

I. PAPAEFSTATHIOU1, G. KORNAROS2, N. ZERVOS2

1 Foundation of Research & Technology Hellas (FORTH),
Institute of Computer Science (ICS),

Vassilika Vouton, GR71110, Iraklio, Crete, GREECE
 ygp@ics.forth.gr

2 Ellemedia Technologies
223, Siggrou Av,

GR17121, Athens, Greece
kornaros@ellemedia.com

Abstract
To meet the demand for higher performance, flexibility, and
economy in today’s state-of-the-art networks, an alternative
to the ASICs that traditionally were used to implement
packet-processing functions in hardware, called network
processors (NPs), has emerged. In this paper, we briefly
outline the architecture of such an innovative network
processor aiming at the acceleration of protocol processing
in high-speed network interfaces, and we use this
architecture as a case study for our measurements. We
focus on the performance of the general purpose processors
used for executing high level protocol processing, since this
part proves to be the bottleneck of the design. The
performance is analyzed by executing a set of widely used,
real applications and by applying network traffic according
to certain stochastic criteria. The performance of the RISC
used is compared with that of other well-known CPU
architectures so as to verify that our results are applicable
to the general network processors era. As our results
demonstrate, the bottleneck of the majority of the network
processors is the general-purpose processing units used,
since today’s network protocols need a great amount of
high-level processing. On the other hand the specific
purpose processors or co-processors, optimized for certain
part of the network packet processing, involved in such
systems, can provide the power needed, even at today’s
ultra high network speeds.

I. Introduction

The rapid growth in the number of network nodes, along
with the ever-increasing users’ demands for networking
services, has imposed the development and deployment of
high-capacity telecommunication systems. Such systems
involve modules of high throughput, which often have their
time critical functions implemented in application specific
modules. The power required for the processing of protocol
functions at wire speed is usually obtained either by generic
microprocessors that are designed with the flexibility to
perform a variety of functions, (at the cost of lower speed),
or by Application Specific Integrated Circuits (ASICs) that
are designed to meet specific functional requirements with
high efficiency but with limited programmability. But the
option that seems to be the more promising one today is a
hybrid approach. This combines both chip technologies; a
RISC processor as the central core, and ASICs to perform

specific time-critical tasks. These components, called
Network Processors (NPs), have been widely considered as
the next generation standard platform for network
processing.

While most of the NPs nowadays support the execution
of higher layer protocol functions in software (such as
routing, statistical compiling and reporting, error
processing, connection admission control, network and
transport layers protocol processing (e.g. ATM/AAL,
TCP/IP, SSCOP) and traffic/resource management) the
Programmable Protocol Processor or PRO3 outlined in
section II, follows a different approach. The main target of
PRO3 is to accelerate the execution of telecom protocols by
extending a high-performance RISC core with
programmable, pipelined hardware. CPU demanding and
(hard) real-time protocol functions will be handled by the
programmable hardware, while the remaining functions as
well as higher layer protocols will be handled by the on-
chip RISC, in an integrated way. The basic concept behind
the PRO3 is to provide the required processing power
through a novel architecture incorporating parallelism and
pipelining, wherever possible, by integrating both fixed
hardware and generic micro-programmed engines with
general-purpose processors. However even by using all
those dedicated, high-performance hardware modules, the
bottleneck is the, very frequently underestimated, general-
purpose processing, needed for the high level protocol
handling. In particular, in the PRO3 there are dedicated
units that perform the network-specific processing (like
network header processing, packet classification, packet
segmentation and reassembly, packet buffering etc), and
leave to the general purpose processor, only the high level
tasks (like simple mathematical calculations, and
assignments of certain network data items to constant
values based on another value carried in the packet).
However, as this paper demonstrates, even those simple
high-level tasks, are complicated enough so as to limit the
performance of the whole NP. In other words, the
bottleneck of the PRO3 architecture is the general purpose
processing. We believe, that in the other existing NP
architectures (like Intel’s IXP[11] and Cisco’s Toaster[12]),
that have no dedicated units for network specific tasks, and
all the processing is done in general purpose CPUs, this
arguments will be strengthened.

