
RTL Processor Synthesis for Architecture Exploration and Implementation

Oliver Schliebusch,
A. Chattopadhyay, R. Leupers,

G. Ascheid, H. Meyr
Institute for

Integrated Signal Processing Systems
Aachen University of Technology

Germany
schliebusch@iss.rwth-aachen.de

Mario Steinert
Infineon Technologies

81541 Munich, Germany
steinert@infineon.com

Gunnar Braun, Achim Nohl
CoWare, Inc.

2121 N. First Street
San Jose, CA 95131

gunnar,achim@coware.com

Abstract

Architecture description languages are widely used to
perform architecture exploration for application-driven de-
signs, whereas the RT-level is the commonly accepted level
for hardware implementation. For this reason, design pa-
rameters such as timing, area or power consumption can-
not be taken into consideration accurately during design
space exploration. Design automation tools currently used
to bridge this gap are either limited in the flexibility pro-
vided or only generate fragments of the architecture. This
paper presents a synthesis tool which preserves the full flex-
ibility of the architecture description language LISA, while
being able to generate the complete architecture on RT-level
using SystemC. This paper also presents two real world ar-
chitecture case studies to prove the feasibility of our ap-
proach.

1 Introduction

The key factor of designing Application Specific Instruc-
tion Set Processors (ASIPs) is an efficient design space
exploration phase. Architecture Description Languages
(ADLs) are widely used to find the optimum applica-
tion specific programmable solution. They allow to apply
changes to the architecture model quickly as the level of ab-
straction is higher than RT-level. Although this higher level
of abstraction is the basic reason for the success of ADLs,
the link to the physical parameters such as chip area, power
consumption or clock speed gets lost. Ignoring physical pa-
rameters in the design space exploration phase leads to sub-
optimal solutions or long redesign cycles. The necessity of
combining the high level abstraction and physical parameter
evaluation in a single exploration is obvious.

The ADL used for our framework is the Language for
Instruction-Set Architectures (LISA) [1] [2]. As shown
in figure 1, a LISA model of the target architecture is
used to automatically generate software tools such as C-
compiler[3], assembler, linker and simulator. These soft-
ware tools are used to profile and modify both architecture
and application. This exploration loop is repeated until a
sufficient cost/performance ratio is reached.

ImplementationExploration

LISA Description

Evaluation Results

Model Verification
& Evaluation

LISA Compiler

Compiler

Assembler

Linker

Simulator

Evaluation Results

Chip Area, Clock Speed,

Power Consumption

Complete HDL

Model

Gate Level Synthesis

Handwritten

Functional units

Gate Level Model

Complete Structure,
Decoders, Pipeline

Controller

Gate Level Synthesis

Figure 1. Exploration and Implementation
based on LISA

Also shown in figure 1, a complete hardware model is
generated in order to get a first estimation about the clock
speed, area and power consumption. In this paper we
present a framework to take the gate-level synthesis results
into account during the exploration phase. The LISA model
is used to derive a fully synthesizable model on RT-level.
For the first time the designer is able to perform this syn-
thesis flow, without being limited in terms of flexibility. In
previous approaches, this flow was realized by using prede-
fined RT-level components or architecture templates.

1530-1591/04 $20.00 (c) 2004 IEEE

If the synthesis results of the automatically generated
architecture fulfill the given physical constraints, then the
hardware model can even be used for the final architecture
implementation. As the datapath is often highly optimized
and based on in-house IP it may be replaced by the designer
manually for the final architecture implementation. This is
shown in figure 1 on the right hand side.

LISA provides great flexibility by allowing the designer
to describe the state transition of the architecture in ANSI-
C code. In order to bridge the gap between the ADL LISA
and the RT-level without limiting the flexibility, a ANSI-
C related hardware modelling language was chosen. Thus,
we are using the SystemC language as RT-level hardware
description language. The way we are using the SystemC
language does not differ from a description in VHDL or
Verilog on RT-level.

The contribution of this paper is to propose an automated
synthesis flow from the ADL LISA to the RT-level descrip-
tion for the evaluation of physical parameters. Thus, val-
ues such as area, power consumption and timing can be
taken into consideration early in the design space explo-
ration. Compared to previous approaches we neither limit
the flexibility of the ADL nor utilize predefined RT-level
components.

