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Abstract 

 
Low Density Parity Check (LDPC) codes offer excellent 

error correcting performance. However, current 
implementations are not capable of achieving the 
performance required by next generation storage and 
telecom applications. Extrapolation of many of those 
designs is not possible because of routing congestions. 
This article proposes a new architecture, based on a 
redefinition of a lesser-known LDPC decoding algorithm. 
As random LDPC codes are the most powerful, we 
abstain from making simplifying assumptions about the 
LDPC code which could ease the routing problem. We 
avoid the routing congestion problem by going for 
multiple independent sequential decoding machines, each 
decoding separate received codewords. In this serial 
approach the required amount of memory must be 
multiplied by the large number of machines. Our key 
contribution is a check node centric reformulation of the 
algorithm which gives huge memory reduction and which 
thus makes the serial approach possible.  
 
1. Introduction 
 
LDPC codes [1] are very powerful error correcting codes 

that have been reinvented in the 1990’s after the advent of 
Turbo coding.  The use of a random interconnect structure 
of the graph ensures very good error correcting 
capabilities of the LDPC code [1]. Direct implementation 
of the random interconnect structure becomes infeasible 
for large instance sizes, because it results in routing 
congestions.  This article addresses prevention of those 
routing problems, by proposing a new architecture based 
on a modified version of the LDPC algorithm.  
 The structure of the paper is as follows. In Section 2, we 
introduce the LDPC decoding algorithm called UMP, 
which is required to present the redefinition of it. Section 
3 analyses the so-called serial approach as a solution to 
the congestion problem of the direct implementation of 
the random interconnect structure. Section 4 introduces a 
modification to the UMP algorithm, resulting in memory 
size reductions of about a factor 3.5. In section 5, a kernel 
of computation has been defined. By combining the 
kernels of computation, we have serialized the algorithm 
to be able to implement it in a time-folded architecture. 
Section 6 presents the time-folded architecture and its 
implementation at different sizes. Finally, some future 
work and conclusions are given in Section 7 and 8. 

2. Background 
 

LDPC codes are linear codes. This means that a 
codeword of an (n,k) LDPC code must satisfy n-k parity 
check equations on its n codeword bits. One parity check 
equation is of the form that the bits of a specified subset 
of codeword bit positions must have even parity (i.e. sum 
to zero modulo 2).  The whole set of n-k parity check 
equations on the n codeword bits can be depicted by 
means of a bipartite graph, see Figure 1. A bipartite graph 
implies two kinds of nodes. The left nodes represent the 
bits in what should be a codeword (bit nodes). The right 
nodes represent the parity check equations (check nodes). 
When the j-th parity check equation involves the i-th 
codeword bit, there is an arc in the graph between the i-th 
left node and the j-th right node. The number of arcs 
connected to a node is called its degree. E.g. Figure 1 in 
the left nodes have degree 3.  
 

Figure 1 LDPC bipartite graph 

 
In the literature, the LDPC decoding algorithm is also 

called the message passing algorithm, the belief 
propagation algorithm, or the sum-product algorithm. As 
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the name message passing algorithm suggests, the 
decoding process revolves around the transmission of 
messages along the arcs of the graph, which specifies the 
code. These message carry probability information about 
the bits in the transmitted codeword, e.g. fixed point 
numbers representing log likelihood ratios (LLR’s).  
 The total amount of operations in a message passing 
decoder is proportional to the total number of arcs. This is 
a reason to keep the number of arcs in the graph small. 
The graph is then called sparse. Information theory tells 
us that the whole principle of iterative decoding in a graph 
hinges upon the sparseness of the graph. For our purposes, 
a “minimum” number of arcs can be interpreted as an  
(average) left node degree of 3 [1].  E.g. for a coding rate 
R=0.9, the number of parity checks equals n-k=0.1 n. As 
the total number of left ends of arcs and right ends of arcs 
is the same, and there are 10 times fewer nodes on the 
right than on the left, the (average) degree of the right 
nodes will then be K=30.
In a classical message passing decoder, one iteration 

