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Abstract 
 
The building block of a Network-on-Chip (NoCs) is 

its router. It is responsible to switch the channels which 
forward the messages exchanged by the cores attached 
to the NoC, and the costs and performance of the NoC 
strongly depends on the router architecture. In this 
paper, we present RASoC, a router architecture intended 
to be used in the building of low area overhead NoCs for 
embedded systems. The difference among RASoC and 
current routers relies on its implementation as a 
parameterized VHDL model, which improve the reuse of 
RASoC in the synthesis of NoCs with different sizes, and 
allows the tuning of the NoC parameters in order to 
meet the requirements of the target application. The 
paper presents details of RASoC architecture, the 
structure of the VHDL model and some experimental 
results which show the scalability of the soft-core and its 
costs. 
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1. Introduction 
Networks-on-Chip (or NoCs) [1] promise to be the 

better approach, maybe the only one, that will meet the 
communication requirements of future Systems-on-Chip 
(SoCs). They are based on the concepts adopted on the 
building of interconnection networks for parallel 
computers. A NoC is composed by a set of routers and 
point-to-point channels interconnecting routers in a 
structured way. Each router has a set of ports which are 
used to connect routers with its neighbors and with the 
processing cores of the system (i.e. scalar processors, 
DSPs, controllers, memories, and others). The ports used 
to connect the processing cores are named local ports or 
terminals (in the network point-of-view). 

A NoC can be described by its topology and by the 
strategies used for routing, flow control, switching, 
arbitration and buffering. The network topology is the 
arrangement of nodes and channels into a graph. Routing 
determines how a message chooses a path in this graph, 
while flow control deals with the allocation of channels 
and buffers to a message as it traverses this path. 
Switching is the mechanism that removes data from an 
input channel and places it on an output channel, while 
arbitration is responsible to schedule the use of channels 
and buffers by the messages. Finally, buffering defines 
the approach used to store messages while they cannot 
be scheduled by the router arbitration circuits. 

In the point-of-view of a router, routing is the 
mechanism that chooses an output channel for a message 
arriving at an input channel. Flow control is the 
mechanism that regulates the traffic of incoming and 
outgoing messages at the channels. Switching defines 
how a message passes through the router, while 
arbitration decides when this switching can be done. 
Finally, buffering determines how and where the 
messages will stay while they are waiting to leave the 
router.  

The router of a NoC can be implemented in a 
centralized or a distributed way. In the first one, the 
router is composed by: (i) a crossbar; (ii) a collection of 
FIFO buffers and link controllers for buffering and flow 
control; and (iii) centralized controllers for routing, 
arbitration and switching. In the distributed approach, 
both the crossbar and the controllers are split into 
modules distributed among the input and output channels 
of the ports at the router interface, as it is illustrated in 
Figure 1. 

Typically, the distributed approach is the preferred in 
the building of routers for NoCs, and some examples 
include RSPIN [2], the router architecture presented by 
Dally and Towles  [3], and the router of the NoC 
CLICHÉ [4]. 
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Figure 1.  A distributed router architecture. 
 
This paper presents the architecture of a new router 

named RASoC (Router Architecture for SoC), which 
was designed to be used in the synthesis of low area 
overhead NoCs for embedded SoCs. RASoC is built on a 
distributed way. Its architecture is based on the 
wormhole switching approach and it uses a deterministic 
source-based routing algorithm (the XY) [5]. Also, it 
applies the handshake protocol for link flow control, and 
uses round-robin arbitration and input buffering. 

The difference among RASoC and current routers 
(eg. RSPIN [2]) relies on its implementation as a 
parameterized VHDL model, which improves the reuse 
of RASoC in the synthesis of NoCs with different sizes, 
and allows the tuning of the NoC parameters in order to 
meet the requirements of the target application. The 
paper presents details of RASoC architecture, the 
structure of the VHDL model and some synthesis results. 

This paper is structured as follows. Section 2 gives a 
general overview about the RASoC’s interface and 
organization based in two kinds of modules: input 
channel and output channel. Section 3 shows the 
structure of the VHDL model, and Section 4 presents 
some synthesis results. Concluding, we give some final 
remarks. 

