
1

A Scalable Architecture for LDPC Decoding
Mauro Cocco*, John Dielissen#, Marc Heijligers#, Andries Hekstra#, Jos Huisken*

* Silicon Hive, Prof. Holstlaan 4, 5656AA Eindhoven, The Netherlands

Philips Research, Prof. Holstlaan 4, 5656AA Eindhoven, The Netherlands

Abstract

Low Density Parity Check (LDPC) codes offer excellent

error correcting performance. However, current
implementations are not capable of achieving the
performance required by next generation storage and
telecom applications. Extrapolation of many of those
designs is not possible because of routing congestions.
This article proposes a new architecture, based on a
redefinition of a lesser-known LDPC decoding algorithm.
As random LDPC codes are the most powerful, we
abstain from making simplifying assumptions about the
LDPC code which could ease the routing problem. We
avoid the routing congestion problem by going for
multiple independent sequential decoding machines, each
decoding separate received codewords. In this serial
approach the required amount of memory must be
multiplied by the large number of machines. Our key
contribution is a check node centric reformulation of the
algorithm which gives huge memory reduction and which
thus makes the serial approach possible.

1. Introduction

LDPC codes [1] are very powerful error correcting codes

that have been reinvented in the 1990’s after the advent of
Turbo coding. The use of a random interconnect structure
of the graph ensures very good error correcting
capabilities of the LDPC code [1]. Direct implementation
of the random interconnect structure becomes infeasible
for large instance sizes, because it results in routing
congestions. This article addresses prevention of those
routing problems, by proposing a new architecture based
on a modified version of the LDPC algorithm.
 The structure of the paper is as follows. In Section 2, we
introduce the LDPC decoding algorithm called UMP,
which is required to present the redefinition of it. Section
3 analyses the so-called serial approach as a solution to
the congestion problem of the direct implementation of
the random interconnect structure. Section 4 introduces a
modification to the UMP algorithm, resulting in memory
size reductions of about a factor 3.5. In section 5, a kernel
of computation has been defined. By combining the
kernels of computation, we have serialized the algorithm
to be able to implement it in a time-folded architecture.
Section 6 presents the time-folded architecture and its
implementation at different sizes. Finally, some future
work and conclusions are given in Section 7 and 8.

2. Background

LDPC codes are linear codes. This means that a
codeword of an (n,k) LDPC code must satisfy n-k parity
check equations on its n codeword bits. One parity check
equation is of the form that the bits of a specified subset
of codeword bit positions must have even parity (i.e. sum
to zero modulo 2). The whole set of n-k parity check
equations on the n codeword bits can be depicted by
means of a bipartite graph, see Figure 1. A bipartite graph
implies two kinds of nodes. The left nodes represent the
bits in what should be a codeword (bit nodes). The right
nodes represent the parity check equations (check nodes).
When the j-th parity check equation involves the i-th
codeword bit, there is an arc in the graph between the i-th
left node and the j-th right node. The number of arcs
connected to a node is called its degree. E.g. Figure 1 in
the left nodes have degree 3.

Figure 1 LDPC bipartite graph

In the literature, the LDPC decoding algorithm is also

called the message passing algorithm, the belief
propagation algorithm, or the sum-product algorithm. As

1530-1591/04 $20.00 (c) 2004 IEEE

2

the name message passing algorithm suggests, the
decoding process revolves around the transmission of
messages along the arcs of the graph, which specifies the
code. These message carry probability information about
the bits in the transmitted codeword, e.g. fixed point
numbers representing log likelihood ratios (LLR’s).
 The total amount of operations in a message passing
decoder is proportional to the total number of arcs. This is
a reason to keep the number of arcs in the graph small.
The graph is then called sparse. Information theory tells
us that the whole principle of iterative decoding in a graph
hinges upon the sparseness of the graph. For our purposes,
a “minimum” number of arcs can be interpreted as an
(average) left node degree of 3 [1]. E.g. for a coding rate
R=0.9, the number of parity checks equals n-k=0.1 n. As
the total number of left ends of arcs and right ends of arcs
is the same, and there are 10 times fewer nodes on the
right than on the left, the (average) degree of the right
nodes will then be K=30.
In a classical message passing decoder, one iteration

