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Abstract be decompressed independently with little or without in-

formation from others. When execution flow changes, de-
We propose a new variable-sized-block method for VLIW compression could restart at new position without or with
code compression. Code compression traditionally works little penalty. Not all instructions could be the destina-
on fixed-sized blocks and its efficiency is limited by thelsmal tion of jump or branch, and the possible targets are deter-
block size. Branch blocks — instructions between two con-mined once the program is compiled. We defom@nch
secutive possible branch targets — provide larger blocks fo blocksas the instructions between two consecutive possible
code compression. We propose LZW-based algorithms tdoranch targets, and use them as basic compression blocks.
compress branch blocks. Our approach is fully adaptive Our benchmarks contain only 80.1 branch blocks in average
and generates coding table on-the-fly during compression(454 bytes in size). Compiler methods can be used to in-
and decompression. When encountering a branch target,crease the distance between branch targets. Since ths size i
the coding table is cleared to ensure correctness. Decom-much larger than the blocks used in previous work, we have
pression requires only a simple lookup and update whenmore freedom in choosing the compression algorithms.
necessary. Our method provides 8 bytes peak decompres- Our method uses LZW-style compression to create adap-
sion bandwidth and 1.82 bytes in average. Compared totive self-generating tables to avoid storing the decodig t
Huffman’s 1 byte and V2F's 13-bit peak performance, our ble, and would work on all embedded architectures. More-
methods have higher decoding bandwidth and comparableover, this method has the advantages of fast and parallel
compression ratio. Parallel decompression could also be decompression, which is suitable for VLIW architecture.
applied to our methods, which is more suitable for VLIW  This paper is organized as follows. Section 2 reviews
architecture. previous related work. Section 3 describes the general idea
of our approach. We introduce the LZW-based code com-
pression in section 4, and the selective code compression in
1. Introduction section 5. Experimental results on benchmarks for Texas
Instruments’ TMS320C6x VLIW processors are presented

Embedded systems are cost and space sensitive, ant Section 6.
memory is a large component of system cost. Code com-
pression is used to reduce code size in embedded systemg. Previous Work
It refers to compress the program off-line and decompress it
on-the-fly during execution. The idea was first proposed by  Wolfe and Chanin proposed the first code compression
Wolfe and Chanin in the early 90’s [1], and many researchesscheme [1], which used Huffman coding to compress MIPS
have been done to reduce the code size for RISC machineprograms. They use a Line Access Table (LAT) to map
[2, 3, 4, 5]. As instruction level parallelism (ILP) becomes compressed block addresses, and this method is inherited
the trend, a high-bandwidth instruction fetch mechanism is by most of later studies. Based on the same concept, IBM
required to supply multiple instructions per cycle. Under built a decompression core, called CodePack, for PowerPC
these circumstances, reducing the code size and providingt00 series [4]. As shown in Figure 1, compressed code is
fast decompression speed are both critical challenges westored in the external memory, and CodePack is placed be-
face when applying code compression on VLIW machines. tween memory and cache. Liao [2] and Lefurgy [3] replaced
This paper introduces branch-block based code compresfrequently used instruction groups into dictionary ersrie
sion. To ensure random accesses, previous work uses smahyhich make compressed code easy to be decoded. Lekatsas
equally-sized blocks as compression units; each bloclkdcoul and Wolf [5] proposed SAMC, a statistical scheme based on
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arithmetic coding and Markov model. All of these methods and Chanin’s idea of using a LAT to map the addresses [1]

targeted RISC architecture. into original instruction addresses. Instead of storing th
addresses of all cache lines, only those of branch targets ar
Power PC 40x oy needed, which gives us a much smaller LAT.
e Figure 3 shows the flow chart of our method. In both
Cache e e compression and decompression, the coding table is reset
Decoder Table if the incoming address is a branch target; otherwise, we
< ——— Bls 3 jyst keep on and update the table when necessary. Execu-
tion flow might change and the target address for branch
Figure 1. IBM CodePack for PowerPC. or jump is computed during runtime; however, locations of

possible targets are determined once the code compiled. We
Ishiura et al. split VLIW instructions into fields such that assume that we do note need random access to all instruc-

each field could be compressed optimally by using dictio- fiOns, but only ensure possible branch targets are accessi-
nary lookup scheme [6]. Nam et al. proposed a dictionary- Pl&. Compression methods like the Lempel-Ziv (LZ) family
based method by using isomorphism among VLIW instruc- 9IV& & good compression ratio with the requirement of long
tion words [7]. These two schemes targeted traditional teXts. Compression ratio (CR) is defined as compressed
VLIW architectures, with rigid instruction word formats ~C0de size over its original size. Blocks used by traditional
and lots of redundancy. code compression schemes are too small for the LZ family;
Larin and Conte were the first to apply code compres- large, variable-sized branch blocks give us more freedom to

sion schemes on modern VLIW with flexible instruction C¢hoose the compression algorithms.

