
A Design Methodology for the Exploitation of High Level
Communication Synthesis

Francesco Bruschi, Politecnico di Milano, Italy
Massimo Bombana, CEFRIEL, Italy

Abstract
In this paper we analyse some methodological
concerns that have to be faced in a design flow
which contains automatic synthesis phases
from high-level, system descriptions. In
particular, the issues related to the synthesis of
the communication between the system
elements are considered. The context in which
the analysis is performed is the design flow
proposed in the ODETTE project: in this
ambient, SystemC is exploited in order to
provide efficient system-level models; after
that, the SystemC+ SystemC subset and
extensions can be used to get a refined
description that, despite the use of object
oriented features such as polymorphism and
inheritance, can be automatically synthesised
by means of the ODETTE tools. Still, the
problem of interfacing the hardware
synthesised with the other elements of the
design (memories, peripherals) remains an
important issue. In order to face this problem,
we propose a pattern that can be used to
design bus interfaces that allow both an high
level of abstraction in the communication on
the “ user” side, and automatic synthesis by the
ODETTE tools. In order to do this, OSSS
global objects are exploited to implement the
communication between the application and
the interface. After presenting the general
methodology, a specific library interface is
presented, that could connect the device under
design to a PCI bus. In order to prove the
viability of the approach, an example of
synthesis of an example, from the system level
down to the RT level is performed.

1. Introduction

The introduction of new languages capable of
modelling systems at abstraction levels not
possible before is imposing deep
transformations of the design flows adopted in
the industry. Among the most important

innovations introduced by languages such as
SystemC there is not only the possibility to
exploit all the high level modelling features
present in C++, such as object orientation, but
also the ability to describe the communication
between the various structural units of the
design (the modules) in a very abstract way,
relieving the designer from the need to specify
protocol details that are irrelevant and even
misleading at the beginning of a project. As the
interest of the design world towards these
possibilities is growing, a urge is felt to define
methodologies that make a fruitful use of
them, really enabling a faster and easier way of
developing complex systems. In a long term
perspective, an effective design flow will
comprehend automatic synthesis steps that will
heavily assist the designer in refining the
system model from one level of abstraction
down to another closer to implementation. At
the moment, there are some attempts to
achieve this, by the definition and implemen-
tation of synthesis tools that accept as input
very high level system descriptions and
produce representation that can be synthesised
with more ” traditional” , behavioural level
synthesis tools.
One of the projects with the most innovative
synthesis features is the tool developed in the
context of the ODETTE project. Within this
project, a language has been defined that adds
to SystemC object oriented constructs
synthesisable by a tool currently in prototype
phase. SystemC+ descriptions can make use of
constructs with ” late-binding” procedure
invocation semantics, thus introducing the
possibility of applying the polymorphism,
which is a concept whose usefulness is widely
accepted in the software world, in the
hardware modelling and synthesis task.
Another important feature of this tool is the
possibility to synthesise communication
between structural elements (modules) of a
model, described with a formalism that is
syntactically and semantically very similar to
the invocation of methods of a class. This
possibility, offered in SystemC by the Interface
Method Call (IMC) mechanism, is proposed in

1530-1591/04 $20.00 (c) 2004 IEEE

the ODETTE SystemC+ language subset with
an ad-hoc formalism, and dramatically rises
the abstraction level at which the
communication can be not only modelled, but
also synthesised. SystemC+ language
definition will also be presented to OSCI for
standardisation.
In this paper we present some modelling ideas
that can contribute to the full exploitation of
the synthesis capabilities of this new
formalism. In particular, we show how these
expressive features can be used to design a set
of IP modules that can interface high level
description of components of the system to the
complex bus elements that often compose the
communication infrastructure. By using such
interfaces, the designer would be able to write
the system model at the highest level of
abstraction possible for the intermodule
communication, that is by means of functions
and procedure. This is what is actually
recommended for the exploitation of most
system level languages. After that, it would be
possible to refine this communication in the
quickest way by just picking the right interface
IP among those provided by a library, and
applying some straightforward syntactical
adjustments. The methodology proposed
constraints the structure of the interface
elements with the following requirements:

1. the interface must offer a set of
functionalities that encapsulate the
transfer modes of the bus protocol;

2. these functionalities must be offered
to the application in form of guarded
methods; guarded methods are the
mechanism provided by SystemC-
Plus

3. to implement the high-level
communication mechanism by which
a process can invoke a method in the
context of another process; the
interface must implement the service
offered to the application at pin-level
accuracy towards the bus signals.

