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Abstract
To meet the challenges of faster time to market and grow-
ing design complexity, a methodology and supporting
infrastructure for advanced System-on-Chip design have
been developed and applied to 0.13 micron technology
designs.
The Islands of Synchronicity methodology uses locally syn-
chronous islands to produce a timing-closure friendly
design style that is widely applicable across different archi-
tectures. This approach enables a modular, hierarchical
physical design strategy which significantly eases top-level
timing closure problems. The resultant design flow is sup-
ported by the Skeleton of Reuse, a collection of IP genera-
tors and tools that automate many of the steps in SoC
implementation.

1. Introduction

Advances in process technology have made it possible
to fabricate IC’s containing tens of millions of gates. How-
ever, the design community is faced with extreme chal-
lenges to create System-on-Chip (SoC) designs that can
take advantage of the available process capability.

In this paper we describe a hierarchical design method-
ology known as “Islands of Synchronicity”, and the tools
that support it, that addresses some of these challenges. We
specifically focus on the critical issues of clock distribu-
tion, top-level timing closure and hierarchical physical
design.

Results are presented from three Philips SoC designs
implemented in 130 nanometer CMOS technology, all
using the Islands of Synchronicity approach to various
degrees.

1.1. Clocking

Clock distribution in large SoC designs has become a
major issue as design size and complexity has increased.
With multiple clock domains, global clock distribution and
clock tree balancing is difficult to achieve at any operating
point, and is made even more so by variations in process,
voltage and temperature across the die.

Globally synchronous designs with deep buffer trees
can suffer from large instantaneous power surges and Elec-
tro Magnetic Interference (EMI) coincident with the clock

switching activity. In addition, with the clock balanced
across the entire SoC, significant energy is expended in the
clock tree.

1.2. On-Chip Interconnect

As shown in Figure 1, interconnect delays have
increased with each new geometry node [1] to the point
that wire delay now dominates logic delay for long traces.

Figure 1. Interconnect Delay 

In a globally synchronous environment, the maximum
operating frequency of on-chip interconnect is limited by
the absolute delay between the source and destination.

Signal buffering strategies, inserting buffers in the inter-
connect to balance clock trees, to resolve edge rates and to
avoid cross-talk problems, further limit the speed at which
interconnect can operate.

The combination of global clocking problems and inter-
connect performance limitations have lead to the require-
ment for alternative design approaches that alleviate timing
closure issues and provide solutions that scale with tech-
nology.

1.3. Hierarchical Design

The move to a hierarchical approach is inevitable for
most large SoC designs. Designs are just too large and
complex to be completed flat. Rather than push EDA tools
and compute resources beyond their capabilities, it makes
sense to break designs into smaller, manageable pieces.
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The design can then be implemented by different design
teams in different locations, each with its own area of
expertise, in a concurrent engineering environment.

A typical hierarchical design flow has three main steps
as shown in Figure 2.

Figure 2. Hierarchical Design Flow

Critical to the success of hierarchical design is the abil-
ity to bring the pieces of the design back together again in
the final chip assembly stage and have them work together.
Timing convergence and efficient physical design are two
of the main challenges to resolve during chip assembly.

1.4. Islands of Synchronicity

The IoS methodology provides unique solutions for the
hierarchical design process. 

Firstly, it places more emphasis on the Design Planning
phase of the design. Although the ultimate partitioning task
still relies on the expertise of the chip architect, when using
IoS, partitioning is heavily influenced by timing consider-
ations and the nature of the on-chip communication
between islands.

Secondly, during the Island Implementation phase,
islands are kept updated of changes to the floorplan. Dur-
ing implementation a typical SoC design is being continu-
ally updated, and changes to an island or its neighbors may
affect the details of the on-chip interconnect. By regenerat-
ing the interconnect and pin placements each island can be
optimized to the new chip topology so that islands are pre-
conditioned for top-level integration while they are being
implemented.

At the same time, a skew-tolerant inter-island communi-
cation strategy keeps the timing of the island independent
of the top-level design. It removes the need for global syn-
chronous clocking and allows clock trees to be imple-
mented locally within islands, making them easier to
balance and uses fewer levels of buffering. This results in
lower clock tree insertion delay and reduced power dissi-
pation. 

Finally, Top-Level Integration is simplified by the use
of Asynchronous Communication Links (ACLs) for all
inter-island communication. There are minimal timing
dependencies between islands, greatly easing chip-level

timing closure. The incremental interconnect regeneration
that has occurred throughout the island implementation
phase and the associated addition of feedthrough channels
within islands, makes it possible to assembly the chip by
abutment to minimize die area.