formats [8]. They applied Huffman coding on an archi- When programs are runnjng, there is no problem to iden-
tecture similar to Intel/HP IA-64. Based on Tunstall cod- fify branch targets if execution flow changes. However, we

ing, Xie and Wolf proposed variable-to-fixed (V2F) com- need to find a way t.o distinguish branch targgts from oth-
pression, which used fixed-length codeword to represemers when mcrementlng the PC causes execution to cross a

variable-length data [10]. Prakash et al. constructed a ta-Plock boundary. One way is to maintain a list of branch

ble of frequently appeared code strings and use the indexta"gets, but the entries have to be compared every time an
along with the difference to compress the programs [12]. instruction is executed. The other way is to use a codeword

Xie also proposed the concept of profile-driven code com- S branch target indicator. An indicator is sent to the dutpu

pression [11], which used program profiles as one of the Pefore branch targets during compression. When the de-
compression constrains. compression engine sees an indicator, it will know that the

following instruction is a branch target.

. Our Approach .
3. Our Approa 4. L ZW-Based Code Compression
To explain our VLIW code compression method, we

will use the TI's TMS320C6x VLIW DSP [13], though Ziv-Lempel compression uses previously seen data to

compress incoming one [14]. The coding table need not

our method is applicable to other VLIW processors as well. . .
TMS processor gets a fetch packet (32 bytes) from cache be stored with the compressed file, and can be recreated on-
P 9 P y the-fly during decompression. The LZ family was not used

and separate the eight instructions into several executionfor code compression before because it lacks random ac-

packets. The instructions in the same execution packet are__ . .. .
cessibility and has poor performance when deals with small
parallel executable.

We use branch blocks as our compression unit. Programs
in the memory are compressed, and would be decompressed | \jomory |~ Decompression | | cache | Processor

on-the-fly when the branch blocks are needed. The cod- | emessscon Engine (OrgheiCode) (Orgnel ode)
ing table used is self-generated during run-timet. As-llus ﬁ
trated in Figure 2, The decompression engine could be put @

in two possible positions, pre-cache or post-cache. In the Memory || I-Cache | >Pecompression | processor
pre-cache structure, the timing overhead for decompnessio | (Cemressacat | = | (Gonpresses Gose nome (Orina Goce
could be hidden behind cache miss penalty; while post- ﬁ

cache has more area and power saving. Although LZW- ®

based methods could work on either case, post-cache struc-

ture would get more benefit due to our larger decompres-  Figure 2. Two possible code decompression
sion bandwidth. Compressed blocks would not be at the structures: (a) pre-cache; (b) post-cache.
same position as their original ones, so we borrow Wolfe




e — 4.2. Code Compression and Decompression

: l To apply LZW to code compression we use the byte as

\ Refresh:able N : our basic element. We have found that an initial table with
\—l—, [ Reat Goung Tetle } {"e’"“"“"'"g“""e} 256 entries is adequate. We generate a new entry per it-

Generee Dodort [ P — } | eration. During compression phase, the compressor would

Inicated by Codewerd find the longest phrase in the table, send the codeword to
R o — the output, and add the phrase with the next byte as a new

”"‘”T‘s"" entry. Once the table is full, the compressor would keep on

(2) Compression Engine (6) Decompression Engine using the existing table to compress upcoming data. When

a codeword is read from the memory, we first check if it is a

Figure 3. Flow chart of our method: (a) com- branch target. If yes, the engine would shift out the padding

pression; (b) decompression. from buffer, reset coding table, and restart decompresgion

a byte-aligned position. Otherwise, the decompressioa cor
would get a codeword, look it up, output the content, and
add the old phrase with the first element of next phrase as a

Index Phrase Derivation

0 a Initial new entry.

1 b Initial We propose two ways to handle the appearance of branch
g gg 8:2 targets. The first is to keep a separate list containing the
4 ba 1+a address of branch targets. Both the compressor and decom-
5 aba 3+a pressor have to compare current PC with the list. If a branch
6 abaa S5+a target is met, the process will restart with a initialized ta

ble. Since the list has to be compared each iteration, par-
allel comparators are needed, and would cost little degra-
dation on decompression. The second method uses an ex-
ception index to indicate branch targets. We could simply
blocks of data. The use of larger branch blocks makes itse the alll codeword to indicate the existence of branch
possible to take advantage of the well-compressed and faSttargets. The memory system in embedded system is often
decompressing LZW method, and apply it on code com- pyte addressed, so each branch block has to start at a byte-
pression. aligned position. If the compressed branch blocks is not
byte-aligned, several padding bits are necessary.

