
LZW-Based Code Compression for VLIW Embedded Systems

Chang Hong Lin
Princeton University

Princeton, NJ 08544, USA
chlin@ee.princeton.edu

Yuan Xie
Pennsylvania State University

University Park, PA 16802, USA
yuanxie@cse.psu.edu

Wayne Wolf
Princeton University

Princeton, NJ 08544, USA
wolf@ee.princeton.edu

Abstract

We propose a new variable-sized-block method for VLIW
code compression. Code compression traditionally works
on fixed-sized blocks and its efficiency is limited by the small
block size. Branch blocks – instructions between two con-
secutive possible branch targets – provide larger blocks for
code compression. We propose LZW-based algorithms to
compress branch blocks. Our approach is fully adaptive
and generates coding table on-the-fly during compression
and decompression. When encountering a branch target,
the coding table is cleared to ensure correctness. Decom-
pression requires only a simple lookup and update when
necessary. Our method provides 8 bytes peak decompres-
sion bandwidth and 1.82 bytes in average. Compared to
Huffman’s 1 byte and V2F’s 13-bit peak performance, our
methods have higher decoding bandwidth and comparable
compression ratio. Parallel decompression could also be
applied to our methods, which is more suitable for VLIW
architecture.

1. Introduction

Embedded systems are cost and space sensitive, and
memory is a large component of system cost. Code com-
pression is used to reduce code size in embedded systems.
It refers to compress the program off-line and decompress it
on-the-fly during execution. The idea was first proposed by
Wolfe and Chanin in the early 90’s [1], and many researches
have been done to reduce the code size for RISC machines
[2, 3, 4, 5]. As instruction level parallelism (ILP) becomes
the trend, a high-bandwidth instruction fetch mechanism is
required to supply multiple instructions per cycle. Under
these circumstances, reducing the code size and providing
fast decompression speed are both critical challenges we
face when applying code compression on VLIW machines.

This paper introduces branch-block based code compres-
sion. To ensure random accesses, previous work uses small,
equally-sized blocks as compression units; each block could

be decompressed independently with little or without in-
formation from others. When execution flow changes, de-
compression could restart at new position without or with
little penalty. Not all instructions could be the destina-
tion of jump or branch, and the possible targets are deter-
mined once the program is compiled. We definebranch
blocks as the instructions between two consecutive possible
branch targets, and use them as basic compression blocks.
Our benchmarks contain only 80.1 branch blocks in average
(454 bytes in size). Compiler methods can be used to in-
crease the distance between branch targets. Since the size is
much larger than the blocks used in previous work, we have
more freedom in choosing the compression algorithms.

Our method uses LZW-style compression to create adap-
tive self-generating tables to avoid storing the decoding ta-
ble, and would work on all embedded architectures. More-
over, this method has the advantages of fast and parallel
decompression, which is suitable for VLIW architecture.

This paper is organized as follows. Section 2 reviews
previous related work. Section 3 describes the general idea
of our approach. We introduce the LZW-based code com-
pression in section 4, and the selective code compression in
section 5. Experimental results on benchmarks for Texas
Instruments’ TMS320C6x VLIW processors are presented
in Section 6.

2. Previous Work

Wolfe and Chanin proposed the first code compression
scheme [1], which used Huffman coding to compress MIPS
programs. They use a Line Access Table (LAT) to map
compressed block addresses, and this method is inherited
by most of later studies. Based on the same concept, IBM
built a decompression core, called CodePack, for PowerPC
400 series [4]. As shown in Figure 1, compressed code is
stored in the external memory, and CodePack is placed be-
tween memory and cache. Liao [2] and Lefurgy [3] replaced
frequently used instruction groups into dictionary entries,
which make compressed code easy to be decoded. Lekatsas
and Wolf [5] proposed SAMC, a statistical scheme based on

1530-1591/04 $20.00 (c) 2004 IEEE

arithmetic coding and Markov model. All of these methods
targeted RISC architecture.

����������	
���������
�����

	�������

��
�
������������

����������	
���������
�����
��
��

	���������
���

��
�
������������

������������ !"#�

��
����$����

Figure 1. IBM CodePack for PowerPC.

Ishiura et al. split VLIW instructions into fields such that
each field could be compressed optimally by using dictio-
nary lookup scheme [6]. Nam et al. proposed a dictionary-
based method by using isomorphism among VLIW instruc-
tion words [7]. These two schemes targeted traditional
VLIW architectures, with rigid instruction word formats
and lots of redundancy.

