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Abstract 
To meet the demand for higher performance, flexibility, and 
economy in today’s state-of-the-art networks, an alternative 
to the ASICs that traditionally were used to implement 
packet-processing functions in hardware, called network 
processors (NPs), has emerged. In this paper, we briefly 
outline the architecture of such an innovative network 
processor aiming at the acceleration of protocol processing 
in high-speed network interfaces, and we use this 
architecture as a case study for our measurements. We 
focus on the performance of the general purpose processors 
used for executing high level protocol processing, since this 
part proves to be the bottleneck of the design. The 
performance is analyzed by executing a set of widely used, 
real applications and by applying network traffic according 
to certain stochastic criteria. The performance of the RISC 
used is compared with that of other well-known CPU 
architectures so as to verify that our results are applicable 
to the general network processors era. As our results 
demonstrate, the bottleneck of the majority of the network 
processors is the general-purpose processing units used, 
since today’s network protocols need a great amount of 
high-level processing. On the other hand the specific 
purpose processors or co-processors, optimized for certain 
part of the network packet processing, involved in such 
systems, can provide the power needed, even at  today’s 
ultra high network speeds. 

I.  Introduction 
 

The rapid growth in the number of network nodes, along 
with the ever-increasing users’ demands for networking 
services, has imposed the development and deployment of 
high-capacity telecommunication systems. Such systems 
involve modules of high throughput, which often have their 
time critical functions implemented in application specific 
modules. The power required for the processing of protocol 
functions at wire speed is usually obtained either by generic 
microprocessors that are designed with the flexibility to 
perform a variety of functions, (at the cost of lower speed), 
or by Application Specific Integrated Circuits (ASICs) that 
are designed to meet specific functional requirements with 
high efficiency but with limited programmability. But the 
option that seems to be the more promising one today is a 
hybrid approach. This combines both chip technologies; a 
RISC processor as the central core, and ASICs to perform 

specific time-critical tasks. These components, called 
Network Processors (NPs), have been widely considered as 
the next generation standard platform for network 
processing. 

While most of the NPs nowadays support the execution 
of higher layer protocol functions in software (such as 
routing, statistical compiling and reporting, error 
processing, connection admission control, network and 
transport layers protocol processing (e.g. ATM/AAL, 
TCP/IP, SSCOP) and traffic/resource management) the 
Programmable Protocol Processor or PRO3 outlined in 
section II, follows a different approach. The main target of 
PRO3 is to accelerate the execution of telecom protocols by 
extending a high-performance RISC core with 
programmable, pipelined hardware. CPU demanding and 
(hard) real-time protocol functions will be handled by the 
programmable hardware, while the remaining functions as 
well as higher layer protocols will be handled by the on-
chip RISC, in an integrated way. The basic concept behind 
the PRO3 is to provide the required processing power 
through a novel architecture incorporating parallelism and 
pipelining, wherever possible, by integrating both fixed 
hardware and generic micro-programmed engines with 
general-purpose processors. However even by using all 
those dedicated, high-performance hardware modules, the 
bottleneck is the, very frequently underestimated, general-
purpose processing, needed for the high level protocol 
handling. In particular, in the PRO3 there are dedicated 
units that perform the network-specific processing (like 
network header processing, packet classification, packet 
segmentation and reassembly, packet buffering etc), and 
leave to the general purpose processor, only the high level 
tasks (like simple mathematical calculations, and 
assignments of certain network data items to constant 
values based on another value carried in the packet). 
However, as this paper demonstrates, even those simple 
high-level tasks, are complicated enough so as to limit the 
performance of the whole NP. In other words, the 
bottleneck of the PRO3 architecture is the general purpose 
processing. We believe, that in the other existing NP 
architectures (like Intel’s IXP[11] and Cisco’s Toaster[12]), 
that have no dedicated units for network specific tasks, and 
all the processing is done in general purpose CPUs, this 
arguments will be strengthened.        

The rest of the paper is organized as follows: Section II 
outlines the reference architecture, while Section III 
presents a performance analysis of the high level protocol 
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processing on the PRO3 and this is compared with that of 
other architectures. Finally, section V concludes our 
analysis. 

