
Expert System Perimeter Block Placement Floorplanning

Richard Auletta
Cadence Design Systems

Abstract
With the dramatic increase in the size and block count
of systems on a chip (SOC) over their application spe-
cific integrated circuit (ASIC) counterparts, engineers
now need assistance beyond the clerical optimization
tasks of placement and routing, they need assistance in
applying their own expert abilities to design planning.
This paper presents an investigation in applying expert
systems to the automated floorplanning of systems on a
chip. The investigation presents some background on
expert systems, and then the implementation and
results of an expert system based edge placer for
perimeter placement of floorplan hard blocks.

1. Introduction
The capture of designer knowledge into rule based expert
systems in the field of electronic design automation, and
ASIC and SOC design, has seen little application or suc-
cess. We believe the reason is that in the past tasks like
floorplanning a design could be easily handled by an indi-
vidual in a reasonable time. This is no longer true with
large SOC designs consisting of 10’s of partitions and
100’s of blocks. Such systems require expert assistance to
allow their design exploration and implementation in a
reasonable amount of time by a reasonable number of
engineers.

2. The CAD Dilemma
The fundamental CAD dilemma is that electronic design
automation (EDA) algorithms are primarily focused on
optimization, and cannot express general design con-
straints, or apply the expert knowledge of SOC and ASIC
engineers. Automated floorplanning [10] typically glob-
ally optimizes an abstract objective function, such as mini-
mizing total wire-length, to arrive at a proposed solution.
Unfortunately these solutions are commonly infeasible as
they do not take into account other objectives, such as
maintaining a contiguous placement region or optimal
block associations.

A macro placement that creates as regular a core region as
possible is a meta-objective, and can result in a floorplan
with better characteristics for placement, routing, power
distribution, clocks insertion, and timing closure. While
an algorithm might discover such a solution by chance,
typical objective functions do not and cannot express such
meta-objectives either directly or indirectly.

2.1 Expert Systems
Expert systems (ES) and artificial intelligence (AI) broadly
split machine reasoning into two categories; rule based and
reasoning based. The latter implies a system that can rea-
son using formal logic about a domain of knowledge. The
former, rule based expert systems [1,2], are based on infor-
mation derived from a human expert, and the rules consist
of a pattern match and an associated action. It is this latter
type of expert system, that uses an inference engine, that
we have applied to the block floorplanning problem.

Other approaches to applying artificial intelligence or bio-
logical reasoning to floorplanning include genetic algo-
rithms, neural networks [6], fuzzy logic [7], and of course
knowledge based approaches [4, 5]. Our results differ
from the above in sev eral significant ways. Our approach
is a classic expert system with a user (the design that needs
floorplanning) that interacts with an inference engine with
a tightly coupled knowledge base. Our approach is deter-
ministic, correct by construction, repeatable, explainable,
and focused on a specific task and style of design, result-
ing in the ability to analyze the results of our expert sys-
tem and hence intelligently improve its inference engine.
The expert placer never resorts to blind optimization or
search, such as genetic algorithms or neural networks, and
we avoid the pitfalls of backtracking, self-directed learn-
ing, or using optimization as a starting point for expert
refinement.

2.2 The Expert System Dilemma
Expert Systems have nev er enjoyed much popularity in
electronic CAD, irrespective of what was claimed as early
as 1990 [5], probably because it has alway been believed
there were too many permutations and combinations to
allow any reasonable set of rules to even begin to capture
the expert’s knowledge. We know of no commercial EDA
tools that claim an expert system capability nor any
research tool in common use.

And while the complexity of engineering tasks is in gen-
eral true, for specific tasks such as floorplanning hard
blocks such as memories, PLLs, and processor cores, we
believe that the rule set is bounded for any particular
design style, and that any initial solution space is a set of
reasonable solutions, not the search for a single globally
optimal solution.

1530-1591/04 $20.00 (c) 2004 IEEE

Recently, Wolfram [8] has again popularized the notion
that cellular automata with simple rules can describe com-
plex systems and behaviors. We note a correspondence
with expert driven EDA tools, that a relatively simple set
of rules when focused to solve a specific task, can give rise
to a solution what appears to be driven by human exper-
tise, creativity, and intuition.

The discussion of expert systems in regard to EDA always
generates strong opinions, but in fact, many EDA tools
attempt to automate and improve upon what experts do. A
good example is "the theory of logical effort" [9] that is
used as the basis for commercial EDA tools from Magma
Design Automation. In this case, a method was developed
by experts to allow non-experts to determine the electrical
and logical effort associated with a circuit path. In addi-
tion, EDA tools for RTL and design quality analysis are in
fact expert systems whose actions from an inference match
are typically limited to reporting design flaws as opposed
to their correction.