consists of a first half-iteration during which messages are
sent from all left nodes over all arcs to all right nodes, and
a second half-iteration during which new messages
obtained from some processing in the right nodes are sent
over all arcs to all left nodes, etc. Then some processing is
done in all left nodes, after which a second iteration is
started, etc. This continues for e.g. 30 or 40 iterations
which is the decoding period. The channel output
information for a codeword bit is permanently stored in
the corresponding left node.
 Implementing the LDPC algorithm in a straightforward
manner, one would store in all nodes, all most recently
received messages over all connected arcs. This enables
processing and the production of as many output
messages as there are input messages (equal to the degree
of that node). Because all arcs together have as many left
ends as right ends, this means that the same total number
of input messages need to be stored on the left side as on
the right side.
 In a direct “one arc = one wire” implementation, in
which each arc in the graph corresponds to one or more
data paths, the randomness of the graph gives a very
complex routing problem to implement. It is obvious that
the life of a chip designer can be made easier by choosing
a code for which the graph is less random. As a general
rule this will degrade the error correcting capabilities of
the code. Our aim is to study feasibility of not making
simplifying assumptions about graph. This way we want
to explore the potential of using the strongest possible
codes. The LDPC codes, which we used for our
implementations were produced using a random generator
as in [1].
 In line with Gallager [1], let the capital letter K denote
the fixed degree of the right nodes. This degree variable is
not be confused with the traditional lower case variable k
that is the number of information bits encoded in a
codeword. For rate R=0.9, we have that K=30. We note
that LDPC codes with variable node degrees exist, but
MacKay [3] has shown that for high rate R applications
and intermediate or longer codeword lengths this brings
no advantage. In fact, the error performance for higher
SNR values becomes worse.

3. The Serial Approach

An important possible application area of LDPC codes is

optical or magnetic storage. Next generation storage
systems will be characterized by the high data rates at
which the disk is read. This necessitates the availability of
an error correcting decoder with large throughput (e.g.
300 Mbps). A property of storage systems is, that the
decoding delay of an error correcting decoder in a player
adds to the media access time. The order of magnitude of
this media access time is determined by the time it takes
to reposition the read head on the disk (tens of
milliseconds). Therefore, decoding delays that are small
relative to the head repositioning time, are deemed to be
acceptable. When we multiply such admissible decoding
delays in milliseconds with the huge data rate we get an
admissible decoding delay measured in bits or codewords.
Here, a typical LDPC codeword length n is thought to be
4,000-10,000. Depending on the details, this way one can
conclude that a decoding delay of tens or even hundreds
of LDPC codewords is acceptable.
 The traditional way to implement LDPC is the parallel
approach, but this leads to an extremely complex
interconnect problem during floorplanning [2]. One
possibility to avoid the extremely complex interconnect
problem is going for a sequential decoding machine that
processes the input nodes in a linear order from the first
bit-node to the last in every iteration as shown in Figure 2.
Because of the relaxed delay requirement the resulting
decoding delay is not a problem.

Figure 2 Serial Approach of the LDPC algorithm

 The results is that the complex interconnect can be solved
in random access memory. This is called the serial
approach. To reach the required throughput performance
tens or more decoding machines can be used on one chip.
 Note that the serial approach requires storage of all
intermediate results (messages) associated with the
decoding of one codeword for each machine. With a large
number of machines, this means that for the serial
approach the memory requirement is critical to get
sufficient machines on one chip to realize sufficient
overall throughput

4. The General Idea

A number of variations of message passing decoding

exist. We have chosen a simplification called the UMP
algorithm of Fossorier et. al. [4,5] as the basis for our
work. In principle, this simplification entails a small loss
in bit error rate versus SNR performance of only a few
tenths of a dB. We aim for an implementation where the
use or non-use of an LDPC code brings a significant

3

performance improvement of several dBs, and we can
afford to loose a few tenths of dB and still have a
significant net advantage. Moreover, unlike the original
message-passing algorithm, the UMP algorithm does not
need knowledge of the SNR of the channel, thus ensuring
robust operation.
 The advantages of the UMP algorithm over the original
message-passing algorithm are:
- We do not need complex mathematical functions nor

in check nodes nor in bit nodes such as tanh, which
would require for instance many table lookups.

