the internal
organization of these modules.

Ein

Nin

Lin

Sin

Win

Eout

Nout

Lout

Sout

Wout

Ein

Nin

Lin

Sin

Win

Eout

Nout

Lout

Sout

Wout

Figure 4. The internal organization of RASoC.

2.1. The Input Channel Module

The input channel module is represented in Figure 5.
It is composed by four blocks named Input Flow
Controller (IFC), Input Buffer (IB), Input Controller
(IC) and Input Read Switch (IRS). In the RASoC
terminology, the names of the signals at the interface of
the router include the prefix “in_”, for the input channel
modules, and “out_”, for the output ones. All the internal
signals connecting the input and output channel modules
use the prefix “x_”.

IFCIFC IFC

IBIC

IB
wok

wr

din

rd

rok

dout

x_gnt[3..0]

x_rd[3..0]

x_req[L,N,E,S,W]

x_rok

x_dout

in_ack
in_val
in_data

n+2

n+2

IRSIRS

Figure 5. The input channel module.

The IFC block includes the logic that performs the
translation between the handshake and the FIFO flow
control protocols. It just implements an AND gate in
order to set the output in_ack when both in_val and wok
equal 1.

The IB block is a FIFO buffer and it is responsible to
store flits (the flow control units) of the incoming
packets while they cannot be forwarded to an output
channel. In the wormhole switching networks, a flit is
the small unit over which the flow control is performed.
In RASoC, a flit equals the physical channel width, and
each FIFO has p positions to store up to p (n+2)-bit
wide flits.

The IC block performs the routing function. It detects
the presence of a header at the IB block output, analyses
the Routing Information Bits (RIB) included in the
header, runs the routing algorithm to select an output
channel, emits a request to the selected output channel,
and, finally, updates the routing information in the
header to take into account the performed routing. Its
outputs include the updated header and the requests for
the output channels. Since the input channel module is a
generic model for all the instances in a network, it
includes the requests for all the output channels, but not
all of them can be actually requested by each input
channel instance because it is not allowed to an input
channel to request the output channel of its own port.
For instance, Lin can request Nout, Eout, Sout or Eout,
but never Lout.

The IRS block receives four pairs of x_rd - x_gnt
signals from each output channel module, and connects

the granted read command to the rd input of the IB block
interface.

Basically, when a packet header arrives at an input
channel, it is firstly stored in the IB block. At the
moment it reaches the output of these buffer, the IC
block runs the routing algorithm and emits a request to
the selected output channel. While a grant is not received
from the requested output channel, the remaining flits of
the packet are stored in the buffer. However, if the
packet length is greater than the buffer depth, the IFC
block assures that no additional flit will be received
while the buffer is full. The flits that can not be stored in
the buffer are stalled in the previous buffers in the packet
path, and the channels in this path remains reserved for
such packet. When the grant for the blocked packet is
received, the header is forwarded to the requested output
channel, and the payload flits follow the header in a
pipelined fashion.

2.2. The Output Channel Module

The internal organization of the output channel
module is shown in Figure 6. It is composed by four
blocks named Output Controller (OC), Output Data
Switch (ODS), Output Read Switch (ORS) and Output
Flow Controller (OFC).

IRS

IRS

IRSOC IFCOFC
x_req[3..0]

x_gnt[3..0]

x_rok[3..0]

x_din[3..0]

ODS

ORS

x_rd

n+2

out_val

out_data

out_ack

eop

Figure 6. The output channel module.

The OC block, runs a round-robin algorithm to select

one of the requests emitted by the input channels. After
that, it sets the grant line to the selected request,
commanding the ODS and ORS blocks to switch. These
ones connect the x_din and x_rok signals of the selected
input channel to the external output channel interface.
However, before be connected to out_val, the x_rok
signal goes through the OFC block. Since there is no
functional difference between the handshake and the
FIFO protocols at the sender side, the OFC block signal
just implements wires connecting the selected x_rok to
out_val, and out_ack to x_rd. If an another 2-wire based

flow control approach is used, this block can be easily
replaced to implement the required logic (eg. an
up/down counter in a credit-based strategy). The OC
block also monitors eop and x_rd signals to determine
when the last packet flit (the trailer) is delivered in order
to cancel the established connection.