consists of a first half-iteration during which messages are 
sent from all left nodes over all arcs to all right nodes, and 
a second half-iteration during which new messages 
obtained from some processing in the right nodes are sent 
over all arcs to all left nodes, etc. Then some processing is 
done in all left nodes, after which a second iteration is 
started, etc. This continues for e.g. 30 or 40 iterations 
which is the decoding period. The channel output 
information for a codeword bit is permanently stored in 
the corresponding left node. 
 Implementing the LDPC algorithm in a straightforward 
manner, one would store in all nodes, all most recently 
received messages over all connected arcs. This enables 
processing and the production of as many output 
messages as there are input messages (equal to the degree 
of that node). Because all arcs together have as many left 
ends as right ends, this means that the same total number 
of input messages need to be stored on the left side as on 
the right side.  
 In a direct “one arc = one wire” implementation, in 
which each arc in the graph corresponds to one or more 
data paths, the randomness of the graph gives a very 
complex routing problem to implement. It is obvious that 
the life of a chip designer can be made easier by choosing 
a code for which the graph is less random. As a general 
rule this will degrade the error correcting capabilities of 
the code. Our aim is to study feasibility of not making 
simplifying assumptions about graph. This way we want 
to explore the potential of using the strongest possible 
codes. The LDPC codes, which we used for our 
implementations were produced using a random generator 
as in [1]. 
 In line with Gallager [1], let the capital letter K denote 
the fixed degree of the right nodes. This degree variable is 
not be confused with the traditional lower case variable k
that is the number of information bits encoded in a 
codeword. For rate R=0.9, we have that K=30. We note 
that LDPC codes with variable node degrees exist, but 
MacKay [3] has shown that for high rate R applications 
and intermediate or longer codeword lengths this brings 
no advantage. In fact, the error performance for higher 
SNR values becomes worse. 
 

3. The Serial Approach 
 
An important possible application area of LDPC codes is 

optical or magnetic storage. Next generation storage 
systems will be characterized by the high data rates at 
which the disk is read. This necessitates the availability of 
an error correcting decoder with large throughput (e.g. 
300 Mbps). A property of storage systems is, that the 
decoding delay of an error correcting decoder in a player 
adds to the media access time. The order of magnitude of 
this media access time is determined by the time it takes 
to reposition the read head on the disk (tens of 
milliseconds). Therefore, decoding delays that are small 
relative to the head repositioning time, are deemed to be 
acceptable. When we multiply such admissible decoding 
delays in milliseconds with the huge data rate we get an 
admissible decoding delay measured in bits or codewords. 
Here, a typical LDPC codeword length n is thought to be 
4,000-10,000. Depending on the details, this way one can 
conclude that a decoding delay of tens or even hundreds 
of LDPC codewords is acceptable.  
 The traditional way to implement LDPC is the parallel 
approach, but this leads to an extremely complex 
interconnect problem during floorplanning [2]. One 
possibility to avoid the extremely complex interconnect 
problem is going for a sequential decoding machine that 
processes the input nodes in a linear order from the first 
bit-node to the last in every iteration as shown in Figure 2. 
Because of the relaxed delay requirement the resulting 
decoding delay is not a problem.  
 

Figure 2 Serial Approach of the LDPC algorithm  

 The results is that the complex interconnect can be solved 
in random access memory. This is called the serial 
approach. To reach the required throughput performance 
tens or more decoding machines can be used on one chip.   
 Note that the serial approach requires storage of all 
intermediate results (messages) associated with the 
decoding of one codeword for each machine. With a large 
number of machines, this means that for the serial 
approach the memory requirement is critical to get 
sufficient machines on one chip to realize sufficient 
overall throughput 
 