This paper is organized as follows: In the next section,
related work is discussed. Previous work on the HDL gener-
ation from LISA, which is required for the understanding of
this paper, is described in 3. The generation of a complete
hardware representation in SystemC is discussed in section
4. Afterwards, in section 5, the results of two case studies
are presented. The paper ends with conclusion and outlook.

2 Related Work

Several ADLs support hardware generation from higher
levels of abstraction than RT-level. The different languages
can be organized into those focusing on the architecture, on
the instruction-set or a combination of both.

The languages oriented towards the architecture are close
to the RT-level and thus not suitable for a fast and efficient
design space exploration phase. For this reason, projects
such as MIMOLA [4] are not further discussed here.

Some of the languages strongly oriented towards the
instruction-set are ISDL [5] and nML [6]. For example, the
synthesis tool HGEN [7] is used to generate synthesizable
Verilog code from an ISDL description. The HDL genera-
tor GO from Target Compilers Technologies [8], which is
an industrial product, is based on the architecture descrip-
tion language nML. The synthesis results are not publicly
available. The project Sim-HS [9] is also based on the nML
description language and generates synthesizable Verilog
models from Sim-nML models. Here, non-pipelined ar-
chitectures are generated and the base structure of the gen-

erated hardware is fixed. Moreover, each functional unit
can perform exactly one type of operation each clock cycle.
Units such as multiply-add cannot be generated.

Approaches based on an instruction set/architecture
combination are mentioned in the following. Information
on HDL generation from the EXPRESSION [10] language
is presented in [11]. The HDL generation is based on a
functional abstraction and thus allows to generate the com-
plete architecture. FlexWare [12] is more related to RT-level
than to the level of ADLs and thus not suitable for a fast de-
sign space exploration phase. The PEAS-III [13] and the
derived ASIP-Meister [14] work with a set of predefined
components. These are able to fulfill tight constraints re-
garding the synthesis results. The limiting factor here is the
lacking flexibility.

In addition to the work based on architecture descrip-
tion languages, design systems have to be discussed here.
The XTensa [15] environment from Tensilica [16] allows
the user to select and configure predefined hardware ele-
ments. Hence, the design space exploration can be per-
formed very efficiently and synthesis results are convinc-
ing. Also, the PICO (program in, chip out) [17] system
developed by the HP-labs is based on a configurable archi-
tecture, including nonprogrammable accelerators and cache
subsystems. The major issue of these approaches is that the
designer is largely limited to predefined processor architec-
tures.

3 The HDL Synthesis Framework

Three different types of hardware descriptions namely,
explicit, implicit and non-formalized can be found in a LISA
model. Our previous work focused on the usage of the first
two categories and has already been presented in [18]. To
provide a better understanding a short summary is given
here.

3.1 Explicit Hardware Description

This type of hardware description results from language
elements with a well defined semantics. Therefore, they de-
fine the underlying hardware without any ambiguity. The
corresponding RT-level hardware can be generated directly
from a given LISA model. The resource section shown in
figure 2 is used to directly derive the base structure of the ar-
chitecture. Entities to cover the memories, registers and the
complete pipeline structure are generated. In this example,
the pipeline consists of four stages with fetch (FE), decode
(DE), execute (EX) and writeback (WB).

FE
DC EX WB

REGISTER MEMORY

LISA

HDL

RESOURCE{
REGISTER int GPR[0..15];
MEMORY int prog_mem{

SIZE(1024);}
PIPE pipe={FE;DC;EX;WB};

}

Figure 2. explicit hardware description

3.2 Implicit Hardware Description

The language elements, which provide an implicit hard-
ware description, are not self-explanatory concerning their
semantical meaning. The semantics of these language el-
ements is more general and hardware generation requires
a deeper analysis of the complete model. Sometimes even
additional information not included in the model needs to
be taken into account. For example, this information may
be the knowledge about the simulation scheduler. This fact
can be explained by the LISA timing model which is based
on the so-called activation of LISA operations. An acti-
vated operation is marked for execution and executed by
the simulation scheduler at the correct point of time. To de-
rive the RT-level decoder the ACTIVATION section of the
LISA model and the simulation scheduler have to be taken
into account.