3. The RASoC Soft-Core

A soft-core for RASoC was implemented in VHDL
using the hierarchy represented in Figure 7. The top-
level entity, named rasoc, has three generic parameters,
n, m and p, which define the data channel width, the
width of the routing information in the header (RIB), and
the FIFO depth, respectively. By tuning such parameters,
one can synthesize routers with different cost and
performance ratios. The lower-level entities receive from
the higher-level ones the parameters they need to
generate their architectures with the required
dimensions. The acronyms in the names of the bottom
level entities in Figure 7 represent the actual name of
each entity (eg. IFC is implemented by the
input_flow_controller entity).

rasoc (n,m,p)

x5 x5output_channel (n)input_channel (n,m,p)

IFC IB
(n,p)

IC
(n,m) IRS OC ODS

(n) ORS OFC

Figure 7. Hierarchy of entities in the model.

The architecture of the bottom level entities was

defined in order to meet the constraints of the technology
available for synthesis: Altera FPGAs. These devices
have no internal tri-states and use LUTs (Look-Up
Tables) to implement multiplexers (Figure 8). For the
FIFOs, two approaches were considered. In the first one,
they were described as p-deep, (n+2)-wide shift registers
with an output multiplexer to selected the FIFO head
(Figure 9). In the second one, it was used an Altera’s
parameterized megafunction that is automatically
mapped onto the Embedded Array Blocks (EABs)
available for synthesis of memories in the FPGAs. We
consider that the first approach must be used when there
is not enough embedded memory bits for both
processing cores and routers, and the available ones must
be reserved for the processing cores.

LUT

LUT

LUT

Figure 8. A LUT-based 4x1 multiplexer.

Figure 9. A 4-flit FF-based FIFO buffer.

4. Experimental Results

The RASoC VHDL model was synthesized in an
FPGA of the family Altera FLEX 10KE by using Altera
Quartus II 3.0. By changing only the parameters n (the
data channel width) and p (the FIFO depth), and doing m
(the width of the RIB field) fixed in 8 bits, we obtained
the results presented below. The selected device was
EPF10K200SFC672-1, a 200-Kgate FPGA with
9,984 LCs and 96 Kbits of RAM included in 24 EABs
(each one capable to synthesize a 4-Kbit memory).

 In Table 1, we compare the costs between the two
approaches for FIFOs implementation. They are shown
the number of logic cells (LC), flip-flops (Reg) and
memory bits (Mem) consumed in each approach for
n = 8, 16 and 32 bits, and for p = 2 and 4 flits. Each
position in the buffer is n+2 bit wide).

Table 1. Costs of buffers.

 2 flits 4 flits
 LC Reg Mem LC Reg Mem

 8-bit 35 22 0 76 43 0
FF-based 16-bit 59 38 0 124 75 0
 32-bit 107 70 0 220 139 0

 8-bit 13 5 20 19 8 40
EAB-based 16-bit 13 5 36 19 8 72
 32-bit 13 5 68 19 8 136

As one can see, in the FF-based approach, the number
of LCs increases with both the depth and the width of
the FIFO due to the multiplexer needed to select the
head of the FIFO (Figure 9). On the other hand, in the
EAB-based approach, the numbers of LCs is smaller and
increases only with the FIFO depth. Considering the
registers, the first approach uses flip-flop to implement
the memory elements, and the costs increases in the two
directions. In the second approach, registers are used
only for the pointers that select the positions to be read
or write, and their costs are independent of the FIFO
width. Finally, only the EAB-based approach uses the
embedded RAM and the number of used memory bits
used (n+2)×p.

Table 2 shows results for the synthesis of 5-port
routers based on the two approaches discussed above for
the FIFO implementation. As one can see, the
EAB-based approach spends less logic cells and
flip-flops due to the use of embedded memory bits.
Furthermore, the number of registers is fixed for a given
FIFO depth and number of LCs grows mainly when the
channels become larger due to the multiplexers related
with switching in the OFC block.

Table 2. Costs of RASoC.

