
1

A Generic RTOS Model for Real-time Systems Simulation with SystemC

R. Le Moigne, O. Pasquier, J-P. Calvez
 Polytech, University of Nantes, France

rocco.lemoigne@polytech.univ-nantes.fr

Abstract

The main difficulties in designing real-time systems
are related to time constraints: if an action is performed
too late, it is considered as a fault (with different levels
of criticism). Designers need to use a solution that fully
supports timing constraints and enables them to simulate
early on the design process a real-time system. One of
the main difficulties in designing HW/SW systems resides
in studying the effect of serializing tasks on processors
running a Real-Time Operating System (RTOS). In this
paper, we present a generic model of RTOS based on
SystemC. It allows assessing real-time performances and
the influence of scheduling according to RTOS
properties such as scheduling policy, context-switch time
and scheduling latency.

1. Introduction and objective

A real-time system is characterized by its timing
constraints in a sense that results or actions must be
provided within a specific time window otherwise they are
considered to be wrong, whatever their value is [10].
Beyond the correctness of algorithms, checking early on
the design process the system’s time-related behavior and
constraints is essential.

In this paper, we present a solution for modeling and
simulating real-time systems including software and
hardware parts (co-simulation) with SystemC. Our
solution is based on a set of generic C++ classes that
model a RTOS.

The choice for working with a System Level Design
Language (SLDL) (like SystemC or SpecC) is important
for ensuring portability of the model. We chose to work
on SystemC [3] because it emerges as the industry
standard for transactional-level modeling and system-level
design, and co-simulation of mixed HW/SW systems.
However, our solution can easily be adapted to another
SLDL language like SpecC for example.

As a reminder, SystemC is a language and a
simulation kernel based on C++ that allows the

representation of software and hardware components and
communications at different abstraction levels. It appears
as a well-suited answer to the increase of systems’ design
complexity, by providing an executable model early on
the design process.

Since its introduction in 1999, the capabilities of
SystemC are evolving; SystemC 1.x has similar modeling
capabilities as VHDL and Verilog -intended for system
design at the RTL level-, whereas the most recent versions
-2.0 and 2.0.1- allow for modeling at the system level [3].
However, up to now, SystemC does not allow describing
and simulating real-time applications using a Real Time
Operating System (RTOS) dealing with the serialization
of tasks on a processor. Therefore, our objective is
defining an accurate RTOS model to allow designers of
real-time systems to validate their concepts with SystemC.
Since there are numerous scheduling policies used by
designers, this model should be also generic.

This document is organized as follows. First, we
describe the problems to be solved and related solution.
Then, we present the main features of our RTOS model.
Next, we present two different techniques to implement a
RTOS model. The last part presents experiments and
results.

2. Problems to be solved and related solution

Generally speaking, a real-time system is composed of
a set of tasks, each running a sequential algorithm, and
communicating between them with high-level
communication mechanisms. With most RTOS, these
communication mechanisms are:

- Synchronization (based on events or semaphores)
- Message passing (based on message queues);
- Data sharing (based on global data protected by

mutual exclusion).

Our work is based on the MCSE methodology [5] and
its functional model which describes a system by a set of
functions (e.g. tasks) and relations between them. These

1530-1591/04 $20.00 (c) 2004 IEEE

2

relations, similar to those of a RTOS, can be of three
kinds:

- Event: it is used to synchronize functions. Several
policies are used to model different behaviors:
fugitive (no memorization like SystemC sc_event),
boolean (one level of memorization) or counter.

- Message queue: it implements a
producer/consumer type of relation. Its message
capacity is a parameter.

- Shared variable: it exchanges data without any
synchronization except mutual exclusion.

We use the MCSE functional model for system
modeling because it describes at a high abstraction level
all features that can be found in a real-time system.
However, this work is not specifically linked to this
model, and can be applied to any other high level
abstraction model.

Simulation of a system at a high abstraction level
becomes very important for early design-space
exploration. A first level of difficulty resides in simulating
the behavior of the system without considering the effect
of implementing tasks on processors. This kind of
simulation can be easily achieved with SystemC 2.0 and a
set of extended classes for example [8]. But this only
allows verifying the correctness of the system’s behavior
and algorithms, because it does not take into account the
influence of implementation choices or physical
constraints (processor, RTOS, communications network
…). However, it is essential to take into account the
implementation early on the design process to explore
efficiently the design space. For this purpose, it is
necessary to simulate the system according to the platform
on which it runs (processor, DSP, FPGA …). A SLDL
can simulate easily concurrent behaviors, but not the
effect of task serialization on a processor when using a
RTOS.