OPERATION decode in pipe.DC {
DECLARE { GROUP instr = {add||sub}; }
BEHAVIOR { PIPELINE_REGISTER(p,DC/EX).a = R1;

PIPELINE_REGISTER(p,DC/EX).b = R2;
}

ACTIVATION { instr }
}
OPERATION add in pipe.EX {

DECLARE { INSTANCE writeback; }
BEHAVIOR { PIPELINE_REGISTER(p,EX/WB).r =

PIPELINE_REGISTER(p,DC/EX).a +
PIPELINE_REGISTER(p,DC/EX).b;

}
ACTIVATION { writeback }

}

OPERATION sub in pipe.EX {
DECLARE { INSTANCE writeback; }
BEHAVIOR { PIPELINE_REGISTER(p,EX/WB).r =

PIPELINE_REGISTER(p,DC/EX).a -
PIPELINE_REGISTER(p,DC/EX).b;

}
ACTIVATION { writeback }

}

OPERATION writeback in pipe.WB {
BEHAVIOR {R=PIPELINE_REGISTER(p,EX/WB).r;}

}

Example 1: Implicit hardware description and
non-formalized hardware description

In example 1, the operation decode activates instr,
which in turn leads to an activation of operation add or
sub. From there, operation writeback is activated.
As every operation in this chain is assigned to a separate
pipeline stage, the simulation scheduler executes the acti-
vated operations corresponding to the spatial delay given
by the pipeline organization. In order to generate hardware
from this model that complies with the simulated processor
behavior, the control path has to be generated according to
the behavior of the LISA simulation scheduler.

4 Generating the Complete RTL Model

In order to generate the complete architecture the non-
formalized hardware descriptions of LISA must be taken
into account. Combining these two aspects is the novelty of
our approach: on the one hand we maintain the full flexibil-
ity of LISA and on the other hand we synthesize the com-
plete architecture.

4.1 Non-formalized Hardware Description

The datapath of the architecture is modelled in LISA by
the BEHAVIOR section. This section contains mainly plain
ANSI-C code, enriched by LISA language elements. In ex-
ample 1, the LISA keyword PIPELINE REGISTER is em-
bedded into the ANSI-C behavior description of the add
and sub operations.

Thus, the BEHAVIOR section can be considered as non-
formalized hardware description1. The LISA language does
neither provide language elements nor rules for the descrip-
tion of, for example, an address generation unit in any way.
As previously mentioned, the SystemC language is used to
generate a RT-level representation of the architecture. The
usage of SystemC does not differ from the usage of VHDL
or Verilog. For that reason, gate level synthesis results are
independent from the choice of language. In the follow-
ing paragraph, the transformation to SystemC on RT-level
is described.

In order to generate RT-level hardware description from
the non-formalized elements in LISA, a more complex
transformation must be provided compared to the first two
hardware description types. This affects the LISA model
structure as well as the behavior description given in ANSI-
C. To face the various possibilities of hardware descrip-
tion, our approach is to stay in the domain of the ANSI-C
programming language and generate a SystemC model of
the architecture. The already discussed types of hardware
descriptions can also easily be used to generate SystemC
rather than VHDL. This move to SystemC as HDL provides

1The programming language ANSI-C is of course a formalized lan-
guage. While using LISA we have to consider ANSI-C as hardware de-
scription, which is non-formalized.

the following advantage: only those elements of the LISA
behavior description must be identified and replaced which
are not standard ANSI-C code. The SystemC code trans-
lated from the BEHAVIOR section must comply with the
SystemC RT-level synthesis guidelines [19].

4.2 SystemC Implementation of the Datapath

The remaining task now is to convert the LISA behavior
description itself into SystemC code. As the resources are
defined in a global scope, the identified resources can be
replaced by the access to ports or signals. Figure 3 shows
this conversion. The operands and the destination resources
are converted into ports. The postfix in and out indicate
the data direction of the port. The data-value (REG), the
address (AW) and the valid flag (EW) are identified by their
respective prefixes. Lines are prepended, which describe
typical RT-level implementation details, such as writing an
address signal or an enable flag. In this example the lines
AW R out=5; and EW R out=1;.

