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Abstract

Rapid prototyping is a fast and efficient way for the func-
tional verification of Systems-on-a-Chip in an early stage of
the design process. Because of the rising part of software in
those systems the use and reuse of microcontroller IP cores
is necessary to keep development cycles short. Today, pro-
totyping of such IP cores is done with large and expensive
hardware emulation machines consisting of many proces-
sor or FPGA-based prototyping boards. In this paper the
authors describe an alternative prototyping method for mi-
crocontrollers using one low-cost FPGA-based prototyping
board. The method is based on the efficient usage of all re-
sources of the prototyping system to emulate special parts
of the microcontroller.

1. Introduction

Software is playing an increasingly important role in the
development of Systems-on-a-Chip (SoC) today. It helps to
keep the SoC more flexible and adaptable to new market
needs without the disadvantage of a chip redesign to add or
change features of the system. Therefore, microcontroller IP
cores are an integral part of SOC designs. For example, the
StarIP DesignWare Library from Synopsys [9] offers Pow-
erPC 440, NEC V850E, C166, TriCore1 and MIPS32 mi-
crocontrollers with different capabilities. The verification of
these cores is done with Vera [10] testbenches which offer
models of the microcontroller environments like RAM and
ROM or realize build in monitors used for tracing signals.

The verification of the whole system and the verification
of embedded software running on those cores with these
traditional testbenches is, however, very time consuming.
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For example, the 70 delivered test programmes with the Tri-
Core1 DesignWare component take about 6 to 10 hours for
simulation. Therefore, for the verification of hardware and
the debugging of software in an early stage of the design
process other verification techniques besides simulation are
needed.

Rapid prototyping is a fast and efficient way for the func-
tional verification of SOC’s in an early stage of the design
process. For example, the verification of embedded soft-
ware can be done with instruction set simulators (ISS). Un-
fortunately, ISS have a few disadvantages. One problem is
the integration of the ISS with additional hardware modules
using a hardware simulator. This will decrease the simula-
tion speed. Another problem is the integration of the ISS as
a prototype into the target system.

Today, prototyping of hardware IP cores is done with
large hardware emulation machines consisting of many pro-
cessor or FPGA-based prototyping boards providing abun-
dant resources [6, 2]. These emulation systems have the ten-
dency of being very resource consuming and expensive. On
the other hand, a couple of low-cost FPGA development
boards exist [3]. These boards offer a very efficient plat-
form for prototyping while keeping the budget low. Unfor-
tunately, their resources are limited and several problems
must be solved when using such prototyping boards for
hardware emulation. In our contribution we point out the
problems arising when such low-cost prototyping boards
are used, show state of the art solutions and present an al-
ternative approach to solve the resource problem.

State of the art solutions have specific disadvantages.
Some try to use a lot of specialized hardware leading to high
emulator costs, others try to use common of the shelf hard-
ware leading to a decrease in emulation speed. We propose
a solution to the problem based on the efficient usage of
all the resources of the prototyping system to get the best
cost/performance ratio out of the prototyping system.

To show the usefulness of our approach we discuss the
prototyping of the TriCore1 microcontroller IP core from
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Infineon using a low-cost FPGA-based emulation system
called Spyder as a real world example. Special care was
taken on an efficent usage of the resources provided by the
prototyping platform to emulate all parts of the microcon-
troller and its environment.

In section 2 the TriCore1 microcontroller IP and the
rapid prototyping system Spyder are described in more de-
tail. Section 3 shows problems and solutions which must be
solved during the integration of IP cores in FPGA’s. Then
a resource aware prototyping method for the above men-
tioned real world example is discussed in section 4. Results
of our work are presented in section 5 followed by a con-
clusion.

2. Microcontroller IP cores and rapid proto-
typing systems

The embedded systems market faces a huge amount of
microcontrollers ranging from low-cost 8-Bit to high-end
32-Bit microcontrollers with large RAM’s, ROM’s, MMU’s
and several external interfaces integrated on one chip. Origi-
nally the microcontrollers were developed with specific fab-
rication processes and applications in mind (ASIC’s), but
should now also be reused as IP cores in new SoC designs.
This introduces problems when a prototyp of such an IP
core should be implemented in an FPGA.

To show problems and solutions of this task we use the
TriCore1 IP core from Infineon [4] and the Spyder rapid
prototyping system [12] as an example.

2.1. TriCore1 microcontroller IP core

The TriCore1 is a single-core 32-bit MCU-DSP architec-
ture optimized for real-time embedded systems. The proces-
sor is configurable in terms of on-chip memory, caches and
the presence or absence of a MMU. It features:

• 32-bit load-store Harvard architecture

• Superscalar execution

• 16 address and 16 data registers

• Fast context switch and low interrupt latency

• 16-bit and 32-bit instruction formats

The architecture of the microcontroller core is shown in
figure 1. Besides the Scratch Pad RAM (SPR) connected
to the P-MEM and D-MEM interfaces additional memory
can be attached via the local memory bus (LMB). Periph-
eral and slow modules are connected to the flexible periph-
eral interface (FPI) bus. The size of the SPR, caches and
TAG’s is configurable. The core can be implemented with
or without an MMU.