 
2. RASoC Architecture 

Externally, RASoC is a routing switch with up to five 
bi-directional ports (Figure 2). These ports are named 
L (Local), N (North), E (East), S (South) and W (West). 
Depending on the position of a RASoC instance on the 
NoC, and on the network topology, one or two of them 
need not be implemented, reducing the network area. 
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Figure 2. The interface of RASoC 

 
RASoC ports include two unidirectional opposite 

channels (Figure 3), each one with its data, framing and 
flow control signals. Each channel includes n bits for 
data and two bits for packet framing: bop (begin-of-
packet) is set only at the packet header, and eop (end-of-
packet) is set just in the last payload word, which is the 
packet trailer. The n data bits can be extended to include 
Higher Level Protocol (HLP) signals, like the ones 
typically used for data integrity control (parity and 
error). Typical values for n are 8, 16 or 32 bits (not 
including HLP signals). Flow control bits are used to 
validate data at the channel (val) and to acknowledge the 
received data (ack). 
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Figure 3. The channels of a port. 

 
Internally, RASoC is implemented in a distributed 

way and it is composed by instances of two kinds of 
modules: input channel (in) and output channel (out). 
The following subsections describe the internal 
organization of these modules.  
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Figure 4. The internal organization of RASoC. 
 



2.1. The Input Channel Module 

The input channel module is represented in Figure 5. 
It is composed by four blocks named Input Flow 
Controller (IFC), Input Buffer (IB), Input Controller 
(IC) and Input Read Switch (IRS). In the RASoC 
terminology, the names of the signals at the interface of 
the router include the prefix “in_”, for the input channel 
modules, and “out_”, for the output ones. All the internal 
signals connecting the input and output channel modules 
use the prefix “x_”. 
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Figure 5. The input channel module.  
 

The IFC block includes the logic that performs the 
translation between the handshake and the FIFO flow 
control protocols. It just implements an AND gate in 
order to set the output in_ack when both in_val and wok 
equal 1. 

The IB block is a FIFO buffer and it is responsible to 
store flits (the flow control units) of the incoming 
packets while they cannot be forwarded to an output 
channel. In the wormhole switching networks, a flit is 
the small unit over which the flow control is performed. 
In RASoC, a flit equals the physical channel width, and 
each FIFO has p positions to store up to p  (n+2)-bit 
wide flits.  

The IC block performs the routing function. It detects 
the presence of a header at the IB block output, analyses 
the Routing Information Bits (RIB) included in the 
header, runs the routing algorithm to select an output 
channel, emits a request to the selected output channel, 
and, finally, updates the routing information in the 
header to take into account the performed routing. Its 
outputs include the updated header and the requests for 
the output channels. Since the input channel module is a 
generic model for all the instances in a network, it 
includes the requests for all the output channels, but not 
all of them can be actually requested by each input 
channel instance because it is not allowed to an input 
channel to request the output channel of its own port. 
For instance, Lin can request Nout, Eout, Sout or Eout, 
but never Lout. 

The IRS block receives four pairs of x_rd - x_gnt 
signals from each output channel module, and connects 

the granted read command to the rd input of the IB block 
interface. 

Basically, when a packet header arrives at an input 
channel, it is firstly stored in the IB block. At the 
moment it reaches the output of these buffer, the IC 
block runs the routing algorithm and emits a request to 
the selected output channel. While a grant is not received 
from the requested output channel, the remaining flits of 
the packet are stored in the buffer. However, if the 
packet length is greater than the buffer depth, the IFC 
block assures that no additional flit will be received 
while the buffer is full. The flits that can not be stored in 
the buffer are stalled in the previous buffers in the packet 
path, and the channels in this path remains reserved for 
such packet. When the grant for the blocked packet is 
received, the header is forwarded to the requested output 
channel, and the payload flits follow the header in a 
pipelined fashion. 

2.2. The Output Channel Module 

The internal organization of the output channel 
module is shown in Figure 6. It is composed by four 
blocks named Output Controller (OC), Output Data 
Switch (ODS), Output Read Switch (ORS) and Output 
Flow Controller (OFC). 
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Figure 6. The output channel module. 