R[5]=IOReg + PIPELINE_REGISTER(pipe,DC/EX).imm;

AW_R_out = 5;
EW_R_out = 1;

LISA BEHAVIOR section:

SystemC code:

REG_R_out = REG_IOReg_in + DC_EX_imm_in;

Figure 3. Transformation of Resources

The proposed translation mechanism enables the HDL
generation from LISA to support the generation of the com-
plete architecture. As different instructions which operate
on the same hardware may be described in different LISA
operations, resource sharing is an additional challenge. To
solve this issue, the ANSI-C code of the model must be
analyzed concerning the underlying hardware and the mu-
tual exclusion of operations. While the latter can be derived
from the LISA operation graph, the former is a more com-
plex task, and will be addressed in our future work.

5 Results

Two case studies are presented in this section in order
to prove the feasibility of the SystemC RT-level generation
from the ADL LISA. The CoWare/LISATek Edge Processor
Designer [20] provides the environment for the hardware
synthesis tool presented in this paper. This includes, for
example, tools generator and simulator frontend.

5.1 The LEON Architecture

The LEON architecture is a Sparc V8 compatible ar-
chitecture, which was initially developed by the European
Space Agency (esa) [21]. The complete RT-level VHDL
source code is freely available from Gaisler Research [22].
For comparison, the integer pipeline and memory configu-
ration of the LEON were modelled in LISA. The automati-
cally generated SystemC model and the reference model are
synthesized with the Synopsys design compiler [23]. The
LISA model as well as the generated SystemC model have
been verified with the microSparc Validation suite. The pre-
layout synthesis results are presented in table 1.

While the achieved clock speed is already in the range of
hand-written HDL code, the result regarding the area indi-
cates that there is a significant potential for optimizing the
generation process. This topic will be addressed in our fu-
ture work. However, taking into consideration that all soft-
ware tools and a hardware model are generated from the
same specification, the synthesis results are acceptable for
early estimations.

handwritten LEON generated LEON ratio

timing 3.08 ns 4.42 ns 1.44
gates 16.7 kGates 37 kGates 2.22

Table 1. LEON Synthesis results

5.2 The Infineon Technologies ASMD

The Application-Specific Multirate DSP (ASMD) from
Infineon Technologies [24] is an ASIP dedicated for inter-
polation and decimation filters or the CORDIC algorithm.

The ASMD LISA model is derived from an existing ver-
sion of the ASMD, which has been developed in VHDL on
RT-level. Time spent to develop both models are shown in
figure 2. The final synthesis results of the ASMD are pre-

original ASMD generated ASMD
(VHDL) (LISA + SystemC)

development
time

5 months 2 months

model size 1765 lines 738 lines

Table 2. ASMD modelling efficiency

sented in table 3. The completely generated SystemC model
fulfilled all design constraints and thus was taken for the fi-
nal implementation.

The evaluation of the ASMD with respect to a bluetooth
application produced the requirement of one additional in-
struction to increase the throughput significantly. For that

original ASMD generated ASMD ratio

timing 4.22 ns 5.09 ns 1.21
gates 9549 Gates 11678 Gates 1.22

Table 3. ASMD synthesis results

reason we changed the LISA model, regenerated the RT-
level model and verified the new models within one day.
We added 53 lines to the LISA model, whereas 208 lines
would have to be added in the RT-level model.

Due to the immense advantage in design time and negli-
gible overheads in speed and area, the generated version of
the ASMD replaced the existing core and is now being used
in a bluetooth device.

6 Conclusion and Future Work

In this paper, we presented a methodology to fully gen-
erate a synthesizable RT-level hardware description from
LISA. The gap between the ADL LISA and the implemen-
tation level can be bridged using the SystemC language for
hardware description. The novelty of the presented work is
the fact that the complete architecture can be generated from
a single specification, without losing the flexibility provided
by LISA. Thus, physical parameters, such as clock speed,
area and power consumption can be taken into account dur-
ing the design space exploration phase. Two case studies,
in addition to already published example architectures [18],
have been presented.