Larin and Conte were the first to apply code compres-
sion schemes on modern VLIW with flexible instruction
formats [8]. They applied Huffman coding on an archi-
tecture similar to Intel/HP IA-64. Based on Tunstall cod-
ing, Xie and Wolf proposed variable-to-fixed (V2F) com-
pression, which used fixed-length codeword to represent
variable-length data [10]. Prakash et al. constructed a ta-
ble of frequently appeared code strings and use the index
along with the difference to compress the programs [12].
Xie also proposed the concept of profile-driven code com-
pression [11], which used program profiles as one of the
compression constrains.

3. Our Approach

To explain our VLIW code compression method, we
will use the TI’s TMS320C6x VLIW DSP [13], though
our method is applicable to other VLIW processors as well.
TMS processor gets a fetch packet (32 bytes) from cache,
and separate the eight instructions into several execution
packets. The instructions in the same execution packet are
parallel executable.

We use branch blocks as our compression unit. Programs
in the memory are compressed, and would be decompressed
on-the-fly when the branch blocks are needed. The cod-
ing table used is self-generated during run-timet. As illus-
trated in Figure 2, The decompression engine could be put
in two possible positions, pre-cache or post-cache. In the
pre-cache structure, the timing overhead for decompression
could be hidden behind cache miss penalty; while post-
cache has more area and power saving. Although LZW-
based methods could work on either case, post-cache struc-
ture would get more benefit due to our larger decompres-
sion bandwidth. Compressed blocks would not be at the
same position as their original ones, so we borrow Wolfe

and Chanin’s idea of using a LAT to map the addresses [1]
into original instruction addresses. Instead of storing the
addresses of all cache lines, only those of branch targets are
needed, which gives us a much smaller LAT.

Figure 3 shows the flow chart of our method. In both
compression and decompression, the coding table is reset
if the incoming address is a branch target; otherwise, we
just keep on and update the table when necessary. Execu-
tion flow might change and the target address for branch
or jump is computed during runtime; however, locations of
possible targets are determined once the code compiled. We
assume that we do note need random access to all instruc-
tions, but only ensure possible branch targets are accessi-
ble. Compression methods like the Lempel-Ziv (LZ) family
give a good compression ratio with the requirement of long
texts. Compression ratio (CR) is defined as compressed
code size over its original size. Blocks used by traditional
code compression schemes are too small for the LZ family;
large, variable-sized branch blocks give us more freedom to
choose the compression algorithms.

When programs are running, there is no problem to iden-
tify branch targets if execution flow changes. However, we
need to find a way to distinguish branch targets from oth-
ers when incrementing the PC causes execution to cross a
block boundary. One way is to maintain a list of branch
targets, but the entries have to be compared every time an
instruction is executed. The other way is to use a codeword
as branch target indicator. An indicator is sent to the output
before branch targets during compression. When the de-
compression engine sees an indicator, it will know that the
following instruction is a branch target.

4. LZW-Based Code Compression

Ziv-Lempel compression uses previously seen data to
compress incoming one [14]. The coding table need not
be stored with the compressed file, and can be recreated on-
the-fly during decompression. The LZ family was not used
for code compression before because it lacks random ac-
cessibility and has poor performance when deals with small

%&'()*
+,-./012213,-314
56789:&+,-./012213,-314
;<=>?@A<BBC>DEDFCD<

GHIJK

%&'()*
+,-./012213,-314
56789:&+L0MNMOPQ,-314
;<=>?@A<BBC>DEDFCD< R)(9&SS()+L0MNMOPQ,-314

GHIJK

R)(9&SS()+L0MNMOPQ,-314

TUV

TWV

Figure 2. Two possible code decompression
structures: (a) pre-cache; (b) post-cache.