 2 flits 4 flits
 LC Reg Mem LC Reg Mem

 8-bit 570 160 0 795 265 0
FF-based 16-bit 770 240 0 1115 425 0
 32-bit 1173 400 0 1830 745 0

 8-bit 460 75 100 486 90 200
EAB-based 16-bit 540 75 180 566 90 360
 32-bit 700 75 340 726 90 680

It is important to highlight that the largest

configuration in the EAB-based approach uses less than
0.7% of the memory bits available in the target FPGA.

The maximum operating frequency is about 56,7
MHz for the EAB-based approach (by taking the average
of the performance measurements for the different
configurations in Table 2). Considering the FF-based
approach, the maximum operating frequency is about
64 MHz for 2-flit buffers, but decreases to 55,8 MHz
due to the multiplexer at the outputs of the buffers.

In Table 4, we show the costs of the bottom-level
entities in the synthesis of a 32-bit, 4-flit, EAB-based
router. We highlight the more expensive ones. For
instance, the five output controllers are responsible for
28% of the LCs consumed by the router.

Table 3. Costs of bottom-level entities.

Entities (5x) LC Reg Mem
IRS - Input Read Switch 1% 0% 0%
IC - Input Controller 8% 0% 0%
IB - Input Buffer 12% 44% 100%
IFC - Input Flow Controller 1% 0% 0%
OFC - Output Flow Controller 0% 0% 0%
ORS - Output Rok Switch 1% 0% 0%
ODS - Output Data Switch 49% 0% 0%
OC - Output Controller 28% 56% 0%

By observing Table 3, we can see that the only blocks

that could be optimized in order to reduce the router
costs are the controllers, because there is no way to
reduce the costs of the switches in the FPGA.

To get some idea of the costs of RASoC in
comparison with some processing core, we show in
Table 4 the costs (in number of LCs) of an 8/16-bit ASIP
microcontroller (named FemtoJava) synthesized in an
Altera FLEX 10K FPGA [6]. Comparing these costs
with the ones shown in Table 2 (for 8- and 16-bit
configurations), one can see that the costs of RASoC
vary from 31% to 56% of the costs of FemtoJava.

Table 4. Number of LCs for FemtoJava.

Data width LC
8 bits 1481
16 bits 1979

5. Conclusions

In this paper, we presented the architecture of
RASoC, a router for the building of Networks-on-Chip.
Results shown that the VHDL soft-core developed for
RASoC allows the automatic building of instances with
different sizes. Such architecture has been used in the
building of networks-on-chip and in researches targeting
different issues in the NoC domain: design
methodologies and SoC test planning. Presently, we are
working to develop cheaper versions for the router
components in order to reduce RASoC costs. Also, we
are modeling RASoC in CASS (Cycle-Accurate System
Simulator) [7] in order to compare the performance of
RASoC-based NoCs with the ones of SPIN [2] and
PI-Bus [8], by using the methodology applied in [9].

6. Acknowledgments

This work was supported by CNPq.

7. References

[1] L. Benini and G. De Micheli, “Networks on Chips: a New
SOC Paradigm”, IEEE Computer, Jan. 2002, pp.70-78.
[2] P. Guerrier and A. Greiner, “A Generic Architecture for on-
Chip Packet-Switched Interconnections”, DATE’2000, IEEE
CS Press, 2000. pp.250-256.
[3] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks”, DAC’2001, ACM Press,
2001. pp.684-689.
[4] S. Kumar et al., “A Network on Chip Architecture and
Design Methodology”, Annual Symposium on VLSI’2002,
IEEE CS Press, 2002. pp.105-112.
[5] J. Duato et al., Interconnection Networks: an Engineering
Approach, IEEE CS Press, 1997. 515p.
[6] J. C. B. Mattos and L. Carro. “Efficient Architecture for
FPGA-based Microcontrollers”. ISCAS’2002, IEEE CS Press,
v.5, 2002. p.805-808.
[7] F. Petrot et al. “Cycle-Precise Core Based Hardware/
Software System Simulation with Predictable Event
Propagation”, EUROMICRO’1997, IEEE CS Press, 1997.
p.182-187.
[8] Siemens. “OMI 324: PI-Bus – Ver.0.3d”, Siemens AG,
1994. 35p.
[9] A. Andriahantenaina et al. “SPIN: A Scalable, Packet
Switched On-Chip Micro-Network”. DATE’2003, IEEE CS
Press, 2003. p.70-73.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