The rest of the paper is organized as follows: Section II
outlines the reference architecture, while Section III
presents a performance analysis of the high level protocol

Software processing performance in network processors

1530-1591/04 $20.00 (c) 2004 IEEE

processing on the PRO3 and this is compared with that of
other architectures. Finally, section V concludes our
analysis.

II. The PRO3 architecture

A trend in high-speed networking system design until
recently has been to offload higher layer protocol functions,
that are not performed at wire speed to external system
control processors in a centralized manner. High level
protocol processing such as: routing, statistical compiling
and reporting, error processing, connection admission
control, network and transport layers protocol processing
(e.g. ATM/AAL, TCP/IP, SSCOP) and traffic and/or
resource management, often today, are treated as a system’s
slow path. In order to accomplish the considerable
processing power and memory throughput, required to
execute protocol stacks for large numbers of connections,
often more than one high performance processing units are
employed. In such systems, the processing units are
inadequate in supporting the protocol processing
requirements for the entire set of active sessions. This
constitutes a major system resource bottleneck, because the
complexity of the protocol algorithms requires higher
computational power than that offered by today's processor
technology. Moreover, new services, applications and
provider’s requirements raise the significance of performing
complex protocol processing tasks at ever increasing rates,
since control and management plane functionality, as well
as deep packet inspection and data transformation, are an
integral part of modern telecommunication applications.

As mentioned above, the PRO3 system architecture,
presented in this section, follows a different approach in the
area of high speed protocol processing. The protocol
processor comprises mainly of two distinct parts: a) The
programmable, pipelined hardware modules that execute
the CPU demanding and (hard) real-time protocol
functions, and b) the high-performance RISC which handles
the remaining functions, as well as the higher layer
protocols. The concept of the PRO3 architecture is to
provide the required processing power through a novel
architecture incorporating parallelism and pipelining. Of
key importance in this architecture is the integration of the
processing elements of the system (mainly generic micro-
programmed engines and RISC cores) with scheduler
components, in order to facilitate data processing in a fair,
balanced manner and to control data streams generated by
the chip. When programmability is set as a major
requirement, RISC based micro-engines are the best
candidates for the implementation of functional units for
many of the protocol processing functions. Following this
approach we developed both fixed hardware units, as well
as optimized micro-engines integrated with a commercial
RISC processor in a layered architecture optimized for
efficient protocol processing at link rates up to OC-48 (2,5
Gbit/sec). The actual block level PRO3 architecture is
depicted in Figure 1. The PRO3 system is a distributed
architecture incorporating dedicated hardwire modules for
pre-processing and post-processing of low level protocols

and two RISC-based Pipeline Modules (RPM), operating in
parallel, to facilitate load balancing, as well as the execution
of protocols with different incoming and outgoing data
flows.

RPM

PPE FMOFEX

Data Memory Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

CAM
for

classification

External Host
CPU

(optional)

CPU I/F

INSERT /
EXTRACT

Timers
RISC CPU

SDRAM
I/F

CPU
RAM

OUT

Post-processing
ATM/CPCS

CRC

ATM/CPCS

CRC

Traffic
Scheduling

TX Layers

Scheduling
Memory

Scheduling RAM I/F

Bus control,
Internal

Scheduling

Internal BUS

Control RAM
(state)

RPM

PPE FMOFEX

Control RAM I/F CAM I/F

RPM

PPE FMOFEX

RPM

PPE FMOFEX

Data Memory Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Data Memory Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

CAM
for

classification

External Host
CPU

(optional)

CPU I/F

INSERT /
EXTRACT

Timers
RISC CPU

SDRAM
I/F

CPU
RAM

OUT

Post-processing
ATM/CPCS

CRC

ATM/CPCS

CRC

Traffic
Scheduling

TX Layers

Scheduling
Memory

Scheduling RAM I/F

Bus control,
Internal

Scheduling

Internal BUS

Control RAM
(state)

RPM

PPE FMOFEX

RPM

PPE FMOFEX

Control RAM I/F CAM I/F

Figure 1 : Block architecture of PRO3 system.