Figure 1. Architecture of the TriCore1 IP
core [5].

Infineon Technologies offers the TriCore1 together with
a reusable verification infrastructure for SoC develop-
ment [5]. The environment consists of the RTL code of
the Microcontroller, C/C++ compiler, instruction set sim-
ulator and simulation models of peripheral modules like
memories.

As mentioned above the TriCore1 core is also available
as a DesignWare Star IP component with an additional Vera
verification environment from Synopsys [9]. There the pe-
ripheral modules are implemented in Vera and allow a trans-
parent execution of programmes. The integration of addi-
tional peripheral modules can be done via the Flexible Pe-
ripheral Interface (FPI) bus developed by Infineon or with
an AMBA interface which is connected over a AMBA-FPI
bridge to the FPI bus.

Since the whole system is simulated with Vera and Mod-
elsim the verification time is extremly high even for small
programmes. Therefore the simulation of large portions of
code using, for example, a RTOS can take a couple of hours
or days.

2.2. Spyder rapid prototyping system

To overcome the problems of the simulation of micro-
controllers with software programmes a FPGA-based emu-
lation system can be used. To keep the costs of the emulator
small a general purpose low-cost prototyping system should
be considered. We took the FPGA-based Spyder-Board [12]
as an example for a low-cost rapid prototyping system to in-
tegrate parts of the TriCore1 microcontroller IP core.

The Spyder-Board is a PCI-based add-on card for PC’s.
The board can be equipped with Xilinx FPGA’s XCV400 to
XCV2000E, thus offering 400 thousand to two million sys-
tem gates. As a rule of thumb, one can say that this value
must be divided by ten compared to ASIC gates. This means
that with a Virtex XCV2000E FPGA ASIC designs of ap-
proximately 300.000 gates can be realized.



To overcome the problem of limited resources the FPGA
vendors tend to integrate additional components into the
FPGA’s which can be used instead of the general purpose
slices. For example, the Virtex XCV2000E offers pipelined
multiplier, address decoder and block RAM.

Besides this additional resources inside the FPGA there
are several additional components located on the Spyder-
Board which can be used for the prototype. The PCI in-
terface offers a fast connection to a PC. Two independent
SRAM banks with 2MB each are connected to the FPGA
and up to 4 Spyder boards can be combined via two VG96
extension headers using a backplane. Configuration of the
board can be done via PCI or JTAG from a host PC or stand-
alone with on-board EEPROM’s.

3. Problems of ASIC IP core prototyping on
FPGA’s

The task of emulating a complex ASIC IP core on a low-
cost FPGA platform is difficult in many ways. In this sec-
tion we outline problems which arise during the integra-
tion process of IP cores on FPGA’s. These problems can
be classified into two domains. Firstly, the target technolo-
gies ASIC and FPGA differ significantly. Secondly, as men-
tioned above, FPGA’s offer only limited resources. For ex-
ample, the two million system gates of a XCV2000E FPGA
from Xilinx can be used to prototype ASIC-IP cores of ap-
proximately 300.000 gates. The overall problem classifica-
tion is shown in figure 2.

Figure 2. Problem classification for the ASIC-
IP core integration on FPGA’s.

3.1. Problems arising from differences in target
technology

The problem of different technologies is not only present
when a specific ASIC-IP component should be emulated
on a FPGA. Every IP integrator is faced with this prob-
lem since the fabrication processes of integrated circuits can
differ. For example, the ASIC-IP vendor could use a differ-
ent synthesis tool supporting different language constructs.
Considering VHDL the generic construct can be used to
keep a design configurable. If this construct is not supported
by the synthesis tool the IP integrator has to replace these
generics by constants. Another problem are megacells like
memories which must be transformed into the required tar-
get technology for the IP.

Technology dependent constraints are a specific prob-
lem in FPGA-based designs. For example, gated clocks are
widely used in embedded systems design to reduce power
consumption by disabling dedicated components not used
during operation. However, in FPGA’s gated clocks have to
be transformed since only a limited number of clock do-
mains are available. A common strategy to implement gated
clocks in FPGA’s is to use the clock enable line of the slice
Flip Flops instead. The result is a tremendous intrusion into
the design which is only possible with tool support [11].

3.2. Problems arising from limited FPGA re-
sources

In the remaining part of this paper we will concentrate
on issues regarding the second problem of ASIC-IP core in-
tegration. This problem results from the limited resources
offered by FPGA’s.