XYZ[\]̂[Y_̀̂[

XYZ[]̂[abcdZefY

ghijhikl̀ZmY

nj[ZiY]̂[abcdZefY

XYòYml]̂[abcdZefY

XYZ[pY_qZiZ

r

sYbỲZiY]̂[Y_̀̂[

nj[ZiY]̂[abcdZefY

tuvwxyz{|}}~x����~�|t�v�|�xyz{|}}~x����~�|

XYZ[\]̂[Y_̀̂[

XYZ[]̂[abcdZefY

ghijhikl̀ZmY

nj[ZiY]̂[abcdZefY

XYòYml]̂[abcdZefY

XYZ[\]̂[Y_̀̂[

�̀Zb�liZ̀cYi�r

XYZ[]̂[abcdZefY

ghijhikl̀ZmY�b[a�ZiY[e�]̂[Y_̀̂[

�

nj[ZiY]̂[abcdZefY�obY�YmmZ̀�

XYòYml]̂[abcdZefY

XYZ[pY_qZiZ

r

sYbỲZiY]̂[Y_̀̂[

nj[ZiY]̂[abcdZefY

XYZ[pY_qZiZ

�̀Zb�liZ̀cYi�

XYòYmldZefY
r
�

sYbỲZiY]̂[Y_̀̂[ghijhi

nj[ZiY]̂[abcdZefY�obY�YmmZ̀�

Figure 3. Flow chart of our method: (a) com-
pression; (b) decompression.

Index Phrase Derivation
0 a Initial
1 b Initial
2 aa 0 + a
3 ab 0 + b
4 ba 1 + a
5 aba 3 + a
6 abaa 5 + a

Table 1. Coding table for LZW example.

blocks of data. The use of larger branch blocks makes it
possible to take advantage of the well-compressed and fast-
decompressing LZW method, and apply it on code com-
pression.

4.1. LZW Data Compression

Lempel-Ziv-Welch (LZW) compression was modified
from Ziv-Lempel 78 by Welch [15]. Initially, the LZW cod-
ing table has all the possible elements and phrases (series of
elements) would be added during runtime. The compressor
would search for the longest phrase in the table, output the
index, and add the phrase with the next element as a new
table entry. Suppose we have 2 elements a, b, and the input
sequence is ”aabababaaa”. At the beginning, the longest
phrase is ”a”, so ”0” would be generated, and ”aa” would
be added in entry 2. As compression goes on, the output
would be ”001352”, and the table would look like Table 1.
When decompressor got the first ”0”, it would decode it as
”a”. However, no entry would be generated, since it has
no idea what the next codeword is. ”aa” could be added
only after the next codeword arrives. If the newly generated
phrase were used, decompressor would not have that code-
word in its table at that moment; however, this codeword
could still be decoded as the previous phrase plus its own
first element.

4.2. Code Compression and Decompression

To apply LZW to code compression we use the byte as
our basic element. We have found that an initial table with
256 entries is adequate. We generate a new entry per it-
eration. During compression phase, the compressor would
find the longest phrase in the table, send the codeword to
the output, and add the phrase with the next byte as a new
entry. Once the table is full, the compressor would keep on
using the existing table to compress upcoming data. When
a codeword is read from the memory, we first check if it is a
branch target. If yes, the engine would shift out the padding
from buffer, reset coding table, and restart decompressionat
a byte-aligned position. Otherwise, the decompression core
would get a codeword, look it up, output the content, and
add the old phrase with the first element of next phrase as a
new entry.

We propose two ways to handle the appearance of branch
targets. The first is to keep a separate list containing the
address of branch targets. Both the compressor and decom-
pressor have to compare current PC with the list. If a branch
target is met, the process will restart with a initialized ta-
ble. Since the list has to be compared each iteration, par-
allel comparators are needed, and would cost little degra-
dation on decompression. The second method uses an ex-
ception index to indicate branch targets. We could simply
use the all1 codeword to indicate the existence of branch
targets. The memory system in embedded system is often
byte addressed, so each branch block has to start at a byte-
aligned position. If the compressed branch blocks is not
byte-aligned, several padding bits are necessary.

Codeword length and decoding bandwidth are two im-
portant parameters in our methods. LZW-based compres-
sion is a variable-to-fixed method. Fixed-length codeword
is used to represent variable-length phrases. The codeword
has to be at least 9 bits long, and would determine the table
size exponentially. The larger the table, the more phrases
could be represented, which yield better compression re-
sult. However, we also use a longer codeword to represent
8-bit basic elements. In the worst case, if none or only few
repeated phrases occur, we might have to use one-element
codewords most of the time. This often happens when the
source file is not big enough. The other adjustable feature is
the decompression bandwidth. From our simulation results,
the compression ratio differs within 1% for widths from 8
to 20 bytes. Since the size of the decoding table is linearly
dependent on the bandwidth, 8-byte wide decoding table
would be the desired choice.