Additional benefit is gained because the islands define
natural boundaries for implementing block-based Design
for Test (DfT) and Design for Debug (DfD). The islands
can also be readily extended to create “Islands of Power”,
allowing different blocks to operate at different voltages,
or in a power-down mode.

2. The Skeleton of Reuse

The supporting infrastructure for the IoS methodology,
that we call the “Skeleton of Reuse“ (SoR), includes a con-
figurable clock generation unit, on-chip interconnect
“builders” and a design manipulation tool. They have been
developed to automate creation of the top-level intercon-
nect between islands, allowing the design infrastructure to
evolve in step with the physical implementation of the
design

Although this paper focuses on the timing and physical
design aspects of IoS, the SoR is not limited to these
aspects, it supports extensive SoC design solutions that
include DfT, DfD and power management plus traffic gen-
erators and bus monitors to provide Quality of Service
metrics.

2.1. On-Chip Interconnect

Traditional busses are inherently synchronous, and a
synchronous bus that travels to several islands imposes
many top level timing relationships on the SoC. IoS
enables bus communication to proceed without a globally
synchronous clock, removing these timing constraints and
allowing islands to be implemented independently.

The SoR provides several types of skew-tolerant ACLs
which are either source synchronous or asynchronous in
nature, and which target specific data types. These are
delivered to design teams as reconfigurable generator
tools.

Table 1. Communication Types

The communication links are built upon proprietary
Philips IP reuse standards that use Device Transaction
Layer (DTL) and Memory Transaction Layer (MTL) inter-
connect protocols. DTL and MTL are similar to, but pre-
cede, the VSI Alliance Virtual Component Interconnect
standard [2], and a large portfolio of Philips IP is available
that uses them. Thin adapters are available to connect
blocks with other interfaces (such as AMBA) to DTL and
MTL.

1) Design Planning
and Partitioning

2) Concurrent
Island
Implementation

3) Top-Level
Integration

Data Type

Streaming Data Bus

Memory Data Bus

IO Bus

Communication Link

Clock Domain Crossing FIFO

Source Synchronous MTL or
DTL Transport Pipe

Device Control and Status Network



2.2. Clock Generation

An important component of the SoR is the central Clock
Generation Unit (CGU). This configurable IP module gen-
erates and routes the appropriate clocks to the islands. Fre-
quency synthesis, by means of PLLs and digital divider
circuits, creates the necessary clock frequencies for the
application. A connection fabric in the CGU allows clock
frequencies to connect to different sources in a glitch-free
manner, and includes start/stop functionality for power
management purposes.

Figure 3. IoS Clock Distribution

In addition to application clocks, the CGU supports on-
chip generation of clocks for delay fault testing and pro-
vides the precision break point capability and clock manip-
ulation required for silicon debug.

Within the IoS methodology, clock nets from the CGU
to the islands do not have skew constraints. Therefore,
clock tree balancing is necessary only within the islands,
not at the top level as indicated in Figure 3. This reduces
clock tree logic depth and eases timing closure.

2.3. Design for Test

The SoR provides a DfT flow that maintains a relaxed
test clock, autonomous islands for stand-alone vector gen-
eration, simple embedded core test shell insertion and
delay fault test support.

All communication between islands is performed using
asynchronous or source synchronous techniques. In func-
tional mode, the non-deterministic nature of the asynchro-
nous communication is not a concern. However, in test
mode, DfT tools must force these nets to behave in a deter-
ministic fashion.

Philips uses an embedded core technique [3] from its
Core Test Action Group which is similar to the IEEE
P1500 standard [4]. However, in the IoS methodology, test
shells are added at island boundaries, rather than at IP
boundaries, to create stand-alone test islands. Aligning test
shells with physical islands simplifies the DfT flow. It
allows scan chains to be reordered based on placement and
Automated Test Pattern Generation can be run stand-alone

on each island.
Open defects dominate DSM technologies. We rely on

delay fault testing to detect them and to maintain product
quality levels. The SoR CGU provides the double system
clock required by sequential test pattern generation tools to
execute scan-based delay-fault testing. On-chip generation
of at-speed clocks for delay fault testing reduces the
requirements of the production testers and can reduce test
cost.

2.4. Design for Debug

The ability to quickly debug SoC designs in the applica-
tion environment has become an essential capability for
product development. Less than 40% of large SoC designs
are bug-free first time [5], and an increasing proportion of
development effort is spent isolating errors. 

The SoR uses a low-overhead and scalable DfD archi-
tecture [6], providing the hardware to implement precision
break points, data matching blocks and scan chain recon-
figuration.