In this paper we focus on modeling and simulating the
effect of a RTOS on the system’s behavior. The objective
is to provide results to help designers in their design-
space exploration and timing-constraints verification as
early as possible on the design process.

Different techniques have been proposed for RTOS
simulation. TIMA’s team proposes a first technique that
consists in using a simulator dedicated to a specific RTOS
[2] like WindRiver’s VxSim® for VxWorks® [9]. The
produced results are very precise, since the simulator is
designed to perfectly model the RTOS, but they are also
fully linked to a specific RTOS and its API. Thus, the
design-space exploration is limited to the possibilities of
the selected RTOS.

To avoid this limitation, a highly abstract model of a
RTOS can be developed. In [11], such a model (called
SoCOS) is presented, but it is based on a specific

simulation engine. With this solution, it is difficult to
synchronize the simulation of the RTOS part with the
simulation of hardware part which may run on another
simulation engine (SystemC for example). We presented
the same idea in [7].

Another solution consists in developing a RTOS
model on top of a SLDL. Gajski’s team proposes in [1] a
RTOS model which is developed for SpecC. This kind of
model allows obtaining results on dynamic real-time
behavior without being influenced by technical choices.
But for us, this model is related to SpecC and does not
model RTOS preemption with enough time accuracy since
its precision depends on the model’s clock accuracy. The
solution we present in this paper is close to Gajski’s team
proposal [1] but it uses SystemC and provides a time-
accurate preemption model of RTOS independent from
any clock considerations. Our solution is also already
integrated into a global tool [12] for performance analysis
developed and sold by CoFluent Design. It can be
considered as a mixture of the virtual OS and aggregate
timed model of OS also proposed by TIMA in [4].

In the next section, we present a description of the
RTOS behavior and then, the model we propose.

3. The RTOS model

A RTOS is not only defined by its behavior
(scheduling algorithm), but also its timing properties, i.e.
contribution to the time evolution of a set of tasks. A
global system timing parameter is called the RTOS
overhead. In our solution we accurately model both the
RTOS behavior and its timing properties.

3.1 RTOS behavior modeling

The priority-based preemptive scheduling policy is
the most widely used, but there are many others [10] and
some are developed specifically for an application. At a
high abstraction level, we can characterize a RTOS
behavior by two parameters:

- The scheduling policy: it defines the RTOS
algorithm used to select the running task among
the ready tasks. It can be based on task priorities or
deadlines for example.

- The preemptive/non-preemptive mode. A
preemptive RTOS can suspend a running task
between two of its RTOS calls (hardware interrupt
occurrence for example). This parameter is very
important in RTOS modeling since it can delay or
not (non-preemptive) the consideration of external
events.

Our model considers these two parameters. Several
scheduling policies are implemented but since we

3

cannot implement all specific ones, designers can also
define their own policies by overloading the
SchedulingPolicy method of our Processor class.

While the scheduling policy is set at the simulation’s
start and cannot be dynamically changed, the
preemptive/non-preemptive mode can be changed
during the simulation. This enables to model critical
regions during which task preemption is not allowed.

3.2 RTOS timing modeling

The RTOS overhead may be neglected if it is very
much smaller than tasks’ durations. But it is not always
the case. RTOS overhead depends mainly on 3
parameters:

- The scheduling duration: it characterizes the time
spent by the RTOS to select a ready task. This
duration depends not only on the scheduling
algorithm, but also on the number of ready tasks
when the algorithm runs.

- The context-load duration: it characterizes the
time required by the RTOS to load the context of
the running task (processor registers).

- The context-save duration: it characterizes the
time required by the RTOS to copy the context of
the suspended task from the processor registers to
the memory.

In our model, these three parameters are modeled
and can be fixed or defined by a user formula computed
during the simulation according to the current state of
the simulated system (number of ready tasks for
example).

To summarize our solution, a system is modeled by a
set of C++ objects that inherit from the processor and
function classes defined in our model. Figure 1 illustrates
a part of the UML class diagram of our solution.