- In a check node, e.g. for R=0.9, all K=30 output
messages can be derived from just 3 numbers which
are part of what we call a dataset, viz. a minimum, a
one-but-minimum and an index; this reduces the
amount of evaluations of formulas needed
significantly.

 For rate R=0.9, storing K=30 input messages per check
node saves roughly a factor of 10 in memory space when
we only store those 3 numbers. The details are explained
in Section 4.2. However, such a reduction of the required
amount of memory for the right nodes would then make
the total left node storage requirement dominate the total
storage requirement.
 Our key idea is to work towards an architecture with a
computational kernel that elaborates the old and the new
running state information of the decoding process. These
informations are captured in terms of old and new running
versions of those 3 numbers per check node to achieve
substantial memory savings. First we have reformulated
the processing from an alternation of left-to-right and
right-to-left half iterations with e.g. old algorithm state
information in the left nodes and new algorithm state
information in the right nodes (or vice versa) to a situation
where of the aforementioned 3 numbers for all check
nodes there is an old version (input to the calculations)
and new version (output of the calculations). This will
make all processing right-to-left-to-right in one step, so
that the algorithm becomes entirely right node (i.e. check
node) centric.

4.1 The UMP algorithm

The pseudo code of the UMP algorithm [4,5] is given

below. The algorithm works with log likelihood ratio
messages alternatively flowing from all bit nodes over all
arcs to all check nodes, and back. Note that in the pseudo
code below each bit node the corresponding channel
output LLR is also treated as an incoming arc to that
node.

"FOR 40 ITERATIONS DO"
 "FOR ALL BIT NODES DO"
 "FOR EACH INCOMING ARC X"
 "SUM ALL INCOMING LLRs EXCEPT OVER X"
 "SEND THE RESULT BACK OVER X"
 "NEXT ARC"
 "NEXT BIT NODE"
 "FOR ALL CHECK NODES DO"
 "FOR EACH INCOMING ARC X"

"TAKE THE ABS MINIMUM OF THE INCOMING
LLRs EXCEPT OVER X"

“TAKE THE XOR OF THE INCOMING LLRs EXCEPT
OVER X”

 "SEND THE RESULT BACK OVER X"
 "NEXT ARC"

 "NEXT CHECK NODE"
"NEXT ITERATION"

4.2 Hardware implications

With the UMP algorithm, one check node operation

consists of the following. For each of the K bit nodes to
which it is connected,
1. Compute the exclusive or (xor) of all hard bits output

by the connected bit nodes (as determined by the
signs of the output log-likelihood ratios), except the j-
th one (j=1,2,...,K).

2. Compute the minimum of all K absolute values of the
log-likelihood ratios of the bit nodes to which the
check node is connected, except the j-th one
(j=1,2,...,K).

A cheap way in hardware to compute all the K xor
results is to compute the xor of all K input bits. The xor of
all K input bits except one can be calculated by taking the
xor of the aforementioned total and taking the xor with
the input bit that is to be expected.
 With respect to the K minima that have to be computed
during a check node operation, we observe the following
[4]. Consider the j-th input to the check node, and assume
that its absolute value of the log-likelihood ratio is not the
minimum of all K such inputs. Then, the minimum value
of all K inputs except the j-th one will equal the overall
minimum of the K values. In case, the j-th log-likelihood
ratio does have the absolute minimum value of all K
inputs, the minimum of the K inputs except the j-th one
equals the second-to-minimum value. On the K input
LLRs to a given check node, we take the minima of all
numbers except one, where we first omit the first one,
then the second one, then the third one, etcetera… Thus,
in a check node the set of minima of K values, except the
j-th one, can be stored using only 3 values (a dataset)
instead of K=30:
• The overall minimum value,
• The overall one-but-minimum value,
• The index j for which the minimum input value

