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Abstract

This article presents an approach, which combines theo-
rem proving-based refinement with model checking for state
based real-time systems. Our verification flow starts from
UML state diagrams, which are translated to the formal B
language and are model checked for real-time properties.
By means of the B language and a B theorem prover, re-
fined state diagrams are verified against their abstract rep-
resentation. The approach is presented by means of the re-
finement of a digital echo cancellation unit.

1. Introduction

This paper describes the application of a method-
ology, which efficiently integrates state diagram based
model checking and formal refinement based on the
B language[1]. For tools we apply the RAVEN model
checker[12] and Clearsy’s Atelier-B toolkit. The pre-
sented case study is performed with a digital echo cancel-
lation unit for a mobile phone, which filters crosstalk from
the phone’s speaker to the microphone audio data.

Our verification flow is based on automatic transla-
tion of UML state diagrams to the B language for formal
refinement automation. A representation similar to fi-
nite state machines is used for model checking. When gen-
erating specifications from state diagrams, we arrive at
synchronously communicating non-deterministic finite
state machines, which are executed at cycle-accurate ba-
sis and directly correspond to models, which can be verified
by a BDD-based model checker. For refinement automa-
tion, we focus on the refinement of a non-deterministic
cycle-accurate model to a time-annotated determinis-
tic model. We present an approach, which very efficiently
applies the Atelier-B theorem prover and the underlying re-
finement concepts of the B language. In contrast to re-
lated approaches, our results demonstrate that the proof
of the generated code requires almost no user interac-
tion with the prover as well as low run times of the prover
for automatic deduction.
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2. Related Work

The Boyer—Moore Theorem Prover (BMTP) and HOL
are the two classical approaches to theorem proving in the
domain of electronic design automation. BMTP and HOL
are both interactive proof assistants for a given set of higher
order logic axioms and inference rules[5, 11]. Model check-
ing in the domain of electronic design automation is due to
the pioneering work of Clarke et al. in [6] and their BDD-
based SMV model checker. SMV verifies a given set of syn-
chronously communicating state machines with respect to
properties given by a set of formulae in tree temporal logic,
namely CTL (Computation Tree Logic).

There are several works integrating model checkers into
theorem provers and vice versa. PVS (Prototype Verifica-
tion System) is a theorem prover where the PVS specifi-
cation language is based on higher-order predicate logic.
Shankar et al. enhance PVS with tools for abstraction, in-
variant generation, program analysis (such as slicing), the-
orem proving, and model checking to separate concerns as
well as to compute concurrent systems properties[13]. STeP
(Stanford Temporal Prover) was implemented in Standard
ML and C [9]. STeP integrates a model checker into an
automatic deductive theorem prover. The input for model
checking is given as a set of temporal formulae and a tran-
sition system, which is generated from a description in a
reactive system specification language (SPL) or a descrip-
tion of a VHDL subset. Berezin has introduced the SyMP
framework, which integrates a model checker into a HOL-
based theorem prover for general investigations on effec-
tiveness and efficiency[3]. His work is on the applicability
for domain-specific computer-assisted manual proofs where
main examples come from hardware design. Mocha [2] is a
model checker enhanced by a theorem prover and a simu-
lator to provide an interactive environment for concurrent
system specification and verification.

In the context of the B theorem prover, Mikhailov and
Butler combine theorem proving and constraint solving[10].
They focus on the B theorem prover and the Alloy Con-
straint Analyser for general property verification. Fokkink
et al. employ the B method and combine it with uCRL [4].
They describe the use of B refinement in combination with



model checking to arrive at a formally verified prototype
implementation of a data acquisition system of the Lynx
military helicopters. They present the refinement of a sys-
tem implementation from a first abstract property specifica-
tion.

All these approaches consider timeless models and do
not cover refinement of finite state machines with real-time
properties. Only Zandin investigates real-time prop-
erty specification with B by the example of a cruise
controller[15]. However, he reports significant prob-
lems with respect to the complexity of the proof during
refinement.