: Processor
: Function

: Function

sc_module

Processor Function-LocalProcessor
List + ReadyTaskQueue

+ Next
0..1

+ Elt : Function*
+ priority

<<virtual>>
SchedulingPolicy(…)

sc_event

+ TaskResume
+ TaskRun
+ TaskPreempt
+ TaskBlocked

- SchedulingDuration
- ContextLoadDuration
- ContextSaveDuration

: Function: Processor

RTOS model classes

System to simulate classes

SystemC classes

Figure 1 – UML class diagram.

To provide the SystemC code that models the system,
we have enhanced our SystemC code generator presented

in [8]. This code generator is able to automatically
provide an executable model including functions and
processors in a few seconds.

4. RTOS model implementation

First we present a task scheduling implementation
based on a thread that simulates the behavior of the
RTOS. For us, this first approach seemed natural in its
principle. After analyzing the pros and cons of this first
solution, we finally present a second approach based on
the definition of a set of RTOS procedures called by tasks
as they really do with a real RTOS.

Before presenting our approaches, let us remind that
each task running on a RTOS can be in only one of the
following states at each moment [10]:

- Waiting: waiting for a synchronization;
- Running: running on the processor;
- Ready: waiting to be selected by the RTOS to

enter the Running state.

4.1 Task scheduling using a dedicated thread

For our first solution, the behavior of each task
implemented on a processor is implemented by a SystemC
thread. The behavior of the RTOS is also modeled by a
SystemC thread. Each task is implemented by a C++
object which uses four SystemC events (TaskResume,
TaskRun, TaskPreempt and TaskBlocked) which the
thread can wait on according to the task’s current state.

The RTOS thread waits on a SystemC event
(RTKRun). The simulation technique consists in
controlling the evolution of all these threads by using the
SystemC events so that at any moment only one thread is
running. The time evolution of the system and RTOS is
based on a delay procedure similar to the one presented
by TIMA’s laboratory [2]. Each task in the Ready state is
referenced in the RTOS ReadyTaskQueue.

Ready

Running

Waiting

Running

Waiting

TaskRun(T1)

TaskPreempt(T1)

TaskBlocked(T1)
RTKRun

TaskResume(T1)
RTKRun

RTKRun
TaskPreempt(Ti)

RTKBlocked
TaskRun(Tj)

Task1
Task2

TaskN

Task
 th

rea
ds

RTOS thread

Figure 2 – Task states and RTOS states.

4

Figure 2 presents the possible different states of a task
and of the RTOS and the synchronization links between
these threads. During the simulation, system tasks notify
the RTOS thread when they enter or leave the Waiting
state. Then the RTOS thread runs the scheduling
algorithm and decides what task in its ReadyTaskQueue
must be activated and then notifies it by its TaskRun
event. Figure 3 shows an example of thread switching to
simulate two tasks running on a RTOS.

t

Threads

RTOS

Task1

Task2

external event
(HW interrupt)

priority

Task1 waits for an
external event

Figure 3 – Task scheduling with a RTOS thread.

4.2 Task scheduling using procedure calls

Our first solution implies many SystemC thread
switches (between tasks and RTOS). This has a huge
effect on the simulation duration. So we optimize the
RTOS model implementation by removing the RTOS
thread, without altering the model’s possibilities. This
solution is close to the real implementation of a RTOS
which is based on a set of procedures (called primitives)
[10].

Ready

Running

Waiting
TaskRun(T1)

TaskPreempt(T1)
TaskIsPreempted()

TaskBlocked(T1)
TaskIsBlocked()

TaskResume(T1)
TaskIsReady()

Task1
Task2

TaskN

Task
 th

rea
ds

TaskPreempt(Ti)

TaskRun(Ti)

TaskIsReady()

Figure 4 – Integration of the RTOS behavior into the
behavior of tasks state transitions.

In this second solution, we use one thread per task; the
RTOS is implemented by a C++ object with a set of
methods, but without using a thread (see Figure 4). Each
task notifies the other ones by using methods of the RTOS
object.

The RTOS object has three main methods used by the
tasks:

- TaskIsReady(): it is called when the task enters
the Ready state. If the scheduling policy allows
the ready task to preempt the running one, then
the ready task sends the TaskPreempt event to
the running task.