In particular, the general purpose processing heart of the

PRO3 system is the RPM [5], which consists of a modified
RISC core (PPE) surrounded by a Field Extraction (FEX)
programmable micro-engine, which directly loads the
required protocol data to the RISC for processing, and a
Field Modification programmable engine (FMO) for
flexible PDU construction and header modification. All
together form a powerful 3-stage pipeline module, which
forms the mixed hardware and software processing heart of
the system and it performs the main processing of each
protocol.

The Internal Scheduling Unit [6], which is also a
composite module, maintains a number of priority queues in
order to schedule the forwarding of packets for processing
according to the priority of each flow. It is also used to
multiplex the execution of data transactions to the different
internal destinations and/or allow for interleaved
transactions over the Internal Bus. A dual scheduler
module, configurable to operate either on fixed size cells or
variable length packets, supports aggregate per group peak
rate shaping for IP flows and guaranteed peak rate shaping
per ATM flow.

Other main blocks perform data/queue management and
higher layer protocol processing. The common high speed
path (up to the transport layer) is performed in the PRO3
hardware pipeline, and higher layer applications on the
internal Hyperstone RISC CPU. Packets are stored per-flow
in the external DRAM in queues implemented as linked list
data structures [2] and can be retrieved by the Data Memory
Manager module (DMM)0 in response to specific
commands. The packets are then delivered over the internal
bus either to a) the RPM modules or b) the control RISC
CPU or c) a host CPU (via the insert/extract interface) or d)
the output interface.

In general, the following sequence of operations is
applied to each incoming packet: reception, classification,
state processing, and transmission. Each of these generic
functions consists of a set of lower level functions and can
be implemented in a different pipeline stage. In case of

exception the packet is redirected to the internal or the
external CPU.

III. Performance Evaluation

In this section we will present the performance the

PRO3 protocol processor can achieve when it executes real-
world applications. It is worth noting that network
processors constitute a new paradigm in network oriented
computing architectures and as such no accepted
benchmarking procedures exist [4], merely due to the
polymorphism of architectures, as well as to the
dissimilarity of applications. Our approach is based on
running indicative computational intensive applications,
which process network packets that belong to different
network protocols.

The main processing power of the PRO3 comes from the
two RPM units that operate in parallel, and the central RISC
unit. RPM throughput is determined by the worst case
performance of each of its pipeline stages and results are
discussed in detail in this section. Of course, when wire-
speed operation is achieved the performance is limited by
the nominal speed of the interfaces of the chip. We have
evaluated several applications and developed the PRO3
specifications to meet the performance targets that are
included in 0. In the following analysis we show how these
performance targets can be met. In particular, we
concentrate on the IP applications.

The performance evaluation has been based on the
following facts: the PRO3 chip is implemented using UMC
0.18 CMOS technology at a clock frequency of 200MHz
and with a 64-bit-wide internal bus. As it has been briefly
described above, the memory bottleneck has been coped
with by paralelizing memory accesses per functional unit so
as each one of them can get the required bandwidth even
under worst case conditions.

For the IP applications the worst case conditions arise
when there is a continuous stream of minimum size 40-Byte
IP packets. In this case each RPM stage has about 256 ns
for processing each packet. This number comes from the
fact that the network interfaces operate at 2.5Gb/sec and the
load is balanced between the two RPMs, which operate in
parallel.