 
II. The PRO3 architecture 
 

A trend in high-speed networking system design until 
recently has been to offload higher layer protocol functions, 
that are not performed at wire speed to external system 
control processors in a centralized manner. High level 
protocol processing such as: routing, statistical compiling 
and reporting, error processing, connection admission 
control, network and transport layers protocol processing 
(e.g. ATM/AAL, TCP/IP, SSCOP) and traffic and/or 
resource management, often today, are treated as a system’s 
slow path. In order to accomplish the considerable 
processing power and memory throughput, required to 
execute protocol stacks for large numbers of connections, 
often more than one high performance processing units are 
employed. In such systems, the processing units are 
inadequate in supporting the protocol processing 
requirements for the entire set of active sessions. This 
constitutes a major system resource bottleneck, because the 
complexity of the protocol algorithms requires higher 
computational power than that offered by today's processor 
technology. Moreover, new services, applications and 
provider’s requirements raise the significance of performing 
complex protocol processing tasks at ever increasing rates, 
since control and management plane functionality, as well 
as deep packet inspection and data transformation, are an 
integral part of modern telecommunication applications. 

As mentioned above, the PRO3 system architecture, 
presented in this section, follows a different approach in the 
area of high speed protocol processing. The protocol 
processor comprises mainly of two distinct parts: a) The 
programmable, pipelined hardware modules that execute 
the CPU demanding and (hard) real-time protocol 
functions, and b) the high-performance RISC which handles 
the remaining functions, as well as the higher layer 
protocols. The concept of the PRO3 architecture is to 
provide the required processing power through a novel 
architecture incorporating parallelism and pipelining. Of 
key importance in this architecture is the integration of the 
processing elements of the system (mainly generic micro-
programmed engines and RISC cores) with scheduler 
components, in order to facilitate data processing in a fair, 
balanced manner and to control data streams generated by 
the chip. When programmability is set as a major 
requirement, RISC based micro-engines are the best 
candidates for the implementation of functional units for 
many of the protocol processing functions. Following this 
approach we developed both fixed hardware units, as well 
as optimized micro-engines integrated with a commercial 
RISC processor in a layered architecture optimized for 
efficient protocol processing at link rates up to OC-48 (2,5 
Gbit/sec). The actual block level PRO3 architecture is 
depicted in Figure 1. The PRO3 system is a distributed 
architecture incorporating dedicated hardwire modules for 
pre-processing and post-processing of low level protocols 

and two RISC-based Pipeline Modules (RPM), operating in 
parallel, to facilitate load balancing, as well as the execution 
of protocols with different incoming and outgoing data 
flows.  

RPM

PPE FMOFEX

Data Memory  Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

CAM 
for

classification

External Host 
CPU

(optional)

CPU I/F 

INSERT / 
EXTRACT

Timers
RISC CPU

SDRAM
I/F 

CPU  
RAM

OUT

Post-processing
ATM/CPCS

CRC

ATM/CPCS

CRC

Traffic 
Scheduling

TX Layers

Scheduling
Memory

Scheduling RAM I/F

Bus control, 
Internal

Scheduling

Internal BUS 

Control  RAM
(state)

RPM

PPE FMOFEX

Control RAM I/F CAM I/F

RPM

PPE FMOFEX

RPM

PPE FMOFEX

Data Memory  Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Data Memory  Manager

Storage
DRAM

Pointer
RAM

Storage
DRAM

Pointer
RAM

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

Pre-processing
ATM/CPCS
RX Layers

CRC

ATM/CPCS
RX Layers

CRC

IN

Packet
Classifier

CAM 
for

classification

External Host 
CPU

(optional)

CPU I/F 

INSERT / 
EXTRACT

Timers
RISC CPU

SDRAM
I/F 

CPU  
RAM

OUT

Post-processing
ATM/CPCS

CRC

ATM/CPCS

CRC

Traffic 
Scheduling

TX Layers

Scheduling
Memory

Scheduling RAM I/F

Bus control, 
Internal

Scheduling

Internal BUS 

Control  RAM
(state)

RPM

PPE FMOFEX

RPM

PPE FMOFEX

Control RAM I/F CAM I/F

 
Figure 1 : Block architecture of PRO3 system. 