- TaskIsBlocked(): it is called by a task that enters
the Waiting state. The scheduling algorithm must
select another task to run and notifies it with the
TaskRun event.

- TaskIsPreempted(): this method is called by the
running task when receiving the TaskPreempt
event. It computes the remaining time for
completing the current operation.

t

Threads

RTOS

Task1

Task2

HW interrupt

RTOS

TaskContextSave
Scheduling

TaskContextLoad TaskContextSave

Scheduling

TaskContextLoad

priority

Figure 5 – Task scheduling without a RTOS thread.

Figure 5 shows the thread’s behaviors for this solution.
We can observe that fewer thread switches occur than in
the previous solution and that the RTOS algorithm is
executed by the thread of the running task which becomes
blocked and by the thread of the task which was awaked.
Figure 5 also presents the RTOS overhead decomposition
in three basic times which correspond to the context save,
scheduling and context load operations of a RTOS.
To conclude on these two approaches, we think that the
use of a thread dedicated to the task scheduling makes the
modeling of some scheduling policies easier, like
modeling the Time Sharing algorithm for example.
However, this approach increases the simulation duration
since there is a context switch for each call to the
scheduler and each return, what is not the case when we
use procedure calls. In the case of using procedure calls,
the only thread switches are those of the tasks of the
system we’re designing that occur.

5

5. Experiments and results

We developed a tool [8][12] that allows users to
capture the model of real-time systems, and obtain
automatically an equivalent SystemC model including our
RTOS model for its behavioral verification. Results can
be displayed in different ways [6][8]. The most interesting
diagram that let users observe the influence of the RTOS
is the Timeline chart.

A TimeLine chart displays the task’s states and
interactions with various types of relations (read, write,
signal…). A vertical arrow represents a task accessing a
communications link and the arrow style informs on the
kind of access (read, write). Each horizontal line
represents the state of each task with a different style and
color (Creation, Running, Destruction, Waiting for
processor availability (Ready), Waiting for a
synchronization (Waiting), Waiting for resource).

From such a display tool we can get much information
such as synchronization sequences between tasks and the
time spent by a task waiting for synchronization or for
mutual exclusion. Therefore, from a TimeLine chart we
can extract performance results that are useful to define
the best architecture to implement the application. On a
TimeLine chart, we can make also time measurements to
verify time constraints of the system. As an example, we
can measure the time spent between an external event and
the system’s reaction.

Figure 6 presents a part of a TimeLine chart produced
by our tool. To make understanding easier, we added on
the figure references and time durations, as these
measurements can be easily done with our tool.

10µs

10µs

10µs

15µs 5µs

10µs

(Priority = 5)

(Priority = 3)

(Priority = 2)

(1)

(2)

10µs

(a)

(b) (c)

Figure 6 – Example of a TimeLine result.

The system is composed of a hardware task named
Clock and of three software tasks named Function_1,
Function_2 and Function_3 running on the same

Processor. Here, tasks are scheduled by priority-based
preemptive scheduling. First, we can observe the
scheduling of the tasks at the beginning of the simulation:
Function_1, Function_2 and Function_3 are executed
sequentially. Next, we can see Function_1 preempting
Function_3. On (1), Clock notifies the event Clk and so
awakes Function_1. Then Function_1 preempts
Function_3 and starts its processing. During its execution,
Function_1 sends the Event_1 event (2) and awakes
Function_2. Function_2 does not preempt Function_1
because it has a lower priority. When Function_1 ends,
Function_2 starts its processing. Finally, when
Function_2 ends, Function_3 resumes its execution where
it was preempted. From this display, we can observe also
the RTOS overheads. Here, we have defined a RTOS that
has a SchedulingDuration, a TaskContextLoad and a
TaskContextLoad that all equal to 5µs. Then, we can
observe the overhead duration when a task ends and when
a task is resumed (a), when a task is preempted (b) or
when a task is not preempted (c).

(1)

(2)

(3)

Figure 7 – Example of mutual exclusion blocking.

Based on the simulation of the same application
presented before, figure 7 presents a blocking mutual
exclusion situation. On (1), Function_3 is preempted by
Function_1 during a read operation of the SharedVar_1
shared variable. On (2), Function_2 is blocked, waiting
for the SharedVar_1 resource. Then Function_3 resumes
its execution after an overhead duration. On (3),
Function_3 releases the SharedVar_1 resource and is
preempted by Function_2 which has a higher priority.