Table A PRO3 features

 Application Sustained
rate

Max
flows

ATM applications
1 ATM cell processing 2,5 Gbps 512K
2 AAL5 processing 2,5 Gbps 512K

IP applications
3 Layer 2, 3, 4 classification 2,5 Gbps 512K
4 Layer 2, 3, 4 filtering ≤2,5 Gbps 512K
5 Layer 4 stateful inspection ≤2,5 Gbps 512K
6 NAT ≤2,5 Gbps 512K

The applications used throughout this section
implements a stateful inspection Firewall with Network
Address Translation (NAT) support [3], [5]. Samples of
real TCP/IP traffic have been used as input in the H/W
simulation and the processing time in the Modified
Hyperstone RISC processor (MHY) was accurately
measured. In order to evaluate the application performance,
experiments with different packet lengths and packets of
different protocols were carried out. The main parameters
measured were the throughput these modules can achieve
and the total number of the executed instructions under the
different circumstances. Our analysis is focused on the
RISC processor only since as it is presented in [8] the other
RPM modules can always achieve the performance of Table
A. In order to show that the problems associated with
software processing is not due to the specific RISC core we
use, we have also measured the performance, in the same
context, of two of the most widely used general purpose
CPU families: the SPARC and the Intel x86.

In general MHY’s throughput depends heavily on the
custom running application and it is estimated, that for
complex applications, like TCP state updating and NAT,
less than 170 instructions are needed (notice that the core is
optimised for code density as it is described in [5]). But as it
will be shown, even this small number of instructions can
cause significant problems in the performance of the overall
design.

As 0 demonstrates the number of instructions executed
on the MHY depends on the protocol of the packet as well
as on the value of the packet header and obviously the
specific application running.

Table B : Number of Instructions for

different protocols/applications
 NAT No-NAT,

packet passed
No-NAT,

packet dropped
TCP 141 –

164
60 – 92 42 – 68

UDP 95 –
107

36 N/A

ICMP N/A 36 N/A

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

10,00

IC
MP

UDP

UDP (N
AT)

TCP (w
ors

t c
as

e)

TCP (N
AT, w

ors
t c

as
e)

TCP (a
ve

rag
e c

as
e)

TCP (N
AT, a

ve
rag

e c
as

e)

Applications

G
b/

se
c

40-byte (Gb/sec)

128-byte
(Gb/sec)

Figure 2 : Throughput achieved for different

applications

One of the main characteristics of these applications (and

the higher layer protocol applications in general) is that they
process only the headers of the packets. As a result, their
performance depends on the size of the packets (since if the
packet is small they will have to process a lot of headers at
a short time, whereas in case of large packets fewer headers
should be processed). In Figure 2 the throughput achieved
for different packet sizes is demonstrated. As it is clearly
shown if the network streams comprises of packets with an
average length of 128 bytes (which is less than the typical
mean IP packet length) the two MHYs can process the
packets at the requested rate (2.5 Gb/sec). It is worth noting

that the packet classification, queuing and scheduling
elements can support 2,5Gbps link rates even for worst case
minimum packets. It should also be stressed that the
average cases in TCP and TCP-NAT processing have been
derived as follows:

We have first analysed millions of packets from the
backbones of various network providers in the U.S.A. [9] so
as to derive the percentages of packet belonging to each
particular TCP state. Then we plugged these percentages in
our experiments and we figured out what would have been
the average number of instructions needed if these real
network traces were sent over the PRO3.

In order to investigate whether the low bandwidth
achieved in case of small packages, is due to the specific
RISC-core used, the same application has been compiled
into different CPU architectures. In particular, we have
chosen two of the most representative architectures: the
SPARC and the Intel x86 one. As it is known, the SPARC
is RISC while the Intel x86 is CISC. The number of
instructions needed in each CPU (in the worst case) is
shown in Figure 3. The numbers where produced by
applying the highest compiler optimisations for code
density and handcraft the produced code so as to further
reduce the number of instructions needed.