 
In particular, the general purpose processing heart of the 

PRO3 system is the RPM [5], which consists of a modified 
RISC core (PPE) surrounded by a Field Extraction (FEX) 
programmable micro-engine, which directly loads the 
required protocol data to the RISC for processing, and a 
Field Modification programmable engine (FMO) for 
flexible PDU construction and header modification. All 
together form a powerful 3-stage pipeline module, which 
forms the mixed hardware and software processing heart of 
the system and it performs the main processing of each 
protocol.  

The Internal Scheduling Unit [6], which is also a 
composite module, maintains a number of priority queues in 
order to schedule the forwarding of packets for processing 
according to the priority of each flow. It is also used to 
multiplex the execution of data transactions to the different 
internal destinations and/or allow for interleaved 
transactions over the Internal Bus. A dual scheduler 
module, configurable to operate either on fixed size cells or 
variable length packets, supports aggregate per group peak 
rate shaping for IP flows and guaranteed peak rate shaping 
per ATM flow.  

Other main blocks perform data/queue management and 
higher layer protocol processing. The common high speed 
path (up to the transport layer) is performed in the PRO3 
hardware pipeline, and higher layer applications on the 
internal Hyperstone RISC CPU. Packets are stored per-flow 
in the external DRAM in queues implemented as linked list 
data structures [2] and can be retrieved by the Data Memory 
Manager module (DMM)0 in response to specific 
commands. The packets are then delivered over the internal 
bus either to a) the RPM modules or b) the control RISC 
CPU or c) a host CPU (via the insert/extract interface) or d)  
the output interface.  

In general, the following sequence of operations is 
applied to each incoming packet: reception, classification, 
state processing, and transmission. Each of these generic 
functions consists of a set of lower level functions and can 
be implemented in a different pipeline stage. In case of 



exception the packet is redirected to the internal or the 
external  CPU.  

 
III. Performance Evaluation 

 
In this section we will present the performance the 

PRO3 protocol processor can achieve when it executes real-
world applications. It is worth noting that network 
processors constitute a new paradigm in network oriented 
computing architectures and as such no accepted 
benchmarking procedures exist [4], merely due to the 
polymorphism of architectures, as well as to the 
dissimilarity of applications. Our approach is based on 
running indicative computational intensive applications, 
which process network packets that belong to different 
network protocols.  

The main processing power of the PRO3 comes from the 
two RPM units that operate in parallel, and the central RISC 
unit. RPM throughput is determined by the worst case 
performance of each of its pipeline stages and results are 
discussed in detail in this section. Of course, when wire-
speed operation is achieved the performance is limited by 
the nominal speed of the interfaces of the chip. We have 
evaluated several applications and developed the PRO3 
specifications to meet the performance targets that are 
included in 0. In the following analysis we show how these 
performance targets can be met. In particular, we 
concentrate on the IP applications.  

The performance evaluation has been based on the 
following facts: the PRO3 chip is implemented using UMC 
0.18 CMOS technology at a clock frequency of 200MHz  
and with a 64-bit-wide internal bus. As it has been briefly 
described above, the memory bottleneck has been coped 
with by paralelizing memory accesses per functional unit so 
as each one of them can get the required bandwidth even 
under worst case conditions. 

For the IP applications the worst case conditions arise 
when there is a continuous stream of minimum size 40-Byte 
IP packets. In this case each RPM stage has about 256 ns 
for processing each packet. This number comes from the 
fact that the network interfaces operate at 2.5Gb/sec and the 
load is balanced between the two RPMs, which operate in 
parallel.  

 
Table A PRO3 features 

 Application Sustained 
rate 

Max 
flows 

ATM applications 
1 ATM cell processing 2,5 Gbps 512K
2 AAL5 processing 2,5 Gbps 512K

IP applications 
3 Layer 2, 3, 4 classification 2,5 Gbps 512K
4 Layer 2, 3, 4 filtering ≤2,5 Gbps 512K
5 Layer 4 stateful inspection ≤2,5 Gbps 512K
6 NAT ≤2,5 Gbps 512K
 