After describing the design methodology, we
show the implementation of a representative
element of such library. The chosen
component is a PCI bus interface, that receives
requests by an application in the form of
function and procedure invocation and
translates them into pin-level PCI operation
requests. First the structure of the interface is
defined: the global object components offered
in SystemC+ to describe the communication
between processes of different modules are
exploited to connect an application module
with an inbound interface module. The

interface module consists of one of such global
objects, needed to communicate with the
application, and of several processes that
implement the pin-level PCI protocol.
Synchronization with the application is
addressed with the use of guarding conditions
upon the value of which the methods return;
this semantics is exploited to obtain a blocking
behavior of the interface methods towards the
application. An application performing a series
of bus transactions is modelled to act as a high-
level ”stimuli generator” . After defining the
structure of the interface as an example of the
methodology proposed, several issues are
analysed, and thus synthesis experiments and
verification by simulation are performed and
the results are analysed.
An interesting future work will be the
evaluation of the temporal cost of the method
calls: these are implemented with synchronous
logic, and the completion of a transaction
require an amount of time that depends on
different factors (among which the number of
concurrent processes accessing the same
resource). Compliance with temporal
requirements should then be evaluated after
synthesis.

2. SystemC+ synthesisable subset
extension and Global Objects

In the context of ODETTE project, one the
major goals achieved was the definition of an
extension of the SystemC subset synthesisable
by most of the tools actually on the market.
This extension was called SystemC+, and
extends the synthesisable subset by adding:

1. the possibility of using classes
and templates inside modules;

2. an hardware oriented version of
the object oriented
polymorphism;

3. a family of classes, called global
objects, that can be used to
implement inter-module
communication described at high
level;

A description using such features can be
synthesised down to a mixed RT-behavioral
level using the ODETTE synthesis tool. The
result of the synthesis can then be handed to an
RTL to gate synthesiser.
Among the presented ones, fhe feature
considered for the methodology proposed in
this paper are the global objects. These are
classes in which some guarded methods are
declared (syntactically by means of some C++
macros). Different global objects of the same

class can be instantiated in different modules;
once instantiated, they can also be connected.
When two or more global objects are
connected, a change in the state space of an
object is reflected in the state space of the
others. (see Figure 1). In the example of Figure
1, two modules contain a “bistable” class,
declared as a global object. Another bistable is
present at top level. All three bistables are
connected together. When the set () method
is invoked on the global object contained in the
first module, the state change is induced also in
the state space of the object belonging to the
second module (or, equivalently, the change
happens in the state space shared among all the
objects). When the second module asks the
object its state, the modification induced by the
first is observable.
Thus, the semantic of this kind of
communication is that all the connected global
objects share a common state space.
Moreover, if different modules invoke at the
same time the execution of a guarded method
of a shared global object, the calls are queued
and scheduled according to a user defined
algorithm. This way, also concurrent access to
resources is implemented.
The last feature is the possibility to guard for a
certain condition upon the execution of a
method: when declaring a guarded method, a
Boolean condition can be specified; if the
condition is evaluated true at the time of the
method invocation then the call is processed;
otherwise, the caller is suspended until the
condition becomes true.

3. The bus inter face design pattern

One of the possible design flows that could
exploit the potentialities of the ODETTE tool
chain is the one depicted in Figure 2. In this

flow, the design starts from the specifications
input. After that, an executable model of the
system has to be realized.
The executable model is typically composed
by three kinds of elements:

1. the units under design: these are the
elements that have to be physically
implemented on the target
technology;

2. the IPs with which the units to be
designed will interact; these can be
memories, processors, peripherals,
and all the other elements that will be
part of the systems and that are
already implemented;

3. a set of stimuli generators, that will
simulate the working conditions of
the system in the model

One of the greatest advantages coming from
the use of highly expressive system description
languages is the possibility to express the
communication between the elements of the
system model in a powerful and easy way.
This let the designer focus on the definition of
the functionality of the system rather than on
the communication details, greatly speeding up
the modelling task.
In a context such as the ODETTE one, high
level descriptions of the elements under design
are automatically converted down to
abstraction levels (register transfer, for
instance) that can be handled by traditional
automatic synthesis tools. This approach imply
all the “ traditional” advantages and drawbacks
of the automatic synthesis, but much earlier in
the design flow.
One problem in applying such an automatic
synthesis flow is the following:

B is t a b le B is t a b le

B is t a b le

s e t () ; g e t _ s t a t e () = = t r u e ;

Figure 1 A shared bistable implemented as a global object

1. in the executable model, functional
descriptions of the IPs interacting
with the elements under design can be
given; in order to speed up the
modelling phase and to exploit the
high simulation speeds achievable
with such descriptions, the
communication must be described at a
high level of abstraction;

2. after having simulated and validated
the system model, the synthesis tools
can be directly applied to the elements
to be implemented;

The problem is that, while the functionality of
the elements is synthesised, the
communication between those and the IPs has
to be taken care of.
A typical scenario would be the one in which
the functional models of the IPs offer a
transaction level interface, based on function
calls, while in the implementation the
interaction is performed through the use of
some kind of bus. At this point, the problem of
implementing the bus protocol handling would
arise: the implementation of the bus protocol
handling behavior could be, in principle, done
on the high level model; the interactions with
the transaction level IPs interfaces should be
refined (or, rather, substituted) by a much
lower level description of the bus protocol
handler. After doing this, all the design should
be revalidated with the new communication
features; this procedure could be both time
consuming and error prone, and could vanish
part of the efficiency boost given by the use of
automatic synthesis tools.