Codeword length and decoding bandwidth are two im-
portant parameters in our methods. LZW-based compres-
sion is a variable-to-fixed method. Fixed-length codeword
is used to represent variable-length phrases. The codeword

Lempel-Ziv-Welch (LZW) compression was modified . .
from Ziv-Lempel 78 by Welch [15]. Initially, the LZW cod- h_as to be at Iegst 9 bits long, and would determine the table
. : . size exponentially. The larger the table, the more phrases
ing table has all the possible elements and phrases (séries 0 . . )
. : could be represented, which yield better compression re-
elements) would be added during runtime. The compressor
sult. However, we also use a longer codeword to represent

would search for the longest phrase in the table, output the8-bit basic elements. In the worst case, if none or only few

index, and add the phrase with the next element as a new .

.~ repeated phrases occur, we might have to use one-element

table entry. Suppose we have 2 elements a, b, and the input . .

7 N o codewords most of the time. This often happens when the

sequence is "aabababaaa’. At the beginning, the longest o . . )

oy . o source file is not big enough. The other adjustable feature is
phrase is "a”, so "0” would be generated, and "aa” would

be added in entry 2. As compression goes on, the Outputthe decompression bandwidth. From our simulation results,

; o o .
would be "001352", and the table would look like Table 1. :gezgobmg ssgﬁ]r;éiﬂg 2:2?;‘;1:1"3;&3? \;\ggrzsi'sfrli?qr:;a?l
When decompressor got the first "0, it would decode it as yies. g Y

». However, no entry would be generated, since it has dependent on the bandwidth, 8-byte wide decoding table

g ) .
no idea what the next codeword is. "aa” could be added would be the desired choice.

only after the next codeword arrives. If the newly generated ) .

phrase were used, decompressor would not have that coded. Selective Code Compression

word in its table at that moment; however, this codeword

could still be decoded as the previous phrase plus its own In this section we present a modified algorithm, selective
first element. compression, with better compression ratio and even higher

Table 1. Coding table for LZW example.

4.1. LZW Data Compression



word to indicate the branch targets. Experimental results
Compression | Compressed show that only blocks with size 32, 64 or 96 bytes could be
Code left uncompressed. We could encode these situations along
with the methods into 3 bits. These three bits could also be
used for branch target list. The average compression ratio
Figure 4. Block diagram of selective compres- we could get by using MCSSC is 76.8%, which is about
sion. 6.3% better than 9-bit LZW.
We proposeDynamic LZWto ease the penalty caused
by longer codewords. Since only one codeword is gener-

. : . ated per iteration, in the first 256 iterations, only the first
decompression bandwidth. The coding tables generated b¥512 ch)Jdes might be used: and only 1024 codes )ére used in

different codeword length for the same branch block sharethe following 512 iterations. We could use 9 bits to repre-

exact the same entries in the front part. If the block is too . . . ;
small to fill up the smallest 9-bit table, there would be no sent the codes in the first 256 iterations, and so on. We ap-
' ply dynamic LZW on both MTUSC and MCSSC, and the

benefit to use more bits to encode this block. On the otherCompression ratio we get is 75.8% and 75.2% respectively
hand, longer codeword compress better in the larger blocks.WhiCh is almost 8% better than 9-bit LZW.

i 0,
We studied our benchmarks and found out that only 12.8% Although we use four different codeword lengths in se-

of the branch blocks could use up all the entries in 9-bit lective compression, only one 12-bit LZW decompression
table, and only 1% could fill up the 12-bit table. This gives core with dispatching logic is enough for all of them. When

us the inspiration to apply different compression methods L . . S
b g P branch indicator is met, the coding table would be initial-

on different branch blocks. . . ; . .
We propose two selective compression schemes baseézed' a_nd the dispatching ng|c would reconﬁgu_re to the
on LZW compression. As shown in Figure 4, we collect upcoming method. Otherwise, the decompression engine
o ; ) . ’ . just performs its normal operations. For codewords shorter
the size, instruction and execution frequency, and other in Jus . .
q y than 12 bits, zeros would be padded in the front. The de-

formation for the branch blocks. The compression method .
is then determined based on the profile. Depends on theSompression core would use those padded codewords to ad-

. e . . dress the coding table. It also works the same way when
branch target identification policy used, we have different ! . X X .
freedom in choosing the code compression methods. dynamic LZW is used. The only difference is the dispatch-

. LS ; . ing logic has to count the number of incoming codewords,
We first try to minimize the size of the coding table used and change the padding when necessary. On the other hand
for each block. The shortest codeword is selected that all 9 P g Y- '

the phrases generated by the branch block could fit in thetEe glspa:]cg:ngkloguc woutld_ bypass the mstr(;;pn(ins \t/yhen
table. For example, when the block generates less than 2565 € branch block only contains uncompressed Instructions.
phrases, only 9-bit LZW is needed. As longer codeword is ) .