The applications used throughout this section 
implements a stateful inspection Firewall with Network 
Address Translation (NAT) support [3], [5]. Samples of 
real TCP/IP traffic have been used as input in the H/W 
simulation and the processing time in the Modified 
Hyperstone RISC processor (MHY) was accurately 
measured. In order to evaluate the application performance, 
experiments with different packet lengths and packets of 
different protocols were carried out. The main parameters 
measured were the throughput these modules can achieve 
and the total number of the executed instructions under the 
different circumstances. Our analysis is focused on the 
RISC processor only since as it is presented in [8] the other 
RPM modules can always achieve the performance of Table 
A. In order to show that the problems associated with 
software processing is not due to the specific RISC core we 
use, we have also measured the performance, in the same 
context, of two of the most widely used general purpose 
CPU families: the SPARC and the Intel x86.    

In general MHY’s throughput depends heavily on the 
custom running application and it is estimated, that for 
complex applications, like TCP state updating and NAT, 
less than 170 instructions are needed (notice that the core is 
optimised for code density as it is described in [5]). But as it 
will be shown, even this small number of instructions can 
cause significant problems in the performance of the overall 
design.   

As 0 demonstrates the number of instructions executed 
on the MHY depends on the protocol of the packet as well 
as on the value of the packet header and obviously the 
specific application running. 

 
Table B : Number of Instructions for 

different protocols/applications 
 NAT No-NAT, 

packet passed 
No-NAT, 

packet dropped 
TCP 141 – 

164 
60 – 92 42 – 68 

UDP 95 – 
107 

36 N/A 

ICMP N/A 36 N/A 
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Figure 2 : Throughput achieved for different 

applications 



 
One of the main characteristics of these applications (and 

the higher layer protocol applications in general) is that they 
process only the headers of the packets. As a result, their 
performance depends on the size of the packets (since if the 
packet is small they will have to process a lot of headers at 
a short time, whereas in case of large packets fewer headers 
should be processed). In Figure 2 the throughput achieved 
for different packet sizes is demonstrated. As it is clearly 
shown if the network streams comprises of packets with an 
average length of 128 bytes (which is less than the typical 
mean IP packet length) the two MHYs can process the 
packets at the requested rate (2.5 Gb/sec). It is worth noting 

that the packet classification, queuing and scheduling 
elements can support 2,5Gbps link rates even for worst case 
minimum packets. It should also be stressed that the 
average cases in TCP and TCP-NAT processing have been 
derived as follows:  

We have first analysed millions of packets from the 
backbones of various network providers in the U.S.A. [9] so 
as to derive the percentages of packet belonging to each 
particular TCP state. Then we plugged these percentages in 
our experiments and we figured out what would have been 
the average number of instructions needed if these real 
network traces were sent over the PRO3. 

In order to investigate whether the low bandwidth 
achieved in case of small packages, is due to the specific 
RISC-core used, the same application has been compiled 
into different CPU architectures. In particular, we have 
chosen two of the most representative architectures: the 
SPARC and the Intel x86 one. As it is known, the SPARC 
is RISC while the Intel x86 is CISC.  The number of 
instructions needed in each CPU (in the worst case) is 
shown in Figure 3. The numbers where produced by 
applying the highest compiler optimisations for code 
density and handcraft the produced code so as to further 
reduce the number of instructions needed.    
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Figure 3 : Number of instructions in different 

architectures 

 
This Figure demonstrates that the Hyperstone 

instructions needed are not significantly more than the x86 
ones and less than those at the SPARC. Since x86 is a CISC 
architecture we would expect that it would have needed less 
and more complicated instructions.  Due to the fact that in 
every architecture we need at least 145 instructions to 
implement TCP stateful inspection and NAT we support 
that the software processing time can cause significant 
problems in the majority of the Network Processors that are 

organized around a general CPU core, and not only on 
PRO3. 

Since in most of the pipeline CPUs today the 
performance of a program degrades with the number of 
branches (due to pipeline stalls/flashes) we have also 
counted the number of branches for each architecture (as 
shown in Figure 3). It is clear that the percentage of 
branches does not vary significantly in the measured 
architectures, even though the actual number of branches 
varies (This is because in the Intel Architecture we needed 
far less instructions). In general, based on the results 
presented in Figure 3, we claim that even if we have 
changed the particular CPU we use with another general 

CPU (either CISC or RISC), we would have not done much 
better in terms of the software performance. 