Performing the refinement on the post
synthesis model is usually not feasible, since
the synthesis algorithms often produce code
that is not easily modifiable.
The methodological solution we propose to
address this problem is the definition of a
pattern, using which a bus interface can be
designed in order to:

1. offer the designer the possibility to
model the communication between
the units under design and the
peripherals at a high level of
abstraction;

2. be synthesisable;

The main elements of the interface are:

1. one global object that implements the
communication with the units under
design;

2. the interface towards the models of
the IPs; this can be a transaction level
SystemC 2.x port, or it can be a set of
signals, according to the kind of IP
model;

So, for each communication abstraction level,
an interface could be provided in order to
connect the units under design to the IPs
models dealt with.
The basic idea is that, when a proper library of
such interfaces would be provided, in order to
refine the communication from a high-level
model down to its implementation, it would
suffice to replace the high level interface with
the appropriate one (see Figure 3).

F u n c t io n a l S y s t e m M o d e l

��

s p e c if ic a tio ns

M o d e l U n d e r
D e s ig n

s t im u l i
g e n e r a to r s

m e m o r ie s ,
p e r ip h e r a ls
fu n c t io n a l

m o d e ls

M o d e l
im p le m e nta tio n

b
u

s in
terface

m e m o r ie s

p e r ip h e r a ls

Figure 2 A possible design flow

In order to show how the interface between the
application and the interface is design, we
show and comment some of the guarded
methods that define it:

GUARDED_METHOD(voi d, put Co
mmand(CommandType&
command) , ! i sPendi ngComman
d)

This method is invoked by the application (the
module that uses the bus) in order to perform a
bus operation. In the blocking version of the
interface, the method is guarded upon the
condition that there is no other command
pending for execution; otherwise, the caller
module is suspended until its request can be
handled.

 GUARDED_METHOD(CommandTyp
e, get Command() , i sPendi ngCommand
)

This method is invoked by the processes that
implement the bus protocol handling; it returns
the command being asked by the application, if
there is one pending; otherwise the calling
process is blocked until a command arrives.

 GUARDED_METHOD(Dat aType, a
ppDat aGet () , i sAppl i cat i onReadDa
t a)

This method is invoked by the application in
order to get the result of a read transaction. In

the blocking version, it suspends the caller
until the data is available.

 GUARDED_METHOD(voi d, r eset
() , t r ue)

This method is invoked in order to reset the
interface. It cancels all the pending commands
and perform other initialising operations.
As an example of a library element
implementing such an interface, we
implemented an handler of a simplified version
of the PCI bus.
A simple stimuli generator has been chosen,
together with a target PCI device, in order to
build a test executable model. In order to
verify the viability of the proposed synthesis
flow, these steps have been performed:

1. the executable specification has been
compiled and simulated;

2. the synthesiser was run in order to get
an RT level description of the
communication;

3. the resulting model was again
simulated to check behavior
consistency with the original model,
at least with respect to the test set
adopted;

The third step showed no problems arisen
during the synthesis phase. Part of the
simulation waveforms obtained from step 3 are
shown in Figure 4.

peripherals and memories
models

Application

Bus Interface
(functional or
pin-accurate)

Global
object

Global
object

Global
object

Model Under Design

Figure 3 Communication refinement

Figure 4 Simulation waveforms

4. Conclusions
In this paper we presented a methodological
approach to the high level communication
modelling that takes advantage of the
SystemC+ SystemC extension provided for the
synthesis by the tools developed in the
ODETTE project. The problem of modelling
the system at high level and being able to
automatically synthesise it, together with the
communication parts, has been addressed. A
pattern has been proposed in order to model
the communication between the application
and the interface with using synthesisable
global objects.
Viability of the proposed modelling and
synthesis technique has been tested on the
example of a PCI bus handler. Pre and post
synthesis validation has been performed,
showing the consistency of the flow adopted.

References

[RAL01] Grimpe, E., Ashenden, P. J., et al.
(2001). Input language subset specification
(formal). Technical report, KuratoriumOFFIS
e.V. Public result of the IST FP5 project
ODETTE.
[GRAL02] Grimpe, E., Biniasch, R., Fandrey,
T., Oppen-heimer,F., and Timmermann, B.
(2002). Systemc object-orientedextensions and
synthesis features. In Forum on Design
Languages(FDL’02), Marseille.
[CHCO99] H. Chang, L. Cooke, M. Hunt, A.
McNelly, G. Martin, andL. Todd. Surviving the
SOC RGevolution: A Guide to PlatformBased
Design. Kluwer Academic Publishers, 1999.
[GRLI02] T. Grotker, S. Liao, G. Martin, and
S. Swan. System Design with SytemC. Kluwer
Academic Publishers, 2002.

[SCC] Synopsys. CoCentricSystemC Compiler
Behavioral Modelling Guide

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