 
The OC block, runs a round-robin algorithm to select 

one of the requests emitted by the input channels. After 
that, it sets the grant line to the selected request, 
commanding the ODS and ORS blocks to switch. These 
ones connect the x_din and x_rok signals of the selected 
input channel to the external output channel interface. 
However, before be connected to out_val, the x_rok 
signal goes through the OFC block. Since there is no 
functional difference between the handshake and the 
FIFO protocols at the sender side, the OFC block signal 
just implements wires connecting the selected x_rok to 
out_val, and out_ack to x_rd. If an another 2-wire based 



flow control approach is used, this block can be easily 
replaced to implement the required logic (eg. an 
up/down counter in a credit-based strategy). The OC 
block also monitors eop and x_rd signals to determine 
when the last packet flit (the trailer) is delivered in order 
to cancel the established connection. 

3. The RASoC Soft-Core 

A soft-core for RASoC was implemented in VHDL 
using the hierarchy represented in Figure 7. The top-
level entity, named rasoc, has three generic parameters, 
n, m and p, which define the data channel width, the 
width of the routing information in the header (RIB), and 
the FIFO depth, respectively. By tuning such parameters, 
one can synthesize routers with different cost and 
performance ratios. The lower-level entities receive from 
the higher-level ones the parameters they need to 
generate their architectures with the required 
dimensions. The acronyms in the names of the bottom 
level entities in Figure 7 represent the actual name of 
each entity (eg. IFC is implemented by the 
input_flow_controller entity). 
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Figure 7. Hierarchy of entities in the model. 
 
The architecture of the bottom level entities was 

defined in order to meet the constraints of the technology 
available for synthesis: Altera FPGAs. These devices 
have no internal tri-states and use LUTs (Look-Up 
Tables) to implement multiplexers (Figure 8). For the 
FIFOs, two approaches were considered. In the first one, 
they were described as p-deep, (n+2)-wide shift registers 
with an output multiplexer to selected the FIFO head 
(Figure 9). In the second one, it was used an Altera’s 
parameterized megafunction that is automatically 
mapped onto the Embedded Array Blocks (EABs) 
available for synthesis of memories in the FPGAs. We 
consider that the first approach must be used when there 
is not enough embedded memory bits for both 
processing cores and routers, and the available ones must 
be reserved for the processing cores.  

LUT

LUT

LUT

 
Figure 8. A LUT-based 4x1 multiplexer. 

 
 

 
Figure 9. A 4-flit FF-based FIFO buffer. 

 

4. Experimental Results 

The RASoC VHDL model was synthesized in an 
FPGA of the family Altera FLEX 10KE by using Altera 
Quartus II 3.0. By changing only the parameters n (the 
data channel width) and p (the FIFO depth), and doing m 
(the width of the RIB field) fixed in 8 bits, we obtained 
the results presented below. The selected device was 
EPF10K200SFC672-1, a 200-Kgate FPGA with 
9,984 LCs and 96 Kbits of RAM included in 24 EABs 
(each one capable to synthesize a 4-Kbit memory). 

 In Table 1, we compare the costs between the two 
approaches for FIFOs implementation. They are shown 
the number of logic cells (LC), flip-flops (Reg) and 
memory bits (Mem) consumed in each approach for 
n = 8, 16 and 32 bits, and for p = 2 and 4 flits. Each 
position in the buffer is n+2 bit wide).  
 

Table 1. Costs of buffers. 

  2 flits 4 flits 
  LC Reg Mem LC Reg Mem

  8-bit 35 22 0 76 43 0 
FF-based 16-bit 59 38 0 124 75 0 
  32-bit 107 70 0 220 139 0 

  8-bit 13 5 20 19 8 40 
EAB-based 16-bit 13 5 36 19 8 72 
  32-bit 13 5 68 19 8 136

 
 



As one can see, in the FF-based approach, the number 
of LCs increases with both the depth and the width of 
the FIFO due to the multiplexer needed to select the 
head of the FIFO (Figure 9). On the other hand, in the 
EAB-based approach, the numbers of LCs is smaller and 
increases only with the FIFO depth. Considering the 
registers, the first approach uses flip-flop to implement 
the memory elements, and the costs increases in the two 
directions. In the second approach, registers are used 
only for the pointers that select the positions to be read 
or write, and their costs  are independent of the FIFO 
width. Finally, only the EAB-based approach uses the 
embedded RAM and the number of used memory bits 
used (n+2)×p. 