In contrast to the HOL based and interactive approaches,
we present a model checking based approach with the
RAVEN model checker in conjunction with the Atelier-B
theorem prover for formal refinement automation with the
goal to avoid manual user interaction. We focus on the ver-
ification of real-time systems and on the refinement from
cycle-accurate to time-accurate models based on an efficient
mapping from state diagrams to B. We present our approach
by the real world example of an echo cancellation unit of a
mobile phone.

3. Real-Time Model Checking with RAVEN

We apply the RAVEN (Real-Time Analyzing and Veri-
fication Environment) real-time model checker, which ex-
tends basic model checking for real-time systems verifica-
tion by additional analysis algorithms[12]. In RAVEN, a
model is defined by a set of synchronously communicat-
ing finite state machines (I/O-Interval Structures) and the
specification by Clocked CTL (CCTL) formulae. The lat-
ter extends classical CTL by time-bounds.

As an example consider the CCTL property specifica-
tion, which defines that a consumer input buffer must not
be blocked in order to guarantee sufficient continuous work-
load, i.e., each accepted delivery request must be followed
by loading an item at the input within 100 time units af-
ter acceptance:

AG((consumer.state = consumer.accept)

-> AF[100] ((loader.state = loader.wait)

& AX (loader.state = loader.load)

)
)

4. Refinement with B

B stands for a methodology, a language, and a tool-set
for the specification, design, and coding of software sys-
tems introduced by Abrial[1]. B is based on viewing a pro-
gram as a mathematical object and the concepts of pre- and
postconditions, of non-determinism, and weakest precondi-
tion comparable to VDM and Z.

In B, a user writes a first initial system specification By,
and refines that specification by n refinement steps to By.

For that, n additional B specifications are created: B,_i,
..., Bp. The final By specification has to comply to a well-
defined executable B subset always denoted as By in B. A
B-toolkit such as Atelier-B can finally generate program-
ming language code such as C++ from By. Refinement in B
means to replace a B specification M by a B specification
M' where M’ has to define operations with identical sig-
natures. Nevertheless, M’ may work on a different internal
state or a different specification of the operation. The impor-
tant requirement is that specification M’ must be a replace-
ment of M: under equal conditions operation S, does never
produce a result or state which is not entailed by the re-
fined (abstract) operation Sy,. Refinement typically reduces
non-determinism and abstract functions until a determinis-
tic Byp implementation is reached.

5. Combined Verification Flow

Classical HW/SW Co-design typically starts with
a functional model (e.g., C program), which is itera-
tively transformed into a state-oriented, cycle-accurate
model from which HW and SW components can be de-
rived [14]. In a later step, the state-oriented model is
typically (back)annotated by timing information for
the verification of its real-time behaviour. In this con-
text, the critical steps are the generation and enhancement
of the cycle-accurate model and its annotation by tim-
ing information. Our approach focuses on both steps and
develops an efficient code generation proving that the fi-
nal model is a correct refinement of the original one
by means of Atelier-B, a B-based theorem prover and
code generator. In our verification environment, we ap-
ply state diagrams as graphical means since they are
widely used for documentation, specification, model check-
ing, as well as well investigated for VHDL, Verilog, and
C code generation of state-oriented system specifica-
tions. Through integration of model checking and formal
refinement, we can investigate the cycle-accurate mod-
els by simulation and check their properties through
model checking by the RAVEN model checker. Thus, af-
ter model checking, we generate a corresponding ini-
tial B language model. Refinements of state-oriented
models cover the refinement of states into hierarchi-
cal states, the modification of state transitions like elim-
ination of non-determinism and removal of self-loops.
Furthermore, we cover the annotation by timing infor-
mation and denote the corresponding annotated model
as SD” and B”. The B prover verifies if B” is a refine-
ment of the B model, which then also verifies that SD7 is
a correct refinement of the previous state diagrams model
SD. Through the B environment, further refinement to-
wards By implementation level is possible from which we
can automatically generate C code for a proven implemen-
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Figure 1. Verification flow

tation. Figure 1 gives an overview of the design flow from
SD to SD” and, correspondingly, from B to B”. Imple-
mentation in By and C code generation may follow. We
denote the levels of abstraction used in B as level S (Struc-
ture), SB(Structure & Behaviour), and SBT (Structure
& Behaviour & Timing). The individual levels are out-
lined in more details in the remainder of this article. The
outlines are based on the example of an echo cancella-
tion unit, which is introduced at the beginning of the next
section.