4. The General Idea 
 
A number of variations of message passing decoding 

exist. We have chosen a simplification called the UMP 
algorithm of Fossorier et. al. [4,5] as the basis for our 
work. In principle, this simplification entails a small loss 
in bit error rate versus SNR performance of only a few 
tenths of a dB.  We aim for an implementation where the 
use or non-use of an LDPC code brings a significant 
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performance improvement of several dBs, and we can 
afford to loose a few tenths of dB and still have a 
significant net advantage. Moreover, unlike the original 
message-passing algorithm, the UMP algorithm does not 
need knowledge of the SNR of the channel, thus ensuring 
robust operation. 
 The advantages of the UMP algorithm over the original 
message-passing algorithm are: 
- We do not need complex mathematical functions nor 

in check nodes nor in bit nodes such as tanh, which 
would require for instance many table lookups.  

- In a check node, e.g. for R=0.9, all K=30 output 
messages can be derived from just 3 numbers which 
are part of what we call a dataset, viz. a minimum, a 
one-but-minimum and an index; this reduces the 
amount of evaluations of formulas needed 
significantly.  

 For rate R=0.9, storing K=30 input messages per check 
node saves roughly a factor of 10 in memory space when 
we only store those 3 numbers. The details are explained 
in Section 4.2. However, such a reduction of the required 
amount of memory for the right nodes would then make 
the total left node storage requirement dominate the total 
storage requirement.  
 Our key idea is to work towards an architecture with a 
computational kernel that elaborates the old and the new 
running state information of the decoding process. These 
informations are captured in terms of old and new running 
versions of those 3 numbers per check node to achieve 
substantial memory savings. First we have reformulated 
the processing from an alternation of left-to-right and 
right-to-left half iterations with e.g. old algorithm state 
information in the left nodes and new algorithm state 
information in the right nodes (or vice versa) to a situation 
where of the aforementioned 3 numbers for all check 
nodes there is an old version (input to the calculations) 
and new version (output of the calculations). This will 
make all processing right-to-left-to-right in one step, so 
that the algorithm becomes entirely right node (i.e. check 
node) centric.  
 
4.1 The UMP algorithm 
 
The pseudo code of the UMP algorithm [4,5] is given 

below. The algorithm works with log likelihood ratio 
messages alternatively flowing from all bit nodes over all 
arcs to all check nodes, and back. Note that in the pseudo 
code below each bit node the corresponding channel 
output LLR is also treated as an incoming arc to that 
node. 
 
"FOR 40 ITERATIONS DO" 
 "FOR ALL BIT NODES DO" 
 "FOR EACH INCOMING ARC X" 
 "SUM ALL INCOMING LLRs EXCEPT OVER X" 
 "SEND THE RESULT BACK OVER X" 
 "NEXT ARC" 
 "NEXT BIT NODE" 
 "FOR ALL CHECK NODES DO" 
 "FOR EACH INCOMING ARC X" 

"TAKE THE ABS MINIMUM OF THE INCOMING 
LLRs EXCEPT OVER X" 

“TAKE THE XOR OF THE INCOMING LLRs EXCEPT 
OVER X” 

 "SEND THE RESULT BACK OVER X" 
 "NEXT ARC" 

 "NEXT CHECK NODE" 
"NEXT ITERATION" 
 
4.2 Hardware implications 
 
With the UMP algorithm, one check node operation 

consists of the following. For each of the K bit nodes to 
which it is connected, 
1. Compute the exclusive or (xor) of all hard bits output 

by the connected bit nodes (as determined by the 
signs of the output log-likelihood ratios), except the j-
th one (j=1,2,...,K).

2. Compute the minimum of all K absolute values of the 
log-likelihood ratios of the bit nodes to which the 
check node is connected, except the j-th one 
(j=1,2,...,K).