As with the DfT approach, debug modules are aligned
with the island boundaries. They represent a small incre-
mental overhead since they share much of their logic with
the DfT circuitry. DfD modules are built entirely within the
island, assembled at the top level with skew tolerant inter-
connect and accessed through the IEEE 1149.1 Test Access
Port.

2.5. Design Manipulation Tool

Throughout the IoS design flow, an iterative approach is
used to incrementally align global infrastructure resources,
such as ACLs, to the physical topology. In the absence of a
commercial tool to adequately support these processes, an
internal design manipulation tool has been developed.

This automates and manages many of the steps of the
design flow such as: converting logical and physical hierar-
chy (assigning ACL components across island boundaries);
infrastructure regeneration; adding feedthroughs and buff-
ers within islands; propagating timing constraints across
hierarchy; creating island netlist abstractions and assisting
with DfT logic integration.

3. IoS Hierarchical Design Flow

The IoS methodology enables an efficient hierarchical
physical design flow. It does this using by applying two
primary concepts.

Firstly, early consideration of the physical chip imple-
mentation in the design flow. Accurate prediction of the
island size and form factor produces more accurate timing
estimations. Knowledge of the adjacent islands and of the
top-level chip routing requirements enables appropriate
feedthroughs and buffering to be built into the island dur-
ing implementation, rather than at chip assembly.

Secondly, recognizing that the IP features and function-
ality are the critical elements of the design, whereas inter-
connect is a reconfigurable resource that is closely tied to
the physical implementation, and must be regenerated as
the floorplan evolves. ACL communication strategies
decouple the island from the details of the interconnect, so
that regeneration can occur without impacting the timing of

CGU



the island. They also make it possible to start island imple-
mentation ahead of finalizing the floorplan. Figure 4 shows
a typical IoS design flow.

Figure 4. Islands of Synchronicity Design Flow

An early version of the infrastructure is used with the
initial netlist and island partitioning to make an early start
on floorplanning the design. As the physical design and
island partitioning are refined, the infrastructure is regener-
ated to optimize the island interconnect to the new topol-
ogy.

With a refined floorplan, engineering teams can work
independently on each island to complete detailed routing
and timing closure. At the end of the concurrent island
physical implementation the islands are re-assembled into
the final SoC design prior to tape out. 

The SoR, with its automated infrastructure generation,
decouples the front-end design process from chip integra-
tion allowing front-end designers to concentrate on the fea-
ture set of their design, rather than on details of the top-
level infrastructure.

Figure 5. IoS Physical Design Flow

The IoS design flow is an evolution of a traditional hier-
archical design flow. It consists of the three main stages
shown in Figure 5.

More emphasis is placed on the Design Planning phase
than in traditional design flows. This early planning, in
conjunction with the IoS methodology, allows islands to be
created independently and greatly simplifies top-level
design integration.

3.1. Design Planning

With IoS, early design planning is the key to quickly
achieving design convergence. This is enabled by iterative
refinement of the floorplan using intermediate design esti-
mates. Some special considerations are imposed by IoS
above those for a standard hierarchical design flow.
• Island Partitioning. There is no automated partitioning

solution. It relies on the expertise of the design archi-
tects who must consider factors such as clock domain
crossings, size, functionality and inter-island communi-
cation links when partitioning the design.

• Netlist Partitioning. This must ensure that all inter-
island links are skew-tolerant. For example, ACL IP
blocks are split into separate islands in the physical hier-
archy as shown in Figure 6. This process is supported
by the design manipulation tool, and RTL code for the
ACLs is structured to reflect the clock domain hierarchy
of the block.
At each iteration, the design’s functional and timing
integrity are confirmed using Formal Verification and
Static Timing Analysis techniques respectively

Figure 6. Netlist Partitioning

• Infrastructure Regeneration. As the floorplan is
refined, the interconnect infrastructure is regenerated to
match the new physical topology. There is no direct
impact on the timing of the islands, but interconnect
regeneration may affect the position of feedthrough
areas and the pin placement.

Figure 7. Routing Optimization
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Figure 7 shows the reduction in routing complexity that
is achieved after regenerating the infrastructure and pin
placements.

• Feedthroughs. IoS uses edge-to-edge abutment of
islands, so dedicated routing resources (feedthroughs)
must be added within each island to accommodate the
top-level interconnect. The design manipulation tool is
used to insert buffers in the feedthrough areas to main-
tain signal skew within each ACL. This ensures that the
timing of the island remains independent of the top-
level timing and that the islands contain the routing
areas needed for top-level integration.