6. Refinement of the Echo Cancellation Unit

The echo cancellation unit of a mobile phone filters the
crosstalk from the phone’s speaker from the other sound. To
prevent a feedback loop, that crosstalk has to be suppressed
in the microphone audio packets. This is achieved through
application of a digital filter, which correlates received au-
dio data with output audio data. We model the flow of digital
audio packets between functional entities of this unit. This
basically resembles a producer-consumer synchronisation
problem. In the next subsection, we give an overview of the
model and present some properties to be proven. Thereafter,
we outline the refinement of a B specification from cycle-
accurate (S, SB level) to time-accurate level (SBT level).
Numbers of generated proof obligations and other experi-
mental results and achievements on an automatic proof are
presented in the next section.

6.1. Overview

For echo cancellation of recorded audio, the audio I/O
interface decodes data from the network and generates out-
put to a speaker. Simultaneously, data from the microphone
are recorded, filtered, and generated for output to the net-
work.
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Figure 2. Collaboration diagram for echo can-
cellation

The producer-consumer synchronisation basically con-
sists of two producers, two consumers, three buffers, and a
filter, which can be considered both a producer and a con-
sumer. Data and message flow is shown in the UML collab-
oration diagram in Figure 2. The model describes an echo
cancellation mechanism, which is working on packets of au-
dio data. A decoding process DecodeControl decodes pack-
ets received from the network and inserts an audio packet
into a buffer buffer2. From that buffer, audio packets are
sent to a speaker through process SpkControl. At the same
time a process MicControl encodes audio from a micro-
phone to packets, which are inserted into another buffer,
bufferl. The filter process is called FilterControl here. It
takes a packet from the speaker buffer buffer2 after it has
been sent to the speaker and uses it to filter a packet taken
from the microphone buffer bufferi. The filtered packet is
inserted into buffer3. From there it is consumed by the net-
work encoding process EncodeControl and sent to the net-
work. In that process, buffer overflows as well as buffer un-
derflows are harmful. The side conditions for buffers are:

1. An item is sent to the buffer only if the buffer is not
full, otherwise, the buffer will overflow;

2. the consumer has to react only if an item is available
in the buffer, otherwise, the buffer will underflow;

3. an empty buffer will underflow and a full buffer will
overflow, if a read and a write are performed on it at
the same time.



In the state diagrams of the buffers, only the general
states running, overflow, and underflow are introduced. The
states overflow and underflow are failure states and should
never be entered. When entering them, the system has to be
reset. An integer variable keeps the count of items in the
buffer.

Goals for model and specification are:

1. to dimension the buffers to avoid failure states;

2. to match process delays to enable synchronous pro-
cessing of audio packets;

3. to maintain the structure and semantics through devel-
opment (refinement);

4. to verify safety and liveness criteria.

To demonstrate the main concepts of our verification
flow, the following sections focus on the refinement of the
FilterControl component.

6.2. S Level - FilterControl

The FilterControl_SB state diagram (Figure 3) models a
producer and a consumer. Its behaviour is explained in the
next subsection, where we are dealing with cycle-accurate
state transitions. At structural level (S level), a B specifica-
tion only captures static properties, i.e., value propagation.
Only dependencies of B output values on inputs and states
are specified at this level.

The B specification for FilterControl_S, for instance, de-
clares 18 variables, an invariant, and two operations. One
variable represents the state of FilterControl, the others rep-
resent inputs and outputs. The state is implemented as a
B enumeration type, which ranges over the states given in
the state diagram. The invariant defines the input/output re-
lationship between variables. It specifies that if their val-
ues are consistent, a selected transition can be executed. B
variables are marked inconsistent after initialisation or tran-
sition execution. Consistency for those variables is estab-
lished through the operation setInputs, which receives as pa-
rameters the current input values. The B specification ad-
ditionally includes the operation doTransition to perform
a state transition. It is executed if input and output val-
ues are consistent. At S level, doTransition specifies a non-
deterministic choice of all possible states of the state vari-
able. We denote this a generic transition, as the target state
is non-deterministically selected from all states.