A cheap way in hardware to compute all the K xor 
results is to compute the xor of all K input bits. The xor of 
all K input bits except one can be calculated by taking the 
xor of the aforementioned total and taking the xor with 
the input bit that is to be expected.  
 With respect to the K minima that have to be computed 
during a check node operation, we observe the following 
[4]. Consider the j-th input to the check node, and assume 
that its absolute value of the log-likelihood ratio is not the 
minimum of all K such inputs. Then, the minimum value 
of all K inputs except the j-th one will equal the overall 
minimum of the K values. In case, the j-th log-likelihood 
ratio does have the absolute minimum value of all K
inputs, the minimum of the K inputs except the j-th one 
equals the second-to-minimum value. On the K input 
LLRs to a given check node, we take the minima of all 
numbers except one, where we first omit the first one, 
then the second one, then the third one, etcetera… Thus, 
in a check node the set of minima of K values, except the 
j-th one, can be stored using only 3 values (a dataset)
instead of K=30:
• The overall minimum value, 
• The overall one-but-minimum value, 
• The index j for which the minimum input value 

occurs. 
 Now that all storage has been moved into the check 
nodes, a reduction in the storage requirement of roughly a 
factor of 10 has been obtained. Unfortunately, the sign 
information cannot be compressed, and therefore the 
memory of an architecture that contains 10,000 bit nodes 
is reduced to 1,000 datasets (equal to the number of check 
nodes for R=0.9 and n=10,000) and 30,000 sign bits, 
randomly connected to each other. For our investigation 
we have used 4 bits for the minimum and 4 for the one-
but-minimum, 5 bits the address of the minimum and 30 
bits for the signs; thus the total memory requirement for 
our algorithm is 43,000 flip-flops, instead of the initial 
150,000.   
 

5. Loop Restructuring of the UMP Algorithm 
 
A minimal kernel of computation has been extracted 

from the UMP algorithm. The time folded architecture for 
the LDPC decoders, implements the algorithm processing 
the kernel computation in a linear order, see Figure 2. The 
computational kernel is the union of one bit node and part 
of the three check nodes connected to it. Note that in 
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every step of every iteration, the minimal kernel of 
computation needs the previous values and the new values 
as shown in Figure 3.  
 

Figure 3 LDPC algorithm: the computational kernel 
works on the old values from the previous iteration and on 
the new running values 

Every bit node is processed once per iteration together 
with the 3 check nodes, to which it is connected. As a 
result, every check node is called K=30 times per 
iteration. Our main contribution consists of calculating the 
minimum and one-but minimum using these K=30 calls. 
During every call a running minimum and one-but-
minimum are updated. This restructuring leads to the next 
pseudo code: 
 
"FOR 40 ITERATIONS DO" 
 "FOR ALL BIT NODES DO" 
 “CALCULATE THE OUTPUT MESSAGES FROM  
 THE 3 CONNECTED CHECK NODES1 “

“DO RUNNING CHECK NODE UPDATES ON  
 THE 3 CHECK NODES  
 “NEXT BIT NODES” 
"NEXT ITERATION"

Working in a serial way the LDPC decoder needs to feed 
the computational kernel with 3 datasets and the soft input 
every cycle (see Figure 5). The dataset, shown in Figure 
4, is divided in the running values and the previous values 
of the minimum, the one-but-minimum, and the address 
of the minimum; the addresses of the bit node for the 
check node which is being processed and sign database. 
Furthermore, the signs of the K=30 bit nodes connected to 
each check node, the total xor of all the signs from the 
previous iteration, the running total xor are in this dataset. 
After finishing an iteration, the running values becomes 
the old values and a new iteration starts until the complete 
decoding sequence is executed. To perform one iteration, 
the time folded architecture needs a number of cycles 
equal to the number of the bit nodes, thus the throughput 
of this architecture will be equal to: 
 

erationsNumberOfIt
encyClockFrequThroughput =

Working at the same frequency of a full parallel 
architecture, it is number of bit nodes times slower. Note 
that, the clock frequency is expected to be higher than the 
frequency of a fully parallel architecture. 