• Clock Planning. The clock timing requirements are
relaxed in IoS since there is no clock skew relationship
to maintain between different islands. In fact, skew may
be deliberately introduced between mesochronous
clocks in different islands in order to temporally dis-
perse the switching energy and reduce EMI.

3.2. Island Design

By the end of the design planning phase most of the key
island attributes have been defined: physical and timing
constraints, the position of feedthroughs and buffers, pin
placements, clock planning and power planning.

Placement, routing and timing closure of each island
can proceed in isolation, using traditional synthesis or
physical synthesis techniques, without any interactions
between islands or with the top-level design.

Because clock trees are confined within each island,
rather than at a chip level, the capacitive loading is consid-
erably lower. This results in fewer levels of buffering
which incurs less insertion delay, lower power dissipation
and clocks are easier to balance.

After timing closure an abstracted timing view is cre-
ated to reduce the size of the design database for top-level
integration. This “shell” or “donut” view contains only the
timing information that is needed at the top level.

3.3. Top Level Integration

Assembly of the islands at the top level is straightfor-
ward. Designs implemented with the IoS methodology
have only a small number of short top-level routes. These
are ACLs that are skew-tolerant by construction, and scan
chain connections that use data hold latches to eliminate
any timing dependencies between the islands.

The most critical top-level timing requirement is to con-
trol the skew between the data and clock signals within
each source synchronous link. Although the absolute
latency of the link is not important, the skew within the
link determines its maximum operating frequency (see Fig-
ure 8). The source synchronous clock is launched at the
mid-point of the valid data eye, and the allowable data
skew relative to the source synchronous clock is approxi-
mately 50% of the clock cycle, less setup and hold time.
Some adjustment in the skew tolerance is also needed to
compensate for the logic in the source and destination sides
of the link.

For the fully asynchronous data links, skew manage-
ment is less critical. Timing skew within each link is refer-
enced to handshake signals rather than a transmitted clock,
and typically needs to be controlled to a multiple of the

receiver clock period rather than a fraction of the transmit
clock.

Figure 8. Source Synchronous Link Timing

4. Design Applications

The primary validation vehicle for the IoS methodology
has been a 0.13 micron design nicknamed “SoRcery”. This
design is approximately 7.5 million logic gate equivalents
and has 25 different clock domains. It was implemented in
eight Islands of Synchronicity and a separate block for the
Clock Generation Unit. 

Island partitioning was performed based on functional-
ity, timing and gate count considerations. The islands
ranged from 50,000 to 800,000 gates in size and combined
between 2 and 14 separate IP blocks. The SoRcery block
diagram and floorplan are shown in Figure 9 and Figure 10
respectively.

Figure 9. SoRcery Block Diagram

The longest and slowest ACL in this design was a
source synchronous MTL link between island 7 and island
3 (the memory controller), passing through island 6. With
no optimization at all, this link operated at a frequency of
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just over 400MHz. Current work on enhancing the on-chip
interconnect approach is expected to raise this to 1GHz.

Figure 10. SoRcery Floorplan

Two other Philips products have used various compo-
nents of the SoR: the Nexperia PNX1500 (connected
media processing IC) and the Nexperia PNX8550 (home
entertainment engine). Data from these designs and from
SoRcery shows that the on-chip interconnect logic adds a
gate count overhead of less than 2%.

These designs also confirmed the positive impact of
infrastructure regeneration on routing complexity and the
ease of top-level timing closure.

5. Summary

Islands of Synchronicity represents an evolutionary
approach to SoC design that is tool independent, scales
with technology and retains the advantages of contempo-
rary design techniques such as physical synthesis and hier-
archical physical design.

It is built upon a solid foundation of IP reuse and IP
interconnect standards. Islands are designed in a modular
fashion using existing practices with minimal impact on IP
development. The approach is fully compatible with cur-
rent DfT and DfD techniques, and typically makes these
easier to apply at the IC level.

IoS introduces design partitioning based on timing and
skew-tolerant on-chip communication. The elimination of
global clocks significantly eases top-level timing closure,
enables hierarchical physical design and reduces time to
market for complex SoC designs.

The associated Skeleton of Reuse provides a high level
of automation in chip integration by applying central clock
generation, bus builders and design manipulation capabili-
ties.

Application of this methodology to multi-million gate
advanced technology designs has demonstrated its low
area overhead, ease of timing closure, the decoupling of
island development from top-level integration, fast itera-
tion of design changes and the ability to create high-perfor-
mance on-chip interconnect.

IoS is a continually evolving methodology. Work is now
in progress to further optimize the on-chip interconnect
performance to achieve operation at 1GHz and beyond,
and to complete the extension of the methodology to fully
support Islands of Power.
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