2.3 Expert System as Assistant
Nothing in this manuscript should be taken to imply that
expert systems will replace or supplant current EDA algo-
rithms. Current EDA algorithms are and will remain
essential for optimization and handling complex clerical
problems. While it might be possible to conceive of an AI
system that could optimize a logical path for area or timing
by abstract reasoning, we see little to recommend it as a
practical solution.

Even with their existing weakness in understanding a
design, the speed and accuracy of expert systems make
them more efficient at both collecting the information a
human expert uses and sorting through that information
looking for the same relationships the human expert seeks.
The fundamental problems in building an expert system is
understanding what rules the human uses, the nuances they
consider in making their design decisions, and most diffi-
cult of all, replicating human perception.

3. Our Expert System Floorplanners
We hav e so far only examined expert systems that are
purely rule based and do not make use of classical opti-
mization algorithms. We do this to better understand to
what extent expert systems can perform in comparison to
existing classical optimization algorithms. Systems that
integrate both expert and algorithmic optimization would
surely produce the best possible results.

We hav e investigated two floorplanners. The first is an
edge placer that packs hard blocks around the perimeter of
the design. Placing hard blocks around the edge of a die
or a hierarchical partition is a popular and common floor-
planning technique for both flat ASICs and hierarchical
SOCs, and is intended to create a regular region of cell

placement free of signal and power routing obstructions.
The popularity of the edge placement style of floorplan-
ning with current in-design large high-performance
chipsets was our inspiration. We hav e also examined the
rules for a grid placer that places macros across the area
the design.

3.1 Implementation
The edge placer expert system to place macros around the
perimeter of the placement region has been implemented
in under 3000 lines of TCL and is illustrated in Figure 1.
The implementation environment is Cadence Design Sys-
tems’ First Encounter (FE) using the First Encounter TCL
API. The FE TCL API is primarily used to obtain initial
physical information (pin placement, block size), logical
information (the hierarchical paths of the blocks) and for
design analysis. The FE TCL API and LEF data do have
shortcomings, especially in terms of obtaining information
about block pins (clock, reset, scan, control) and block
functionality (memory, PLL, analog.) The implementation
in First Encounter allows us to work with current high-per-
formance industrial designs, in a complete SOC design
environment, and take the designs through an entire design
flow including full detailed placement, routing, power, and
design analysis.

Load design
(Netlist, LEF, DEF, LIB)

Extract Data
from First Encounter

Update FP
maps

Detail edge
placement
routines

Connecitivy
search

Logical
hierarchy

Block
orientation

Build expert system

expert system rules
Place blocks using

Database
Update First Encounter

planning and layout
Finish physical design

maps

Engine

Inference

Functions
Knowledge

Figure 1: Edge Place Flow

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������

������
������
������
������
������

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������

������
������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

hierarchy
in the same logical
Associate blocks

Associate blocks
with IO pins

Large blocks in corners

Loose blocks fill partially
filled sides.

Rotate blocks as needed.

Figure 2: Example Expert Rules

3.2 Edge Placer Expert Rules
The Edge Placer inference engine has three major rules:

(1) Place blocks by their associated IO pins.

(2) Place blocks by previously placed blocks in the
same logical hierarchy.

(3) Fill perimeter with unplaced blocks.

Figure 2 illustrates these three rules and some additional
secondary rules.

While the expert system only has three main rules, it has
numerous sub-rules and sub-inference engines to actually
place the blocks. For example, there is an inference
engine that is called when an overlap is detected, and pre
and post inference engines that preorder blocks by their
dimension within logical hierarchy bins, and post infer-
ence that improves post placement by pushing blocks into
a corners.

The placement inference engine uses procedures that find
placements for blocks that cannot be placed at their opti-
mal location due to some existing blockage, or to apply
expert rules to blocks that don’t hav e a well defined opti-
mal location (locating a block adjacent to a previously
placed block or placing loose blocks without associations.)

It also has rules for orientation (rotations to minimize con-
gestion), to make associations, and some special rules for
special blocks (e.g. relatively large blocks placed in cor-
ners). Many small rules can mimic the small optimiza-
tions an experienced designer performs such as fitting
blocks along a single edge, pushing a block into a corner,
and stacking blocks.

3.3 Results
Figure 3 compares floorplan results produced by both the
Amoeba Placer and Block Placer from Cadence Design
Systems and our expert Edge Placer. Run times for our
expert system are very short, never more than minutes,
because it is not an optimizer and runs in linear time with
respect to the number of blocks. Its implementation using
a slow TCL API nullifies the validity of any runtime com-
parisons.