5. Selective Code Compression

In this section we present a modified algorithm, selective
compression, with better compression ratio and even higher

�������������
������������
���������

������
���������

 ��¡������� ��¡������ ���

Figure 4. Block diagram of selective compres-
sion.

decompression bandwidth. The coding tables generated by
different codeword length for the same branch block share
exact the same entries in the front part. If the block is too
small to fill up the smallest 9-bit table, there would be no
benefit to use more bits to encode this block. On the other
hand, longer codeword compress better in the larger blocks.
We studied our benchmarks and found out that only 12.8%
of the branch blocks could use up all the entries in 9-bit
table, and only 1% could fill up the 12-bit table. This gives
us the inspiration to apply different compression methods
on different branch blocks.

We propose two selective compression schemes based
on LZW compression. As shown in Figure 4, we collect
the size, instruction and execution frequency, and other in-
formation for the branch blocks. The compression method
is then determined based on the profile. Depends on the
branch target identification policy used, we have different
freedom in choosing the code compression methods.

We first try to minimize the size of the coding table used
for each block. The shortest codeword is selected that all
the phrases generated by the branch block could fit in the
table. For example, when the block generates less than 256
phrases, only 9-bit LZW is needed. As longer codeword is
used, the size of the table grows exponentially. Our exper-
iments show that only few branch blocks really need larger
table. And the larger the table, the fewer the branch blocks.
12-bit is chosen as the maximum codeword length for our
methods.

If the branch target list is used, we use two bits in the
table entry to indicate the method for the certain branch
block (9-12 bit LZW). On the other hand, if the indicator
is used, two bits are needed before each branch blocks to
notify the method used. The average compression ratio us-
ing minimum table-usage selective compression(MTUSC)
is 79.2%, which is about 3.5% better than 9-bit LZW.

The drawback of using MTUSC is there are only few
repeated phrases in small blocks. Some of those com-
pressed blocks use more bytes than original ones.Mini-
mum code-size selective compression(MCSSC) is proposed
to ease this problem. We would first compress each branch
block using different codeword length LZW, and choose the
smallest one (including the original code). By doing so, we
ensure that each block has the minimum code size.

When the block is left uncompressed, there is no code-

word to indicate the branch targets. Experimental results
show that only blocks with size 32, 64 or 96 bytes could be
left uncompressed. We could encode these situations along
with the methods into 3 bits. These three bits could also be
used for branch target list. The average compression ratio
we could get by using MCSSC is 76.8%, which is about
6.3% better than 9-bit LZW.

We proposeDynamic LZWto ease the penalty caused
by longer codewords. Since only one codeword is gener-
ated per iteration, in the first 256 iterations, only the first
512 codes might be used; and only 1024 codes are used in
the following 512 iterations. We could use 9 bits to repre-
sent the codes in the first 256 iterations, and so on. We ap-
ply dynamic LZW on both MTUSC and MCSSC, and the
compression ratio we get is 75.8% and 75.2% respectively,
which is almost 8% better than 9-bit LZW.

Although we use four different codeword lengths in se-
lective compression, only one 12-bit LZW decompression
core with dispatching logic is enough for all of them. When
branch indicator is met, the coding table would be initial-
ized, and the dispatching logic would reconfigure to the
upcoming method. Otherwise, the decompression engine
just performs its normal operations. For codewords shorter
than 12 bits, zeros would be padded in the front. The de-
compression core would use those padded codewords to ad-
dress the coding table. It also works the same way when
dynamic LZW is used. The only difference is the dispatch-
ing logic has to count the number of incoming codewords,
and change the padding when necessary. On the other hand,
the dispatching logic would bypass the instructions when
the branch block only contains uncompressed instructions.

6. Simulation Results

In this section, we present experimental results on
benchmarks for TI’s TMS320C6x VLIW processor. The
benchmarks are collected from TI and Mediabench (http://
www.cs.ucla.edu/leec/mediabench), which are general em-
bedded system applications with strong DSP component.
The benchmarks are compiled usingCode Composer Stu-
dio IDE from TI. The compression ratio, bandwidth, and
overhead of our methods are described, and the comparison
with some previous work is summarized in Table 2.