occurs.
 Now that all storage has been moved into the check
nodes, a reduction in the storage requirement of roughly a
factor of 10 has been obtained. Unfortunately, the sign
information cannot be compressed, and therefore the
memory of an architecture that contains 10,000 bit nodes
is reduced to 1,000 datasets (equal to the number of check
nodes for R=0.9 and n=10,000) and 30,000 sign bits,
randomly connected to each other. For our investigation
we have used 4 bits for the minimum and 4 for the one-
but-minimum, 5 bits the address of the minimum and 30
bits for the signs; thus the total memory requirement for
our algorithm is 43,000 flip-flops, instead of the initial
150,000.

5. Loop Restructuring of the UMP Algorithm

A minimal kernel of computation has been extracted

from the UMP algorithm. The time folded architecture for
the LDPC decoders, implements the algorithm processing
the kernel computation in a linear order, see Figure 2. The
computational kernel is the union of one bit node and part
of the three check nodes connected to it. Note that in

4

every step of every iteration, the minimal kernel of
computation needs the previous values and the new values
as shown in Figure 3.

Figure 3 LDPC algorithm: the computational kernel
works on the old values from the previous iteration and on
the new running values

Every bit node is processed once per iteration together
with the 3 check nodes, to which it is connected. As a
result, every check node is called K=30 times per
iteration. Our main contribution consists of calculating the
minimum and one-but minimum using these K=30 calls.
During every call a running minimum and one-but-
minimum are updated. This restructuring leads to the next
pseudo code:

"FOR 40 ITERATIONS DO"
 "FOR ALL BIT NODES DO"
 “CALCULATE THE OUTPUT MESSAGES FROM
 THE 3 CONNECTED CHECK NODES1 “

“DO RUNNING CHECK NODE UPDATES ON
 THE 3 CHECK NODES
 “NEXT BIT NODES”
"NEXT ITERATION"

Working in a serial way the LDPC decoder needs to feed
the computational kernel with 3 datasets and the soft input
every cycle (see Figure 5). The dataset, shown in Figure
4, is divided in the running values and the previous values
of the minimum, the one-but-minimum, and the address
of the minimum; the addresses of the bit node for the
check node which is being processed and sign database.
Furthermore, the signs of the K=30 bit nodes connected to
each check node, the total xor of all the signs from the
previous iteration, the running total xor are in this dataset.
After finishing an iteration, the running values becomes
the old values and a new iteration starts until the complete
decoding sequence is executed. To perform one iteration,
the time folded architecture needs a number of cycles
equal to the number of the bit nodes, thus the throughput
of this architecture will be equal to:

erationsNumberOfIt
encyClockFrequThroughput =

Working at the same frequency of a full parallel
architecture, it is number of bit nodes times slower. Note
that, the clock frequency is expected to be higher than the
frequency of a fully parallel architecture.

1 using old min/one-but/address

Figure 4 Datasets of the check nodes

6. Time Folded Architecture

The time folded architecture is composed of a prefetcher,

the computation kernel, a memory bank, the µRom and a
state machine with a program counter that controls the
architecture. The schematic of the architecture is shown in
Figure 5. A memory bank is required to store all the
datasets of the check node. The prefetcher performs a
statically scheduled cache for the datasets required by the
computational kernel every cycle. It receives the control
signals from the µRom memory. The µRom memory also
gives the write or read command and address to the
memory bank. The kernel of computation receives the
datasets from the prefetcher and the channel output
LLR’s, to perform all the decoding operations. Its outputs
are the updated datasets for the prefetcher and a serial
output, which gives the decoded bit. To feed the soft
inputs to the time folded architecture a single-port
memory can be used with the address port connected to
the program counter.