used, the size of the table grows exponentially. Our exper-6- Simulation Results

iments show that only few branch blocks really need larger

table. And the larger the table, the fewer the branch blocks. In this section, we present experimental results on
12-bit is chosen as the maximum codeword length for our benchmarks for TI's TMS320C6x VLIW processor. The

methods. benchmarks are collected from Tl and Mediabertuitp(//

If the branch target list is used, we use two bits in the Www.cs.ucla.edu/leec/mediabepcivhich are general em-
table entry to indicate the method for the certain branch bedded system applications with strong DSP component.
block (9-12 bit LZW). On the other hand, if the indicator The benchmarks are compiled usi@gde Composer Stu-
is used, two bits are needed before each branch blocks télio IDE from TI. The compression ratio, bandwidth, and
notify the method used. The average Compression ratio us.overhead of our methods are described, and the Comparison
ing minimum tab|e-u5age selective compresiMﬁ'USC) with some previous work is summarized in Table 2.
is 79.2%, which is about 3.5% better than 9-bit LZW.

The drawback of using MTUSC is there are only few Figure 5(a) shows the compression ratio for all the
repeated phrases in small blocks. Some of those com-benchmarks using 9 to 12-bit LZW. Longer codeword per-
pressed blocks use more bytes than original ordni- forms worse in most of the benchmarks. However, for the
mum code-size selective compresgMESSC) is proposed  huge files, 12-bit LZW gives better compression ratio. The
to ease this problem. We would first compress each branchfront part of the tables contain the same phrases for differ-
block using different codeword length LZW, and choose the ent codeword length. For benchmarks that couldn't fill up
smallest one (including the original code). By doing so, we a small table, longer codeword won't help. The effect of
ensure that each block has the minimum code size. large table could only be seen on huge benchmarks. In av-

When the block is left uncompressed, there is no code-erage, the compression ratio for 9 to 12-bit LZW is 83, 83,

Profiling
Source Branch —»
Program M Blocks )

_’ Method _’

Selection




Compression : ’ Parallel
Reference Target Method Ratio Hardware Overhead Decompression Bandwidth Decompression
. 1 byte per iteration,
Wolfe and Chanin [1] MIPS Huffman 73% Under 1 mn? 1303M/sec asynchronous logic [16] No
IBM [4] PowerPC | CodePack 60% Under 1 mn? 1 byte per iteration No
Lekatsas et al. [5] MIPS SAMC 57% 4k table + control logic Not available No
Xie etal [9, 10] F2v 65% 0.01-0.02 mr Average 4.9 bits per iteration No
’ ™S V2F 70-82% 6-48k table + control logic up to 13 bits per iteration Onlyiid could
2-30k table, Up to 8 bytes per iteration,
gé?( Lzw 83-87% <0.005mn? control logic Average 1.36-1.72 bytes Yes
Our methods 30k table,< 0.005m : -
» Up to 8 bytes per iteration,
MCSSC 75% control logic, gateq VDD P Avera)g,;te 1_%2 bytes Yes
could be applied
Table 2. Overall comparison with previous work on code compr ession.
84 and 87% respectively. Figure 5(b) summarizes the com- 2 1.99
. . . . P 1.89
pression ratio using MTUSC and MCSSC (both with and 2 1.9 =
. . . . 218
without dynamic LZW). Itis clear that MTUSC is always  Z . I e 772
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Figure 5. Compression ratio for (a) 9 to 12-bit
LZW and (b) selective compression.

some blocks in MCSSC are left uncompressed, and we can
then bypass the uncompressed block by instruction (4 bytes)
or by fetch packet (32 bytes). Then the average throughput
would become 1.76 and 1.79 bytes. The use of dynamic
LZW would also help in getting larger throughput in MC-

The maximum decompression bandwidth is determined SSC, and the average throughput would become 1.82 bytes.
by the width of coding table. As the width grows, the Figure 6(b)shows the average throughput for all the bench-
maximum phrase length also increases. However, as wenarks. We analyzed the decompression trace of selected
could see from Figure 6(a), the average phrase length isoranch blocks from our benchmarks. The throughput is
1.72 bytes. The throughput for MTUSC is the same as only 1 or 2 bytes for small blocks due to only few repeated
12-hit LZW since they have the same codewords. On thePhrases. However, as the block size grows, the throughput
other hand, the throughput for MCSSC is a little worse than @lso increases.

MTUSC, since shorter codeword might be used. However,

The LZW method is a variable-to-fixed code compres-



sion, and is suitable for parallel decompression by us-We could also find other code compression schemes that
ing a look-ahead scheme — parallel decompress the codeeould take advantage of the branch blocks, and could also
words when the newly generated codeword is not used.apply the schemes on both instruction and data memories.
By using this scheme, the execution time to decompress

the whole program becomes 0.51x,0.27x,0.14x for decom-8. Acknowledgment
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