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Abstract
Presently, the gap between analog and digital processes is
ever increasing. Although digital circuits are still obeying
Mooré s law, their analog counterparts follow far behind.
Since signal acquisition, through ADC circuits is an often
required feature, for many embedded applications the
benefits of Mooré s law have not been achieved. This
paper presents our approach to take advantage of the
increasing integration of technology for analog
interfacing in SoC’s, by converting the statistics of the
signal. Digital self-tuning of the threshold levels, the use
of less expensive and highly variable analog blocks, and
stochastic convergence of resolution allow a robust
acquisition process. We present the mathematics behind
the approach, as well as a set of target applications and
experimental results validating the concept.

1 Introduction

As fabrication technologies progress further into deep-
submicron scales, the average digital processing power
available for applications design increases exponentiall y.
This leads to potentiall y smaller and cheaper devices,
which usually means a wider range of viable SoC
(System-on-Chip) applications. Since many of these need
to acquire data from the physical world or to communicate
through a variety of physical media, analog interfacing is
often required. ADCs are expensive to integrate since they
are very dependent upon component accuracy [1] whereas
digital technologies have a higher yield than analog ones.
Also new digital deep-submicron processes offer even
higher variabil ity in their electrical and geometrical
properties than previous ones, meaning that the existent
analog-to-digital gap is not about to narrow. Follows that
an ideal conversion process would be mainly digital or
enabled to use less demanding analog parts by a more
sophisticated digital signal processing.

For highly integrated digital systems with fewer visible
internal blocks, wider process variations drive higher
amounts of the production cost to be allocated in the
testing phase. Strategy to minimize this problem has been
twofold: increase design automation and verification to
minimize project mistakes; and provide on-chip test
faciliti es either as Design for Testability – DfT; or Built-
In Self Test – BIST[2]. ADC design automation face a

granularity problem, since it must compromise with a
given set of architectures and process dependent analog
modules [3][4]. Moreover, to include built-in self-test an
additional highly reliable analog reference generator must
be provided [5].

There’s also a specification issue to deal: traditionally,
everyone using ADCs tries to reconstruct the analog
signal. Using this approach, the resolution of the converter
(number of bits) plays a major role. However, for many
SOC applications, the digital data the system actuall y
needs is not a full reconstruction of the input signal, but
rather a measurement that can express some statistical
properties of it, and may be less hardware demanding.
Analog self-test [6,7,8], passive sensors signal
conditioning [9], low-frequency data acquisition [10-
12](where high over-sampling ratios can be used) and the
many designs that employ adaptive modeling and
stochastic grouping algorithms are instances where one
may profit from application specific designed acquisition.

To propose a low cost, easil y automated methodology
to analog interfacing on mainly digital SoCs we focused
on statistics acquisition rather than signal reconstruction.
Main features are: (i) the basic block is a extremely low-
cost 1-bit stochastic sampler; (ii) from the bottom-up
perspective architecture allows components with high
variabil ity and non-ideal behavior (e.g. high offset
comparators); (iii) from the top-down perspective,
acquisition can be fine-tuned for specific applications; (iv)
parallelism, redundancy, self-configuration and active
dithering are used to transfer design complexity to the
digital domain; (v) built-in self test is a embedded feature;
(vi) it is an over-sampling technique, a desirable feature
given the ever increasing switching speeds of transistors.

This work shares some features with other recent lines
of research, section two reviews the main contact points,
explain differences and hopefully clarifies the proposal.
Theoretical background and acquisition structure is
presented in section three. An experimental setup was
designed to validate the concept and its measurements are
the subject of section four. Section five presents
discussion of results and future developments.

2 Related Works

In recent research some groups have also pointed-out
to the potential advantages of both application specific
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ADC design and over-sampled acquisition for SoC’s. The
most widely used architecture in this line of research is
based on Σ∆ADCs (e.g. see [4]). Our proposal, while also
stresses over-sampling, does not rely on noise-shaping.
Thus, stochastic sampling have slower convergence, but
also can use smaller, more variable, analog blocks. The
bet is that in the long term, gains in paralleli sm wil l pay.
Also, within the stochastic acquisition framework, there is
no reason one should not try to use feedback to control
noise generator statistics and improve convergence in a
specific application. It would undoubtedly be a hard non-
linear control problem, but nevertheless a digital one.