Figure 3. Comparison of the development of
ASIC and FPGA gate capacities.

Figure 3 shows the estimated amount of gates offered by
past and future ASIC and FPGA technologies. The FPGA
gate count is transformed with the above mentioned formula



of one to ten. Yet, there are three different solutions to over-
come the resource problem of limited gates.

The first solution is straight forward. If an ASIC-IP core
doesn’t fit into a FPGA, use a bigger one. This solution has
several drawbacks, and is only suitable in a few situations.
Firstly, regarding figure 3 there will always be an IP core
or even a whole SoC design that doesn’t fit into the biggest
available FPGA. Secondly, using a bigger FPGA means us-
ing a different prototyping system which introduces addi-
tional costs to the IP integrator.

Another solution is the partitioning of the design into dif-
ferent FPGA’s. This technique is used by industrial hard-
ware emulation systems [6, 2]. Since on RTL level the con-
nections between modules can consist of hundreds of sig-
nals a complex signal multiplexing infrastructure has to be
established. This in conjunction with complex partitioning
software is leading to the high prices of those emulation sys-
tems.

To overcome this disadvantage the partitioning of the de-
sign could be established in a different way where one part
of the design could be emulated in the FPGA and the other
part could be simulated on a workstation [7]. This solution
has the advantage of being less expensive than the parti-
tioning of the design into several FPGA’s. The disadvan-
tage of this approach is twofold. Firstly, the connection be-
tween simulator and emulator forms a bottleneck and sec-
ondly the simulator reduces the overall emulation speed of
the whole system.

As a result, the problem of restricted resources in FPGA’s
could be considered as serious. Using more emulation hard-
ware means fast emulation speed but higher costs in terms
of hardware and software, whereas using simulation and
emulation in parallel means lower costs but lower emula-
tion speed too.

4. Resource aware rapid prototyping with
FPGA’s

To alleviate the resource problem we suggest a differ-
ent approach of prototyping ASIC-IP cores on FPGA-based
rapid prototyping platforms. The idea is based on the fact
that FPGA’s and prototyping systems offer a certain infras-
tructure to the IP integrator that should be used as efficent
as possible. We will show this approach with the TriCore1
ASIC-IP microcontroller core and the Spyder rapid proto-
typing system introduced above.

Regarding figure 1 it turned out that prototyping of the
whole IP core is not possible in one XCV2000E FPGA.
However, finding the largest possible working subset of the
TriCore1 core is a extremely difficult task since the integra-
tor has to provide a testbench with each subset of the core
and has to try if the subset fits into the FPGA.

4.1. Finding an appropriate starting position

Therefore, we have chosen the opposite direction start-
ing with a minimal subset of the core and adding more mod-
ules in later stages of the integration process. Considering
the TriCore1 core it turns out, that the smallest reasonable
subset is the CPU core itself since it enables a software en-
gineer to compile and run programmes on the CPU. How-
ever, memories and the corresponding memory interfaces
are needed for the programme code. Implementing mem-
ory in a FPGA consumes a lot of resources since one slice
of a FPGA could only hold 2 bits of data.

New FPGA generations offer additional on-chip RAM
to the designer. For example, the XCV2000E FPGA from
Xilinx contains 160 SelectRAM blocks with 4096 bits each.
The total amount of memory adds up to 82 KByte which can
be enough space for small embedded applications. Thus, a
possible solution for a restricted version of the TriCore1 IP
core on Spyder is depicted in figure 4(a).

Figure 4. TriCore1 CPU module and RAM so-
lutions.

Figure 4(b) shows an alternative solution for the Tri-
Core1 integration on the Spyder-System. Using the Spy-
der SRAM’s provided by the rapid prototyping board of-
fers some advantages compared to solution (a). First of all,
to emulate different programmes with solution (a) implies
that the configuration bitstream of the FPGA has to be con-
figured with the programme data. Therefore additional soft-
ware is necessary to translate object code into a bit represen-
tation for the Virtex Block RAM’s. The second disadvan-
tage is the limitation of memory to 82KBytes. Thirdly, the
routing is very complex when using all SelectRAM blocks.

On the other hand, the Spyder SRAM’s offer 2MByte
each. Therefore, in a first step the TriCore1 CPU was com-
bined with glue-code for the Spyder SRAM’s. The emu-
lation of software with this prototype led to a significant
speedup compared to RTL level simulation of the TriCore1
CPU. This solution had a few disadvantages but offered a
good starting point for the enlargement of the TriCore1 IP
core.



4.2. Enlargement of the small TriCore1

One of the disadvantages was the lack of an interface to
connect additional modules to the TriCore1 CPU. To real-
ize additional peripheral modules a processor bus is needed.
Thus, solution (b) of figure 4 was augmented by the origi-
nal programme and data interfaces of the TriCore1 to have
the local memory bus (LMB) present.