6.3. SB Level - FilterControl

At SB level, we refine the state transitions as shown in
Figure 3. The SB level B specification basically refines the
S level operation doTransition by introducing behaviour in
the form of refined state transitions. Generally, refinement
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Figure 3. State Diagram FilterControl_SB

is performed by replacing only some non-deterministic el-
ements by deterministic ones. Consequently, transitions be-
come either restricted to a specific non-determinism or they
are deterministic.

The FilterControl_SB as given in the diagram performs
as follows. A transition from off to startup is executed when
input traffic is announced. Thereafter, state wait is entered.
A self loop in the diagram indicates, that state wait is kept
while no data is available in traffic mode. When traffic mode
is turned off with no available data, state waitflush is en-
tered. In case of data availability, state get is always entered.
From state get a transition leads to state filfer from which a
non-deterministic transition to state put is defined, which ei-
ther stays in filter or changes to put. It is introduced here be-
cause we want to leave the exact timing condition open. In
state put, if input traffic is enabled, a transition to state wait
is performed, which basically completes the data process-
ing loop. A final transition to state waitflush is required to
flush the buffer. In waitflush it is determined, whether to
change to state off or state get due to other system states.
L.e., as soon as the previous two buffers are empty and mi-
crophone and decoding module are turned off, FilterCon-
trol is turned off as well. Otherwise, if data becomes avail-
able again, it will be processed by changing to state get.

At a first glance, the separation of the B specification
into S and SB level is not very meaningful. In fact, they are
only introduced in the context of the Atelier-B toolkit. Ex-
periments have shown that the separation significantly re-
duces the number of generated proof obligations and thus
greatly reduces the number of interactive proofs. The sep-
arated specification resembles an interface description at S
level and an internal behavioural description at SB level and
thus also supports a structured top down methodology for
theorem proving.
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Figure 4. State Diagram FilterControl SBT

6.4. SBT Level - FilterControl

At SBT level, we again refine the state transitions en-
capsulated in the B operation doTransition. Here, all non-
deterministic transitions are modified to either to determin-
istic or timed deterministic transitions. Consider the refined
example in Fig. 4. As a simplified refinement, we remove
the self-loop of state filter and assign a time delay value of
2 to the transition to state put.

For B specification, it has to be noted here, that we have
defined a timed variant of B, which we denote as BT+.!
BT+ extends B by the notion of time delays in transition
specifications by means of a DELAY statement. When se-
lecting a timed transition, an associated timer is initiated.
The transition is fired as soon as the timer elapses.

6.5. RAVEN Model Checking

For RAVEN model checking of the echo cancellation
unit at SBT level, let us consider the following CCTL spec-

ifications.
SPEC

sl = AG ! (bufferl.s=bufferl.overflow

1 = AG EF (Controller.s=Controller.traffic)

v8eqg2 := AG( !EG[13](

(Controller.s=Controller.traffic)
& (bufferl.empty & buffer2.empty)))

ANALYSE

ala := MAX VALUE OF bufferl.count

IN TRUE
alb := MIN VALUE OF bufferl.count
FROM bufferl.count>0 WITHIN [0, INFINITY]
bl := MAX TIME
FROM (Controller.s=Controller.disconnect)
TO (Controller.s=Controller.idle)

The first specification s/ is a safety condition. It means
that on all possible paths of execution, the buffer should
never enter state overflow. The second specification [ is a
liveness condition. It means that on all possible paths of
execution at least one path leads to state fraffic. The third

1 In practice, BT+ is just needed to specify time annotated state transi-
tions. However, a simple pre-processor would be able to convert BT+
into standard B [7]

specification v8eq?2 states that when starting from state traf-
fic it is not allowed for bufferl and buffer2 to be empty for
13 time units. Additionally, the example has three defini-
tions for quantitative analysis. The first formula checks for
the maximum count of buffer items over all possible exe-
cution paths. The second one computes the minimum value
of the buffer count after it has increased to a value greater
than 0. The third formula checks for the maximum steps
in time units from state disconnect to state idle. Note, that
such specifications can also be used to determine minimum
or maximum reaction times.