0
50

100
150
200
250

Hyperstone Sparc IntelN
um

be
r o

f i
ns

tr
uc

tio
ns Total

Branches

Figure 3 : Number of instructions in different

architectures

This Figure demonstrates that the Hyperstone

instructions needed are not significantly more than the x86
ones and less than those at the SPARC. Since x86 is a CISC
architecture we would expect that it would have needed less
and more complicated instructions. Due to the fact that in
every architecture we need at least 145 instructions to
implement TCP stateful inspection and NAT we support
that the software processing time can cause significant
problems in the majority of the Network Processors that are

organized around a general CPU core, and not only on
PRO3.

Since in most of the pipeline CPUs today the
performance of a program degrades with the number of
branches (due to pipeline stalls/flashes) we have also
counted the number of branches for each architecture (as
shown in Figure 3). It is clear that the percentage of
branches does not vary significantly in the measured
architectures, even though the actual number of branches
varies (This is because in the Intel Architecture we needed
far less instructions). In general, based on the results
presented in Figure 3, we claim that even if we have
changed the particular CPU we use with another general

CPU (either CISC or RISC), we would have not done much
better in terms of the software performance.

As it has been mentioned above the performance of the
software depends on the size of the packets as well as the
protocol the network traffic belongs to. Therefore, we have
created a random mix of packet sizes and network protocols
and we have measured the performance of the software
when processing these traces. The results for the average
cases, shown in Figure 4, demonstrate the bandwidth
achieved when the percentage of the small packets in the
mix changes. The small packages are those with length less
than 100 bytes. The traffic generator produces both small
and large packets based on a Gaussian distribution with a
mean of 70 in the small packet’s case1 and 170 for the large
packets.

As the figure clearly demonstrates even when the flow
consists of 90% of small packets the software can process
the data at the requested speed so as to achieve the 2.5Gbps
bandwidth of the PRO3.

Unfortunately, this is not the case when all the packets
belong to the worst-case scenario. Even though, this
scenario is very unlikely to occur in the real world, for
reasons of completeness, we also demonstrate the
performance of the software when each of the packets
(irrespective of their sizes) need 167 instructions so as to be
processed.

As Figure 5 shows, in order for the software modules to
have the time to process the packets at the peak rate of the
PRO3, the mix should include at least 50% of packets with
length greater than 100 bytes. Measurements from real
networks show that in a typical real-world network at least
50% of the packets are indeed greater that 100 bytes [9]. In
particular, as [9] clearly demonstrates, about 30% of the
TCP traffic consists of 40 bytes packets whereas the rest of
the packets are significantly larger. In the experiment
results of 5, we have tried to create short packets as close to
the statistics measured at real networks, as possible. As a
result, someone can argue that even if all the packets trigger
our worst case, the PRO3 can process them as long as they
have lengths similar to those in a typical IP network.

Another interesting aspect of the software performance is
how it varies with the network protocol the packets belong

1 All the packets are longer than 40 bytes according to the TCP
protocol’s specifications[4].

to. Figure 6 demonstrates the bandwidth achieved when a
network stream of TCP and UDP packets is processed.

5,654 5,25 4,8774,473 4,07 3,6973,293 2,922,485

0
1
2
3
4
5
6

10 20 30 40 50 60 70 80 90

Percentage of small packets (%)

G
bp

s

BW achieved

Figure 4 : Bandwidth achieved for a traffic mix in the

average case

3,573
3,317

3,082
2,827

2,571
2,336

2,08
1,845

1,57

0

0,5

1

1,5

2

2,5

3

3,5

4

10 20 30 40 50 60 70 80 90

Percentage of small packets (%)

G
bp

s

Bandwidth achieved

Figure 5 : Bandwidth achieved for a traffic mix in

the worst case

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90

UDP / TCP percentage (%)

G
bp

s

68-byte avg size

194-byte avg size

Figure 6 : Bandwidth achieved for a protocol mix in

the average case

It is clear that the two MHY of the PRO3 can process the
packets at peak rate when more than 20% of the packets are
UDP packets. Since in a real network stream we have at
least 20% of UDP traffic, we believe that even when the
network packets are small (mean length of 69 bytes) the
PRO3 can satisfy the bandwidth requirements of the
interface circuits. Obviously this argument is further
strengthen for the long packets case. In the experiments
that produced this graph, the average TCP NAT case

scenario was used. Obviously if all the TCP packets trigger
the worst case processing, the number of packets the two
MHY can process will be lower and so would be the
bandwidth the whole system can provide.