Figure 5(a) shows the compression ratio for all the
benchmarks using 9 to 12-bit LZW. Longer codeword per-
forms worse in most of the benchmarks. However, for the
huge files, 12-bit LZW gives better compression ratio. The
front part of the tables contain the same phrases for differ-
ent codeword length. For benchmarks that couldn’t fill up
a small table, longer codeword won’t help. The effect of
large table could only be seen on huge benchmarks. In av-
erage, the compression ratio for 9 to 12-bit LZW is 83, 83,

Reference Target Method Compression
Ratio

Hardware Overhead Decompression Bandwidth
Parallel

Decompression

Wolfe and Chanin [1] MIPS Huffman 73% Under 1 mm2
1 byte per iteration,

1303M/sec asynchronous logic [16] No

IBM [4] PowerPC CodePack 60% Under 1 mm2 1 byte per iteration No
Lekatsas et al. [5] MIPS SAMC 57% 4k table + control logic Not available No

Xie et al [9, 10]
TMS
320
C6x

F2V 65% 0.01-0.02 mm2 Average 4.9 bits per iteration No
V2F 70-82% 6-48k table + control logic up to 13 bits per iteration Only iid could

Our methods

LZW 83-87%
2-30k table,

<0.005mm2 control logic
Up to 8 bytes per iteration,
Average 1.36-1.72 bytes Yes

MCSSC 75%
30k table,< 0.005mm2

control logic, gated VDD
could be applied

Up to 8 bytes per iteration,
Average 1.82 bytes Yes

Table 2. Overall comparison with previous work on code compr ession.

84 and 87% respectively. Figure 5(b) summarizes the com-
pression ratio using MTUSC and MCSSC (both with and
without dynamic LZW). It is clear that MTUSC is always
the worst, and dynamic MCSSC is always the best among
all four schemes.

Figure 5. Compression ratio for (a) 9 to 12-bit
LZW and (b) selective compression.

The maximum decompression bandwidth is determined
by the width of coding table. As the width grows, the
maximum phrase length also increases. However, as we
could see from Figure 6(a), the average phrase length is
1.72 bytes. The throughput for MTUSC is the same as
12-bit LZW since they have the same codewords. On the
other hand, the throughput for MCSSC is a little worse than
MTUSC, since shorter codeword might be used. However,

Figure 6. Average throughput for (a) 12-bit
LZW and (b) selective compression.

some blocks in MCSSC are left uncompressed, and we can
then bypass the uncompressed block by instruction (4 bytes)
or by fetch packet (32 bytes). Then the average throughput
would become 1.76 and 1.79 bytes. The use of dynamic
LZW would also help in getting larger throughput in MC-
SSC, and the average throughput would become 1.82 bytes.
Figure 6(b) shows the average throughput for all the bench-
marks. We analyzed the decompression trace of selected
branch blocks from our benchmarks. The throughput is
only 1 or 2 bytes for small blocks due to only few repeated
phrases. However, as the block size grows, the throughput
also increases.

The LZW method is a variable-to-fixed code compres-

sion, and is suitable for parallel decompression by us-
ing a look-ahead scheme – parallel decompress the code-
words when the newly generated codeword is not used.
By using this scheme, the execution time to decompress
the whole program becomes 0.51x,0.27x,0.14x for decom-
pressing 2,4,8 codewords in parallel. The average through-
put becomes 3.31, 6.37 and 12.29 bytes respectively. The
throughput is almost doubled and the decompression time
is halved by using parallel decompression. Although V2F
also used a fixed-length codeword, the Markov model they
used makes it impossible for parallel decompression [10].
V2F could only be parallel decompressed when indepen-
dent and identical distribution is used, which has 83% com-
pression ratio on TMS. Compare to V2F, our methods have
much wider decompression bandwidth, and is more suitable
for VLIW architecture.

For LZW-based code compression, the coding table used
for both compression and decompression engine is deter-
mined by the codeword length and the decompression band-
width. Suppose 9-bit LZW is used and the bandwidth is set
as 8-byte wide, the table would be 4k bytes; and 8k,16k and
32k for 10,11,12-bit LZW. Since the first 256 entries are the
basic elements, only some combinational logic is needed
instead of storing them in the table. So, 2k bytes could be
saved. Compare to previous schemes, Lekatsas’ SAMC [5]
uses 4k and Xie’s V2F [10] uses 6-48k tables.