Table 2 shows results for the synthesis of 5-port 
routers based on the two approaches discussed above for 
the FIFO implementation. As one can see, the 
EAB-based approach spends less logic cells and 
flip-flops due to the use of embedded memory bits. 
Furthermore, the number of registers is fixed for a given 
FIFO depth and number of LCs grows mainly when the 
channels become larger due to the multiplexers related 
with switching in the OFC block.  

 
Table 2. Costs of RASoC. 

  2 flits 4 flits 
  LC Reg Mem LC Reg Mem

  8-bit 570 160 0 795 265 0 
FF-based 16-bit 770 240 0 1115 425 0 
  32-bit 1173 400 0 1830 745 0 

  8-bit 460 75 100 486 90 200
EAB-based 16-bit 540 75 180 566 90 360
  32-bit 700 75 340 726 90 680

 
 
It is important to highlight that the largest 

configuration in the EAB-based approach uses less than 
0.7% of the memory bits available in the target FPGA.  

The maximum operating frequency is about 56,7 
MHz for the EAB-based approach (by taking the average 
of the performance measurements for the different 
configurations in Table 2). Considering the FF-based 
approach, the maximum operating frequency is about 
64 MHz for 2-flit buffers, but decreases to 55,8 MHz 
due to the multiplexer at the outputs of the buffers. 

In Table 4, we show the costs of the bottom-level 
entities in the synthesis of a 32-bit, 4-flit, EAB-based 
router. We highlight the more expensive ones. For 
instance, the five output controllers are responsible for 
28% of the LCs consumed by the router.  

 

Table 3. Costs of bottom-level entities. 

Entities (5x) LC Reg Mem
IRS  -   Input Read Switch 1% 0% 0% 
IC  -   Input Controller 8% 0% 0% 
IB  -   Input Buffer 12% 44% 100%
IFC  -   Input Flow Controller 1% 0% 0% 
OFC  -   Output Flow Controller 0% 0% 0% 
ORS  -   Output Rok Switch 1% 0% 0% 
ODS  -   Output Data Switch 49% 0% 0% 
OC  -   Output Controller 28% 56% 0% 
 
By observing Table 3, we can see that the only blocks 

that could be optimized in order to reduce the router 
costs are the controllers, because there is no way to 
reduce the costs of the switches in the FPGA.  

To get some idea of the costs of RASoC in 
comparison with some processing core, we show in 
Table 4 the costs (in number of LCs) of an 8/16-bit ASIP 
microcontroller (named FemtoJava) synthesized in an 
Altera FLEX 10K FPGA [6]. Comparing these costs 
with the ones shown in Table 2 (for 8- and 16-bit 
configurations), one can see that the costs of RASoC 
vary from 31% to 56% of the costs of FemtoJava.  

 
Table 4. Number of LCs for FemtoJava. 

Data width LC 
8 bits 1481 
16 bits 1979 

 

5. Conclusions 

In this paper, we presented the architecture of 
RASoC, a router for the building of Networks-on-Chip. 
Results shown that the VHDL soft-core developed for 
RASoC allows the automatic building of instances with 
different sizes. Such architecture has been used in the 
building of networks-on-chip and in researches targeting 
different issues in the NoC domain: design 
methodologies and SoC test planning. Presently, we are 
working to develop cheaper versions for the router 
components in order to reduce RASoC costs. Also, we 
are modeling RASoC in CASS (Cycle-Accurate System 
Simulator) [7] in order to compare the performance of 
RASoC-based NoCs with the ones of SPIN [2] and 
PI-Bus [8], by using the methodology applied in [9].  
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