Finally, it should be noted that we have chosen not to
present, in this paper, the performance of the processing
engines of other NPs, since those engines are very simple
and according to our experiments [10], they need much
more instructions than the presented processors, for
executing the same network applications. Therefore, we
claim that even if it were possible to use powerful
microprocessors (like an x86, or a SPARC), within an NP
(which is not feasible in today’s technologies due to area
and power limitations), the design’s bottleneck would
probably still be the general-purpose high-level processing.

IV. Conclusions

In this paper the Programmable Protocol Processor

(PRO3) was outlined with emphasis in its performance
when executes real-world network applications. The
performance of the software processing of the system is
analysed and ways of optimising it proposed. The
performance is also compared to that of other software
processing systems. The results show that in the current
(and probably future) high-speed networks, the general-
purpose software processing elements would be the
bottleneck, and not the hardware modules that are
optimized for packet processing. The PRO3 chip has been
fabricated in UMC’s 0.18 µm logic process occupying
about 37mm2 of area, and consisting of 856K gates and
1Mbit of on-chip SRAM.

V. References

[1] A. Nikologiannis, M. Katevenis, “Efficient Per-Flow
Queueing in DRAM at OC-192 Line Rate using Out-of-
Order Execution Techniques”, in proc. of ICC2001,
Helsinki, Finland, June 2001.

[2] N. Nikolaou, J. Sanchez, T. Orphanoudakis, D. Polatos N.
Zervos, “Application Decomposition for High-Speed
Network Processing Platforms”, 2nd European Conference
on Universal Multiservice Networks, ECUMN’2002 April
2000, Colmar France.

[3] EDN Embedded Microprocessor Benchmark Consortium
(EEMBC) “Network Processing Platform Benchmarking
Methodology Framework”, Draft 1.0 Request for comments,
July 2000.

[4] Guido van Rooij. “Real Stateful TCP Packet Filtering in IP
Filter,” White paper.

[5] G. Lykakis et al. “Efficient Field Processing Cores in an
Innovative Protocol Processor System-on-Chip”, Design,
Automation and Test in Europe 2003 (DATE 2003),
Munich, Germany 3-7 March, 2003.

[6] G. Kornaros, I. Papaefstathiou, A. Nikologiannis, "A Fully-
Programmable Memory Management System Supporting
Queue Handling at Multi Gigabit rates", In Proceedings of
the 40th IEEE/ACM Design Automation Conference
(DAC), Anaheim, California, U.S.A., June 2-6, 2003.

[7] I. Papaefstathiou, et. al. “An Innovative Scheduling Scheme
For High Speed Network Processors”, 2003 IEEE
International Symposium on Circuits and Systems
(ISCAS’03), Bangkok, Thailand, May 25-28 2003.

[8] K.Vlachos et.al. ““Processing and scheduling components in
an innovative network processor architecture”, to appear, in
proc. VLSI Conference 2003, New Delhi, India, January
2003.

[9] A.J. McGregor, H-W.Braun and J.A. Brown, “The NLANR
Network Analysis Infrastructure,” IEEE Communications
Magazine, Vol. 38 (5): pp. 122-128, May 2000.

[10] I. Papaefstathiou et.al. “A Network SoC for Embedded
Protocol Processing in Multi-Gigabit Networks”, submitted
to IEEE Micro.

[11] “The Next Generation of Intel IXP Network Processors”,
Intel Technology Journal, Volume 6 Issue 3, August 2002

[12] “Cisco Inc. Cisco's Toaster 2 Chip Receives the
Microprocessor Report Analyst's' Choice 2001”, Award for
Best Network Processor. http://www.cisco.com

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