Figure 5 Schematic of the Time folded Architecture

To get the datasets to the datapath, we use memory banks
and a prefetcher, which is explained in the next section.

6.1 Prefetcher and Memory Banks

The prefetcher is required for buffering, prefetching, and

writing back into the memory banks the datasets required
by the computational kernel. From an analysis of the
communication requirements we can see that 3 datasets
are read and 3 datasets are written every clock cycle.
However when examining the retrieved datasets, it can be
observed that for one of the ports, each dataset can be

5

used for 30 consecutive cycles. This implies that the
datasets can stay in the prefetcher and do not have to be
saved and retrieved from the memories. As a result, every
clock cycle an average of 2 read and 2 write operations
are required. To obtain this bandwidth we use 4 single
port memory banks because their area is about half
compared to a dual-port memory with the same storage
capacity.
 Due to the random interconnection structure, there are
always conflicts on reading and writing datasets to the
memories. We have written a program to solve these
conflicts and this program uses three techniques, namely:

• Prefetching;
• Delayed writeback;
• Keeping datasets in the prefetcher;

Furthermore it uses the next levels of freedom:
• Allocation of datasets to the memory banks,

where each check node has K datasets: one for
each time it is called;

• Order of the connection table;
 First of all, the connection table is sorted to reduce the
resources required for all the prefetcher’s operations. A
heuristic is used to find a good schedule requiring
adequate prefetcher and memory sizes. In general, the
more an updated dataset is reused in consecutive or close-
by cycles, the smaller the size of the prefetcher and
memory banks are. After sorting, the program greedily
runs through the list of datasets to be scheduled, trying to
find a good match between prefetching and delayed write
back on an arbitrary memory bank. If no solution for
passing it to memory is found, the datasets are
automatically stored in the prefetcher.
 Special attention has been given to the initialisation and
closure phase of the schedule, to allow looping: the tail
must fit the head (the completed datasets of every check
node has to be in the same address and memory bank so
that the same schedule can be used in the next iterations).
 After a successful run of the program, address
assignment of the datasets in the memory bank must be
done. The solution to this problem is provided by an
algorithm described in [6], providing a near optimum
solution (at most one memory location above the
optimum) for general cases. For our specific case, the
algorithm gives the optimum result in term of minimum
number of memory locations.
 The program produces micro code, which is put into the
µRom table. Note that, in principle, from one
interconnection table to the other, only the µRom contents
needs to be updated. Offcourse for specific cases the
prefetcher register-files sizes are different, but for these, a
“worst case” size can be specified. Results show that the
size of the register-files differ marginally.
 The implemented time folded architecture has a block
size of 9300 bit nodes, uses 4 Rams with 256 addresses by
63 bits word, and a ROM with 9305 addresses2 with 103
bits.

6.2 Synthesis, Floor-planning and Results

The technology that has been used for implementation of

the layout is a 0.13µm CMOS process with 6 metal layers.

2 A latency of 5 clock cycle is required between two
consecutive iterations

A clock period of 10ns has been selected for area
dominated synthesis, and a period of 3ns for the delay
dominated synthesis. The results of the synthesis are
shown in the table below and a plot of the layout is shown
in Figure 6.

Time folded
Architecture

Freq. (MHz) Area (mm2) Row Util.

Area 147 1.12 70
Delay 211 1.14 70

Figure 6 Layout of the time-folded architecture

 The best trade-off is the synthesis by default where a
2.9% of increase in area implies a gain of 43.5% in clock
frequency. To synthesise the architecture, about 300 Mb
of memory was required to complete the flow. To
increase the throughput of the architecture we can use
more time folded architectures working in parallel (named
tiles). One novelty of the proposed architecture is that
only one µRom is required to control the all tiles. This is
because during each iteration the operations in different
tiles are the same. From the area diagram graphics shown
in Figure 7 and Figure 8 we observed that for the time
folded architecture almost half of the area is occupied by
this µROM memory, while using more tiles in parallel the
µROM memory area becomes negligible. A schematic of
such architecture is shown in Figure 9. The area of LDPC
decoder with a throughput of 300 Mb/s is approximately
36 mm2 and requires 57 tiles.