1 using old min/one-but/address 

Figure 4 Datasets of the check nodes 

 

6. Time Folded Architecture 
 
The time folded architecture is composed of a prefetcher, 

the computation kernel, a memory bank, the µRom and a 
state machine with a program counter that controls the 
architecture. The schematic of the architecture is shown in 
Figure 5. A memory bank is required to store all the 
datasets of the check node. The prefetcher performs a 
statically scheduled cache for the datasets required by the 
computational kernel every cycle. It receives the control 
signals from the µRom memory. The µRom memory also 
gives the write or read command and address to the 
memory bank. The kernel of computation receives the 
datasets from the prefetcher and the channel output 
LLR’s, to perform all the decoding operations. Its outputs 
are the updated datasets for the prefetcher and a serial 
output, which gives the decoded bit. To feed the soft 
inputs to the time folded architecture a single-port 
memory can be used with the address port connected to 
the program counter. 
 

Figure 5 Schematic of the Time folded Architecture 

 
To get the datasets to the datapath, we use memory banks 
and a prefetcher, which is explained in the next section. 
 
6.1 Prefetcher and Memory Banks 
 
The prefetcher is required for buffering, prefetching, and 

writing back into the memory banks the datasets required 
by the computational kernel. From an analysis of the 
communication requirements we can see that 3 datasets 
are read and 3 datasets are written every clock cycle. 
However when examining the retrieved datasets, it can be 
observed that for one of the ports, each dataset can be 
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used for 30 consecutive cycles. This implies that the 
datasets can stay in the prefetcher and do not have to be 
saved and retrieved from the memories. As a result, every 
clock cycle an average of 2 read and 2 write operations 
are required. To obtain this bandwidth we use 4 single 
port memory banks because their area is about half 
compared to a dual-port memory with the same storage 
capacity. 
 Due to the random interconnection structure, there are 
always conflicts on reading and writing datasets to the 
memories. We have written a program to solve these 
conflicts and this program uses three techniques, namely: 

• Prefetching; 
• Delayed writeback; 
• Keeping datasets in the prefetcher; 

Furthermore it uses the next levels of freedom: 
• Allocation of datasets to the memory banks, 

where each check node has K datasets: one for 
each time it is called; 

• Order of the connection table; 
 First of all, the connection table is sorted to reduce the 
resources required for all the prefetcher’s operations. A 
heuristic is used to find a good schedule requiring 
adequate prefetcher and memory sizes. In general, the 
more an updated dataset is reused in consecutive or close-
by cycles, the smaller the size of the prefetcher and 
memory banks are. After sorting, the program greedily 
runs through the list of datasets to be scheduled, trying to 
find a good match between prefetching and delayed write 
back on an arbitrary memory bank. If no solution for 
passing it to memory is found, the datasets are 
automatically stored in the prefetcher. 
 Special attention has been given to the initialisation and 
closure phase of the schedule, to allow looping: the tail 
must fit the head (the completed datasets of every check 
node has to be in the same address and memory bank so 
that the same schedule can be used in the next iterations). 
 After a successful run of the program, address 
assignment of the datasets in the memory bank must be 
done. The solution to this problem is provided by an 
algorithm described in [6], providing a near optimum 
solution (at most one memory location above the 
optimum) for general cases. For our specific case, the 
algorithm gives the optimum result in term of minimum 
number of memory locations.  
 The program produces micro code, which is put into the 
µRom table. Note that, in principle, from one 
interconnection table to the other, only the µRom contents 
needs to be updated. Offcourse for specific cases the 
prefetcher register-files sizes are different, but for these, a 
“worst case” size can be specified. Results show that the 
size of the register-files differ marginally.  
 The implemented time folded architecture has a block 
size of 9300 bit nodes, uses 4 Rams with 256 addresses by 
63 bits word, and a ROM with 9305 addresses2 with 103 
bits. 
 
6.2 Synthesis, Floor-planning and Results 
 
The technology that has been used for implementation of 

the layout is a 0.13µm CMOS process with 6 metal layers. 