We use Verilog to implement both a full LZW-based de-
compression engine (except the coding table) and a decom-
pression core witch could be used for selective and parallel
decompression. The decompression engine we built uses
a four-state FSM, and occupies 1129 4-input LUT in Xil-
inx’ FPGA. This engine could even be pipelined into three
pipeline-stages, and operates at 47.3 MHz. The core uses
314 LUT in the FPGA. We also synthesize the modules us-
ing TSMC .25µm model, and the area is 4417 and 1270
µm2 respectively. If three-stage MCSSC is used, it would
take 5508 cycles to decompress 9344-byte ADPCM de-
coder, and 90k cycles to decompress 182k mpeg2 encoder.

7. Conclusions and Future Work

We propose LZW-based and selective code compression
schemes that use branch blocks as the compression unit.
The compression ratio is about 83% and 75% respectively.
Low power is achieved by smaller memory required to store
compressed source code. Compare to previous work, our
schemes have less decompression overhead and larger de-
coding bandwidth with compatible compression ratio. Par-
allel decompression could also be applied to our methods to
achieve faster decompression, which is suitable for VLIW
architecture.

For our future work, compiler could be modified to gen-
erate source programs more suitable for code compression.

We could also find other code compression schemes that
could take advantage of the branch blocks, and could also
apply the schemes on both instruction and data memories.

8. Acknowledgment

This work was supported by Semiconductor Research
Corporation (SRC).

References

[1] A. Wolfe and A. Chanin. Executing Compressed Programs
on an Embedded RISC Architecture.Proc. of the Intl. Sym-
posium on Microarchitecture, p.81-91, Dec. 1992.

[2] S. Liao, S. Devadas, K. Keutzer. Code Density Optimiza-
tion for Embedded DSP Processors Using Data Compression
Techniques.Proc. on Advanced Research in VLSI, p. 393-399,
1995.

[3] C. Lefurgy, P. Bird, I. Chen and T. Mudge. Improving Code
Density Using Compression Techniques.Proc. of the Annual
Symposium on Microarchitecture, 1997.

[4] IBM. PowerPC Code Compression Utility User’s Manual,
Version 3.0, 1998.

[5] H. Lekatsas and W. Wolf. SAMC: A Code Compression Al-
gorithm for Embedded Processors.IEEE Trans. on Computer
Aided Design, Vol.18, p.1689-1701, Dec. 1999.

[6] N. Ishiura and M. Yamaguchi. Instruction Code Compres-
sion for Application Specific VLIW Processors Based of Au-
tomatic Field Partitioning.Proc. of the Workshop on Synthe-
sis and System Integration of Mixed Technologies, p.105-109,
Dec. 1997

[7] S. Nam, I. Park and C. Kyung. Improving Dictionary-Based
Code Compression in VLIW Architectures.IEICE Trans.
Fundamentals, p.2318-2324, Nov. 1999.

[8] S. Larin and T. Conte. Compiler-Driven Cached Code Com-
pression Schemes for Embedded ILP Proceesors.Proc. of the
Annual Int. Symposium on Microarchitecture, p.82-91, Nov.
1999.

[9] Y. Xie, W. Wolf and H. Lekatsas. Compression Ratio and De-
compression Over-head Tradeoffs in Code Compression for
VLIW Architectures.Proc. of Intl. Conf. on ASIC, Oct. 2001.

[10] Y. Xie, W. Wolf and H. Lekatsas. Code Compression for
VLIW using Variable-to-fixed coding.Proc. of ISSS, 2002.

[11] Y. Xie and W. Wolf. Profile-driven Code Compression.
DATE, March 2003.

[12] J. Prakash, C. Sandeep, P. Shankar and Y.N. Srikant. A Sim-
ple and Fast Scheme for Code compression for VLIW Archi-
tectures.IEEE Data Compression Conf., Jan. 2003.

[13] Texas Instruments.TMS320C62xx CPU and Instruction Set:
Reference Guide, January 1997

[14] T. Bell, J. Cleary and I. Witten.Text Compression, Prentice
Hall, 1990.

[15] M. Nelson. LZW Data Compression.Dr. Dobb’s Journal,
Oct. 1989. (http://dogma.net/markn/articles/lzw/lzw.htm)

[16] M. Benes, S. Nowick and A. Wolfe. A fast Asynchronous
Huffman Decoder for Compressed-Code Embedded Proces-
sors. Proc. of Annual Int. Symposium on Advanced Re-
search in Asynchronous Circuits and Systems-ASYNC, p.43-
56, 1998.

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