We will add an analysis and optimization step in our fu-
ture work. The requirements to this optimization process
are derived from the various case studies we investigated
until now. This will improve the generated control path as
well as the data path of the architecture regarding gate-level
synthesis results.

References

[1] A. Hoffmann, H. Meyr, and R. Leupers. Architecture Exploration
for Embedded Processors with LISA. Kluwer Academic Publishers,
2002.

[2] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
A. Wieferink, and H. Meyr. A Novel Methodology for the Design of
Application Specific Instruction Set Processors (ASIP) Using a Ma-
chine Description Language. IEEE Transactions on Computer-Aided
Design, 20(11):1338–1354, Nov. 2001.

[3] M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen, T. Kogel,
R. Leupers, G. Ascheid, H. Meyr, G. Braun, and H. van Someren. A
Methodology and Tool Suite for C Compiler Generation from ADL
Processor Models. In Proceedings of the Conference on Design, Au-
tomation & Test in Europe (DATE), Paris, France, Feb 2004.

[4] R. Leupers and P. Marwedel. Retargetable Code Generation based
on Structural Processor Descriptions. In Design Automation for Em-
bedded Systems, volume 3, no. 1. Kluwer Academic Publishers, Jan.
1998.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An Instruction
Set Description Language for Retargetability. In Proc. of the Design
Automation Conference (DAC), Jun. 1997.

[6] A. Fauth, J. Van Praet, and M. Freericks. Describing Instruction Set
Processors Using nML. In Proc. of the European Design and Test
Conference (ED&TC), Mar. 1995.

[7] A Fauth, M. Freericks, and A. Knoll. Generation of Hardware ma-
chine Models from Instruction Set Descriptions. In Proc. of the IEEE
Workshop on VLSI Signal Processing, 1993.

[8] Target Compiler Technologies. http://www.retarget.com.

[9] V. Rajesh and R. Moona. Processor Modeling for Hardware Software
Codesign. In Int. Conf. on VLSI Design, Jan. 1999.

[10] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability. In Proc. of the Conference on
Design, Automation & Test in Europe (DATE), Mar. 1999.

[11] P. Mishra, A. Kejariwal, and N. Dutt. Rapid exploration of pipelined
processors through automatic generation of synthesizable rtl models.
In Rapid System Prototyping (RSP), San Diego, USA, 2003.

[12] P. Paulin, C. Liem, T.C. May, and S. Sutarwala. FlexWare: A Flexi-
ble Firmware Development Environment for Embedded Systems. In
P. Marwedel and G. Goossens, editors, Code Generation for Embed-
ded Processors. Kluwer Academic Publishers, 1995.

[13] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, and M. Imai.
Effectiveness of the ASIP Design System PEAS-III in Design of
Pipelined Processors. In Proc. of the Asia South Pacific Design Au-
tomation Conference (ASPDAC), Jan. 2001.

[14] ASIP Meister. http://www.eda-meister.org.

[15] R. Gonzales. Xtensa: A configurable and extensible processor. IEEE
Micro, Mar. 2000.

[16] Tensilica. http://www.tensilica.com.

[17] V. Kathail and S. Aditya and R. Schreiber and B.R. Rau and D. Cron-
quist and M. Sivaraman. Automatically Designing Custom Comput-
ers. IEEE Computer, 35(9):39–47, Sept. 2002.

[18] O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Ar-
chitecture Implementation Using the Machine Description Language
LISA. In Proc. of the ASPDAC/VLSI Design - Bangalore, India, Jan.
2002.

[19] Synopsys. CoCentric SystemC Compiler RTL User and Modeling
Guide
http://www.synopsys.com, 2003.

[20] CoWare/LISATek. http://www.coware.com.

[21] esa: LEON-1. http://www.estec.esa.nl/wsmwww/leon/.

[22] Gaisler Research. http://www.gaisler.com/.

[23] Synopsys. Design Compiler
http://www.synopsys.com/products/logic/logic.html, 2001.

[24] M. Steinert, O. Schliebusch, and O. Zerres. Design Flow for Pro-
cessor Development using SystemC. In SNUG Europe Proceedings
- Munich, Germany, Mar. 2003.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