2 A latency of 5 clock cycle is required between two 
consecutive iterations 

A clock period of 10ns has been selected for area 
dominated synthesis, and a period of 3ns for the delay 
dominated synthesis. The results of the synthesis are 
shown in the table below and a plot of the layout is shown 
in Figure 6. 
 

Time folded 
Architecture 

Freq. (MHz) Area (mm2) Row Util. 

Area 147 1.12 70 
Delay 211 1.14 70 

Figure 6 Layout of the time-folded architecture 

 The best trade-off is the synthesis by default where a 
2.9% of increase in area implies a gain of 43.5% in clock 
frequency. To synthesise the architecture, about 300 Mb 
of memory was required to complete the flow. To 
increase the throughput of the architecture we can use 
more time folded architectures working in parallel (named 
tiles). One novelty of the proposed architecture is that 
only one µRom is required to control the all tiles. This is 
because during each iteration the operations in different 
tiles are the same. From the area diagram graphics shown 
in Figure 7 and Figure 8 we observed that for the time 
folded architecture almost half of the area is occupied by 
this µROM memory, while using more tiles in parallel the 
µROM memory area becomes negligible. A schematic of 
such architecture is shown in Figure 9. The area of LDPC 
decoder with a throughput of 300 Mb/s is approximately 
36 mm2 and requires 57 tiles. 

 
6.3 Comparison 
 
Comparing the time folded architecture with a linear 

extrapolation of a full parallel implementation3, we can 
see that working on the same block (9300), the area of the 
full parallel architecture will be more than 94 mm2,
against 36 mm2. Furthermore we can compare our time 
folded architecture with [2]. For a 1020 block length, bit 
rate 0.5 at a throughput or 1 Gbps, our architecture will 
require 190 tiles in parallel. Furthermore, one ROM of 
1025 addresses by 93 bits and in every tile 4 RAMs of 32 
addresses by 33 bits are needed. The area of our time 

3 A “direct” or “flat” implementation is not possible and 
therefore a best case linear extrapolation is taken 
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folded architecture is smaller than [2]. Moreover it is 
scalable and does not need a new floorplan for a different 
connection table.   
 

Blanksby and Howland architecture 52.5 mm2

0.16µm CMOS  
Estimation of Time folded 
architecture @ 1GHz with block-
length 1020 

25.5 mm2 

0.13µm CMOS 

Note again that the LDPC algorithm works better with 
block lengths bigger than 4k and [2] has already routing 
problems for a 1k block length architecture. This is 
expressed in their published average wire-length of 3 mm 
on 0.16µm CMOS technology. 
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Figure 7 Area distribution of the time folded architecture 

69.2%

4.1%

25.1%

1.5%

Ram

Rom

 
Figure 8 Area distribution for 57 tiles architecture. 

 
7. Recommendations 
 
Further optimizations are still possible, such as the use 

of pipeline stages in the datapath. Since the datapath 
occupies only 2% of the area in a single tile, the insertion 
of a pipeline stage in it, will increase its area but will have 
a negligible effect on the total area, while the clock 
frequency is expected to increase. Moreover, inserting a 
pipeline stage to increase the frequency, fewer tiles will 
be required to reach the same throughput. This will result 
in a considerable reduction of the chip’s area. 

 Also, further investigations in finding better scheduling 
algorithms are still possible. 
 

8. Conclusions 
 
We have projected, investigated and implemented a 

time-folded architecture for an LDPC decoder. Depending 
on the throughput requested, more architecture-tiles can 
be connected in parallel, resulting in a fully scalable 
architecture. The architecture is capable to meet our needs 
of high performance: good bit error rate because of 
random code structure and longer codeword lengths as 
well as high throughput. Hence the architecture proposed 
in this article provides a lot of flexibility that can be 
tailored at specific needs with efficient area figures and 
speed. 
 

Figure 9 Schematic of the tiled architecture. 
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