Figure 3 shows compares edgePlace against the FE’s
amoebaPlace and blockPlace. Example 1 and example 2
in figure 3 are the results of a small testcase. Note the
US/UA block on the left edge of the die in the amoe-
baPlace run of example 1. AmoebaPlace places its three
associated blocks are in the upper right corner, while edge-
Place stacks them in a row next to US/UA. BlockPlace, as
shown in example 2 of figure 3, does a better job in terms
of detecting IO connectivity, but noticeably leaves some
blocks overlapping others. The IO pin placement for the
example 1 and example 2 in figure 3 were the same for all
tool runs.

Example 3 in figure 3 is an industrial design with 217,437
placeable instances, and an area of 3.5e+07 umˆ2, and has
no blocks with connectivity to terminals, and shows little
wirelength improvement over the amoebaPlace design, but
has better clock skew, congestion, and routability results.
The edgePlace runtime was 55 seconds on a 2 GHz Pen-
tium class laptop, with most of that time spent on locating
blocks in the design (searching instances) and and running
the connectivity inference engine (that has not been opti-
mized for speed).

3.4 Practical Methodology
For most designs, IO pin placement is driven by either
external constraints or practical matters, be these board
level constraints or system level constraints. In such cases,
running edgePlace and fixing the blocks is sufficient to
converge on a solution ready for routing and placement,
otherwise a typical iteration is required to converge the
placement of pins, cells, and macros.

4. Future Work
Unlike other approaches to floorplanning, we find clues in
ev ery floorplan we examine to improve the expert system,
from new inference rules, to new floorplan styles. Unlike
other approaches, expert systems can be improved in a
methodical manner, using insights from a community of
designers to intelligently improve the quality of results
over time, with respect to both changes in technology and
ASIC and SOC design requirements.

5. Conclusion
We hav e found that even simple rule based expert systems
can demonstrate an uncanny ability to assist with the floor-
planning of ASICs and SOCs, especially when applied to a
particular design problem and style, in this case perimeter
edge placement of hard blocks. Our perimeter Edge Placer
uses rules that come from a limited set of experts, uses a
very simple expert system inference engine, knowledge
base, and rule set, but yet with very short run times pro-
duces results that are comparable to skilled ASIC and SOC
engineers.

6. References
(1) Joseph C. Giarratano and Gary D. Riley, Expert

Systems: Principles and Programming, PWS Pub-
lishing, 1998.

(2) Michael Will, An Introduction to Expert Systems,
Picodoc Corporation, 2001.

(3) Rainer Bruck, Karl-Heinz Temme, and Heike
Wronn, "FLAIR A Knowledge-Based Approach to
Integrated Circuit Floorplanning", in the Interna-
tional Workshop on Artificial Intelligence for
Industrial Applications, 1988.

(4) Marwan A. Jabri, "BREL - A Prolog Knowledge-
Based System Shell for VLSI CAD", in the 27th
ACM/IEEE Design Automation Conference, 1990.

(5) Chen-Xiong Zhang, Andreas Vogt, Dieter A.
Mlynksi, "Floorplan Design Using a Hierarchical
Neural Learning Algorithm", in the IEEE Interna-
tional Symposium on Circuits and Systems, 1991.

(6) Kazuhiko Eguchi, Naok Tsuju, et al., "Application
of Fuzzy Inference and Genetic Algorithms to
VLSI Floorplanning Design", in the 26th IEEE
IECON Conference, 2000.

(7) Stephan Wolfram, A New Kind of Science, Wol-
fram Media, Inc., 2002.

(8) Ivan Sutherland, Bob Sproull, and David Harris,
Logical Effort Designing Fast CMOS Circuits,
Morgan Kaufman Publishers, 1999.

(9) Hiroyuki Watanabe and Bryan Ackland, "Flute - A
Floorplanning Agent for Full Custom VLSI
Design," in the 23rd Design Automation Confer-
ence, 1986.

(10) Ralph Otten and Lukas Ginneken, "Floorplan
Design Using Annealing" in the 2nd ACM/IEEE
ICCAD, 1984.

Example 1 (Design 1) Example 2 (Design 1)

Edge Place

Total Wire Length: 8.911e+04
Amoeba Place

Total Wire Length: 2.589e+05
Amoeba Place

Edge Place
Total Wire Length: 3.805e+07

Edge Place
Total Wire Length: 7.633e+04

Block Place

Total Wire Length: 7.633e+04

Total Wire Length: 3.693e+07

Example 3 (Design 2)

Figure 3: Edge Place versus Amoeba Place

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