As it has been mentioned above the performance of the 
software depends on the size of the packets as well as the 
protocol the network traffic belongs to. Therefore, we have 
created a random mix of packet sizes and network protocols 
and we have measured the performance of the software 
when processing these traces. The results for the average 
cases, shown in Figure 4, demonstrate the bandwidth 
achieved when the percentage of the small packets in the 
mix changes. The small packages are those with length less 
than 100 bytes. The traffic generator produces both small 
and large packets based on a Gaussian distribution with a 
mean of 70 in the small packet’s case1 and 170 for the large 
packets.  

As the figure clearly demonstrates even when the flow 
consists of 90% of small packets the software can process 
the data at the requested speed so as to achieve the 2.5Gbps 
bandwidth of the PRO3. 

Unfortunately, this is not the case when all the packets 
belong to the worst-case scenario. Even though, this 
scenario is very unlikely to occur in the real world, for 
reasons of completeness, we also demonstrate the 
performance of the software when each of  the packets 
(irrespective of their sizes) need 167 instructions so as to be 
processed. 

As Figure 5 shows, in order for the software modules to 
have the time to process the packets at the peak rate of the 
PRO3, the mix should include at least 50% of packets with 
length greater than 100 bytes. Measurements from real 
networks show that in a typical real-world network at least 
50% of the packets are indeed greater that 100 bytes [9]. In 
particular, as [9] clearly demonstrates, about 30% of the 
TCP traffic consists of 40 bytes packets whereas the rest of 
the packets are significantly larger. In the experiment 
results of 5, we have tried to create short packets as close to 
the statistics measured at real networks, as possible.  As a 
result, someone can argue that even if all the packets trigger 
our worst case, the PRO3 can process them as long as they 
have lengths similar to those in a typical IP network. 

Another interesting aspect of the software performance is 
how it varies with the network protocol the packets belong 

                                                           
1 All the packets are longer than 40 bytes according to the TCP 
protocol’s specifications[4].  



to. Figure 6 demonstrates the bandwidth achieved when a 
network stream of TCP and UDP packets is processed. 
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Figure 4 : Bandwidth achieved for a traffic mix in the 

average case 
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Figure 5 :  Bandwidth achieved for a traffic mix in 

the worst case 
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Figure 6 : Bandwidth achieved for a protocol mix in 

the average case 

It is clear that the two MHY of the PRO3 can process the 
packets at peak rate when more than 20% of the packets are 
UDP packets. Since in a real network stream we have at 
least 20% of UDP traffic, we believe that even when the 
network packets are small (mean length of 69 bytes) the 
PRO3 can satisfy the bandwidth requirements of the 
interface circuits. Obviously this argument is further 
strengthen for the long packets case.  In the experiments 
that produced this graph, the average TCP NAT case 

scenario was used. Obviously if all the TCP packets trigger 
the worst case processing, the number of packets the two 
MHY can process will be lower and so would be the 
bandwidth the whole system can provide. 

Finally, it should be noted that we have chosen not to 
present, in this paper, the performance of the processing 
engines of other NPs, since those engines are very simple 
and according to our experiments [10], they need much 
more instructions than the presented processors, for 
executing the same network applications. Therefore, we 
claim that even if it were possible to use powerful 
microprocessors (like an x86, or a SPARC), within an NP 
(which is not feasible in today’s technologies due to area 
and power limitations), the design’s bottleneck would 
probably still be the general-purpose high-level processing.   

 

IV. Conclusions 

 
In this paper the Programmable Protocol Processor 

(PRO3) was outlined with emphasis in its performance 
when executes real-world network applications. The 
performance of the software processing of the system is 
analysed and ways of optimising it proposed. The 
performance is also compared to that of other software 
processing systems. The results show that in the current 
(and probably future) high-speed networks, the general-
purpose software processing elements would be the 
bottleneck, and not the hardware modules that are 
optimized for packet processing. The PRO3 chip has been 
fabricated in UMC’s 0.18 µm logic process occupying 
about 37mm2 of area, and consisting of 856K gates and 
1Mbit of on-chip SRAM.  
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