This “priority inversion” problem can be avoided by
disabling preemption during access to shared data [10].
With our RTOS model, this behavior can be modeled.
Designers can easily check the need or benefit of such a
solution for their system.

6

The timeline display tool allows a detailed analysis of
the behavior of a real-time system, but it is not easy to get
a global view on the system. We can provide statistics for
the whole simulation from a global analysis of the
system’s simulation.

(1)
(2)

(3)

(4)

Figure 8 – Example of statistics from a TimeLine.

Figure 8 presents an example of statistic results
obtained for the application we have previously presented.
We can observe the activity ratio of each task on a
processor (1), their preempted ratio (2) and the ratio when
waiting on resources (mutual exclusion) (3). We can also
get statistics concerning the communications like their
utilization ratio (4).

All these results are presented for a very simple
system in this paper. We have also used our simulation
model and display tools to explore the design space of a
more complex application such as a video MPEG-2
compressing and decompressing SoC. The system is
composed of 18 tasks implemented on six processors,
three of them are software processors with a RTOS
model.

6. Conclusion and future work

In this paper, we propose a generic RTOS model for
simulation of real-time systems at a high abstraction level
with SystemC. This model is implemented as a set of C++
classes which run on top of the SystemC 2.0 simulation
engine of and does not require any modification in the
language. This solution allows co-simulating with
SystemC hardware and software parts, including our
RTOS model and application tasks.

Compared to other existing models, our model allows
an accurate RTOS time representation based on three
parameters (context load and save durations and
scheduling algorithm duration). They allow to analyze the
effect of processor change (context load and save
durations) and of RTOS change (scheduling algorithm
duration) early in the design space exploration. Our model

also accurately depicts task preemption by a hardware
event without adding any delay due to simulation
technique.

Thus, it is very easy to explore the design space of
real-time systems implemented on SoC composed of
several processors and FPGA and obtain accurate results.
Our solution is already implemented and available in a
commercial product named CoFluent Studio™ [12].

Our technique is close to the real implementation of a
multitask application running on a RTOS. This approach
has been selected for simulation efficiency reasons, but
also to ease software generation for a final
implementation using commercial RTOS. This software
generation is a goal of our future work. Another
improvement we can imagine now is automatic
verification of timing constraints by simulation after
setting these constraints in the initial system model.

7. References

[1] A Gerstlauer, H Yu and D D Gajski, UC Irvine, US,
“RTOS Modeling for System Level Design”, DATE 2003

[2] S Yoo, I Bacivarov, A Bouchhima, Y Paviot, and A A
Jerraya, TIMA Laboratory, FR, “Building Fast and
Accurate SW Simulation Models Based on Hardware
Abstraction Layer and Simulation Environment
Abstraction Layer”, DATE 2003

[3] "Functional Specification for SystemC 2.0", available at
www.systemc.org

[4] S Yoo, G Nicolescu, L Gauthier, A A Jerraya, TIMA
Laboratory, FR, “Automatic generation of fast timed
simulation models for operating systems in SoC Design”,
IEEE 2002

[5] J.P. Calvez, Embedded Real-Time Systems. A
Specification and Design Methodology, John Wiley, 670
pages, 1993

[6] J.P. Calvez, O. Pasquier, Performance Monitoring and
Assessment of Embedded Hw/Sw Systems. In "Design
Automation for Embedded Systems", Vol 2, Kluwer
Academic Publishers, 1997

[7] O. Pasquier , J-P. Calvez, “An object-base executable
model for simulation of real-time Hw/Sw systems”,
Proceedings of DATE 99, March 1999, Munich.

[8] R. Le Moigne, O. Pasquier, J-P. Calvez, “A Graphical
Tool for System Level Modeling and Verification with
SystemC”, FDL’ 03, September 2003, Frankfurt.

[9] VxWorks® and Wind River Systems products available at
www.windriver.com.

[10] G. C.Buttazzo, "Hard Real-Time Computing Systems",
Kluwer Academic Publishers 2002, ISBN 0-7923-9994-3

[11] D. Desmet, D. Verkerst, H. De Man, "Operating System
Based Software Generation for System On Chip" in DAC,
June 2000.

[12] CoFluent StudioTM, available at www.cofluentdesign.com.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