6.3 Comparison

Comparing the time folded architecture with a linear

extrapolation of a full parallel implementation3, we can
see that working on the same block (9300), the area of the
full parallel architecture will be more than 94 mm2,
against 36 mm2. Furthermore we can compare our time
folded architecture with [2]. For a 1020 block length, bit
rate 0.5 at a throughput or 1 Gbps, our architecture will
require 190 tiles in parallel. Furthermore, one ROM of
1025 addresses by 93 bits and in every tile 4 RAMs of 32
addresses by 33 bits are needed. The area of our time

3 A “direct” or “flat” implementation is not possible and
therefore a best case linear extrapolation is taken

6

folded architecture is smaller than [2]. Moreover it is
scalable and does not need a new floorplan for a different
connection table.

Blanksby and Howland architecture 52.5 mm2

0.16µm CMOS
Estimation of Time folded
architecture @ 1GHz with block-
length 1020

25.5 mm2

0.13µm CMOS

Note again that the LDPC algorithm works better with
block lengths bigger than 4k and [2] has already routing
problems for a 1k block length architecture. This is
expressed in their published average wire-length of 3 mm
on 0.16µm CMOS technology.

����

�����

�����

�����

5DP

5RP

Figure 7 Area distribution of the time folded architecture

69.2%

4.1%

25.1%

1.5%

Ram

Rom

Figure 8 Area distribution for 57 tiles architecture.

7. Recommendations

Further optimizations are still possible, such as the use

of pipeline stages in the datapath. Since the datapath
occupies only 2% of the area in a single tile, the insertion
of a pipeline stage in it, will increase its area but will have
a negligible effect on the total area, while the clock
frequency is expected to increase. Moreover, inserting a
pipeline stage to increase the frequency, fewer tiles will
be required to reach the same throughput. This will result
in a considerable reduction of the chip’s area.

 Also, further investigations in finding better scheduling
algorithms are still possible.

8. Conclusions

We have projected, investigated and implemented a

time-folded architecture for an LDPC decoder. Depending
on the throughput requested, more architecture-tiles can
be connected in parallel, resulting in a fully scalable
architecture. The architecture is capable to meet our needs
of high performance: good bit error rate because of
random code structure and longer codeword lengths as
well as high throughput. Hence the architecture proposed
in this article provides a lot of flexibility that can be
tailored at specific needs with efficient area figures and
speed.

Figure 9 Schematic of the tiled architecture.

References

1. R.G. Gallager, “Low density parity check codes”, IRE
Trans. Information Theory, Vol. 8, pp. 21-28, 1962.

2. C.J. Howland and A.J. Blanksby, “A 690-mw 1-Gb/s
1024-b, rate-1/2 low-density parity-check code
decoder”, Journal of Solid-State Circuits, Vol. 37 No.
3, pp. 404--412, March 2002.

3. D. MacKay, “Punctured and irregular high-rate
Gallager codes”, http://www.inference.phy.cam.ac.uk/
mackay/CodesGallager.html.

4. M. Fossorier, M. Mihaljevic, H. Imai, “Reduced
complexity iterative decoding of low-density parity
check codes based on belief propagation,” IEEE Trans.
on Commun., Vol. COM-47, No. 5, pp. 673-680, May
1999.

5. J. Chen, M. Fossorier, “Near optimum universal belief
propagation based decoding of low density parity
check codes,” IEEE Trans. on Commun., Vol. COM-
50, No. 3, pp. 406-414, March 2002.

6. W.F.J. Verhaegh, J.L. van, Meerbergen, P.E.R.
Lippens and A. van der Werf, “Relative location
assignment for repetitive schedules”, IEEE In
European Conference on Design Automation with the
European Event on ASIC Design, pp. 403--407, 1993.

Prefetcher

Computational
Kernel

Prefetcher

Computational
kernel

http://www.inference.phy.cam.ac.uk/

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