The verification run with RAVEN shows, that a buffer
overflow does not occur in our model. Moreover, it com-
putes the exact maximum and minimum numbers of buffer
elements. Overall execution time for the verification run
was 0.5 seconds under Linux on an Intel P4 with 2.2GHz
and 1GB RAM.

7. Experimental Results

The formal refinement for the introduced verifica-
tion flow shows quite promising results for refinement
automation. Table 1 gives an overview of the verifi-
cation results with an Atelier B 3.6 pre-release. The
table shows numbers of the previously introduced exam-
ple, where EXECUTOR, SYNCHRONIZER, and TickTimer
implement the time-oriented synchronous model of com-
putation for the state diagrams. For model consistency, we
have already introduced TickTimer at S level. More de-
tails of the complete proof with Atelier B and RAVEN and
the example is given in [7, 8] in details.

The table has four columns: B component identifier, the
number of obvious proof obligations, the number of other
proof obligations, and the percentage of proven proof obli-
gations. Proof obligations (POs) are theorems, which are
automatically generated by Atelier-B. Obvious proof obli-
gations are POs, which are found to be frue at genera-
tion time. Almost the entire proof was accomplished by
Atelier B automatically. A single proof obligation of the
TickTimer component’ could not be proven by the auto-
matic prover. The proof of that PO was performed through
one simple command of the interactive prover of Atelier-B.
Thereafter, the refinement of the echo cancellation unit ex-
ample was completely proven by Atelier B.

As for model checking, the refinement was performed
under Linux on an Intel 2.2Ghz P4. The time for B type
checking and proof obligation generation was 271 sec. The
proof of the 76 proof obligations in Force I mode took
20 sec. The execution time of the interactive prover was less
than a second.

2 TickTimer is introduced as an extra component to trigger the timeouts



Modules/ Obvious Non Obvious Proof
Levels Proof Proof Percent
Obligations Obligations
Level S:
EXECUTOR_S 5 0 100
SYNCHRONIZER_S 3 0 100
TickTimer_S 31 7 100
GLOBAL_CONSTANTS 1 0 100
Controller_S 35 0 100
DecodeControl_S 29 0 100
EncodeControl_S 38 0 100
FilterControl_S 77 0 100
MicControl_S 29 0 100
SpkControl_S 32 0 100
bufferl_S 34 1 100
buffer2_S 40 1 100
buffer3_S 34 1 100
Level SB:
Controller_SB 156 0 100
DecodeControl_SB 64 0 100
EncodeControl_SB 178 0 100
FilterControl_SB 481 0 100
MicControl_SB 64 0 100
Level SBT:
EXECUTOR_SBT 220 31 100
SYNCHRONIZER_SBT 7 0 100
TickTimer_SBT 53 13 100
Controller_SBT 223 2 100
DecodeControl_SBT 137 0 100
EncodeControl_SBT 320 1 100
FilterControl_SBT 746 5 100
MicControl_SBT 137 0 100
TOTAL 3669 77 100

Table 1. Proof obligations, Atelier B 3.6b

8. Conclusions

We have investigated formal refinement of finite state
machines from a cycle-accurate to a time-accurate model in
B with Atelier-B. For complementary verification, we ap-
plied the RAVEN model checker. In that scenario, we have
proposed a verification flow and performed a B refinement
for levels, which we denote as S, SB, and SBT level. The
refinement starts at structural level and in succession adds
static, behavioural, and timing properties to the B model.
The applicability of our approach was demonstrated by the
industrial case study of the echo cancellation unit of a mo-
bile phone. All of our current internal investigations have
shown, that our translation from RAVEN to the proposed
B subset enables efficient proof with Atelier B without any
significant manual interference. This is a promising result in
the direction of refinement automation and for the wider ac-
ceptance of formal refinement with theorem proving. For
the case study, the plain proof execution times was 0.5 sec
for model checking with RAVEN and 291 sec for theorem
proving with Atelier B. The latter number includes the proof
of 76 proof obligations in 20 sec.

Though our current results are promising for the refine-
ment of finite state machines, we still need to perform de-

tailed studies for the complementary refinement of other
properties. That means, not just to perform refinements on
state diagrams but also to consider complementary property
specifications like as they can be given by a limited OCL
(Object Constraint Language) subset.
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