Figure 5. Augmented TriCore1 with LMB in-
terface.

The resulting system design is shown in figure 5. This re-
alization uses both types of memories available on the Spy-
der prototyping system. The internal Virtex block RAM’s
were used to emulate the on-chip Scratch Pad RAM of the
TriCore1 core. The Spyder SRAM’s emulate external mem-
ory connected via LMB.

Since in this implementation a processor bus is available
additional peripheral modules can be connected to the Tri-
Core1 realizing a real SoC prototype. Due to the restricted
space left besides the TriCore1 these additional modules can
only be small.

4.3. TriCore1 emulation flow on Spyder

Because of the limited environment of the emulated Tri-
Core1 it is not possible to connect a software debugger to
the system. Therefore the download and emulation of pro-
grammes must be established in an alternative way. The em-
ulation flow is depicted in figure 6.

After compiling and linking of the application with some
startup code to initialize the processor the Spyder SRAM
Generator initializes VHDL models of the Spyder SRAM
banks zero and one. with the programme to execute. These
models can be integrated into the TriCore1 testbench we
created for the restricted TriCore1 IP core. Simulation run-
times for a few benchmarks are listed in table 1.

Figure 6. Integration and emulation flow for
Spyder.

The emulation of the restricted TriCore1 IP core is done
in two steps. In the first step the application object file is
loaded by the Spyder SRAM Loader into the two SRAM
banks of the Spyder board via PCI. In a second step the re-
stricted TriCore1 IP core is loaded into the FPGA and the
programme execution starts immediately after the down-
load.

The result of the programme execution can be written
to a reserved address located in the LMB address space. A
communication module attached to the LM bus and sensi-
tive to this address can read the result and can generate an
interrupt at the PCI bus of the attached PC. There an inter-
rupt service routine can determine the result and display it
to the application engineer.

5. Results

The described prototyping method with usage of addi-
tional FPGA and prototyping board resources delivered a
significant speedup of execution speed of programmes. Ta-
ble 1 shows a comparison of software runtime of RTL sim-
ulation on a workstation and emulation on the Spyder rapid
prototyping system.

Benchmark one is Euclid’s algorithm to calculate the
greatest common divisor. The second benchmark deter-
mines the Fibonacci number for input value 10,000 and the
third benchmark searches the first 1000 prim numbers using
the sieve of Erastothenes algorithm. The measurements on
Spyder were made with an emulation frequency of 8MHz
which is the highest possible frequency when optimizing
for area during the synthesis process.

Figure 7 shows a comparison of the number of FPGA
slices needed for the whole TriCore1 IP and two proto-
types of the microcontroller on the Spyder-Board. By ap-



Euclid’s Fibonacci Sieve of
Algorithm Numbers Erastothenes

Number of 1484 41419 20779
instructions

executed
Simulation approx. approx. approx.

on workstation 28 Sec. 10 Min. 18 Min.
Emulation 312 µs 3.9 ms 21.8 ms
on Spyder

Table 1. Software runtime comparison.

plying our proposed prototyping method of partially replac-
ing parts of an ASIC design with resources of the prototyp-
ing system and augmenting the design in a stepwise man-
ner the prototyping of an integral part of the microcontroller
was possible.

Figure 7. Synthesis results for the TriCore1 IP
core on Spyder.

Two interesting numbers which approve resource aware
rapid prototyping are given in table 2. The total equivalent
gate count represents the number of gates a design would
need as ASIC and is provided by the Xilinx map tool.

Solution 1 (Fig. 4(b)) Solution 2 (Fig. 5)

Total equivalent 256,020 529,573
gate count

Table 2. Total equivalent gate count provided
by the Xilinx map tool.

As mentioned in Section 2 the two million system gates
of a XCV2000E FPGA can be used to prototype ASIC-IP
cores of approximately 300.000 gates. By using additional

resources of the prototyping system this barrier could be ex-
ceeded. Solution two shown in figure 5 uses block RAM’s
of the FPGA to emulate 8KByte of Scratch Pad RAM of the
TriCore1 core. Since this additional gates are considered
by the map tool too, there the total equivalent gate count
is 529,573 which exceeds the theoretical value of 300,000
gates.

6. Conclusion

In this paper a rapid prototyping method was introduced
which is based on the efficient usage of resources offered by
the rapid prototyping system. This can help to reduce costs
for the prototyping system in terms of hardware and soft-
ware tools since one hardware board is enough and no ad-
ditional partitioning and synthesis software is needed.

As an example the adaptation of the TriCore1 microcon-
troller ASIC-IP core to the rapid prototyping system Spyder
was shown. There both the Virtex block RAM’s and Spyder
SRAM banks where used to emulate the TriCore1 mem-
ory infrastructure. With the restricted model the execution
of programmes is possible leading to a significant speedup
of runtime compared to simulation.
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