In low-frequency instrumentation there is already well
establi shed research relying in statistic acquisition. In a
sense, stochastic sampling shares many similarities. Main
differences is our focus in the acquisition of statistics as
an application-driven feature, and that much of this
previous work uses some kind of well -behaved repetitive
reference instead of noise[12].  Modern signature based
proposals for analog test [6-7] use a similar approach.
Using noise has the advantage of potentially easier and
more robust hardware design, and producing a more well -
behaved uncorrelated quantisation error. This later feature
allows for pattern-identification applications at higher
frequencies [13]. A similar emphasis on the acquisition of
statistics is found on the work of Tapang and Saloma [11],
however they also use a sinusoidal reference in a
combination of zero-crossing and noise dithering.

A rather recent work [14] proposed a adaptive strategy
to reduce the area cost of comparators on flash ADCs.  It
was able to show that using redundancy of highly variable
circuits one can achieve a better area usage. Statistic
sampling similarly relies on paralleli sm of simple blocks,
but goes further using more robust noise references and a
clustering model to deal with threshold scattering.

3. Theoretical background

3.1. Statistics Acquisition

Analog to digital conversion is a tradeoff between
parallel comparison with fixed threshold levels and serial
comparison with a time varying reference. Quantisation
theory [15] provides a mathematical framework to digital
acquisition. For any well known input signal, a family of
additive references can be defined that leads to a optimal
relation between resolution and convergence [16].
Σ∆ADCs are the most common way of trading statistic
knowledge about the signal behavior and acquisition
performance. Higher order noise-shaping convergence
depends upon signal characteristics and  can be li kened to
a non-linear control problem [17]. In this context noise
dithering is often employed as means to force quantisation
error to be distributed in the spectrum [18-20].

Figure 1. Comparator model as a subtractor plus
a hard-limiter.

Figure 1 shows the model of a single comparator:
analog signals are added, then area sampled by a
hard-limiter. Also, one sees (Figure 2) how the probabilit y
distribution function (PDF) of a constant value and a
uniform random noise are combined. From a given PDF
one can calculate signal first-order statistics. As two
signals are summed in the time domain, their PDFs are
convoluted.

Figure 2: Acqu isition wi th d ithering .  Signal (v – a
constant value) and noise (-γ� ) PDF’s are
convoluted and area sampled by the 1-bit AD.
Statistics before and after quantization are
related, and the resulting b it-stream (γ� ’ ) can be
used to infer properties v.

The resulting distribution is then area sampled and
gives distinct probabiliti es for the quantised signal. It’s
possible to use a similar approach to establi sh the relation
between the self-correlation of the sampled pulse train and
the input[19,20]. Applied to a hard-limited signal with
gaussian distribution (γ) results in the so called arc-
tangent relation (1)[21], used on some PSD based analog
test methodologies [13].

(1)  Rxx{γ� ’ } = (1/π� ) ⋅�  tan-1[ Rxx{γ� }/Ryy{γ� (t=0)} ]

It’s a know result from audio electronic that with a
carefull y chosen dither distribution one can establi sh a
linear relation between an arbitrary power of the first
order statistics of the analog signal and the same power
the statistics of the quantised one [20]. Since digital
processing the signal is not a issue we are not so
concerned with the linearity of the relation. Therefore,
equation (2) can be used to provide a reliable function (Γ� )

 v 

γ 
y' 

v 

- γ 

v  -  γ 
+q 

-q 

γ ' 

v
v(t)

v

p{v}

+q-q

-q p{γ� }
γ� (t)

VDR

+q-q v
A2

p{v - γ� }

A2A1
+q-q

p{ γ� ’}

A1



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

γo/γMAX

N=10.000

N=1.000

N=100

vo/VoMAX

linking the averages [19] of any signal v and the acquired
bit-stream γ� ’ for any known noise distribution.

(2)

This last relation will be used to reconstruct the
statistics of the over-sampled analog signal from the
estimated statistics of the acquired pulse train.

3.2. Stochastic convergence

Naturally, one cannot measure directly any signal
statistics but rather infer its value using an estimator.
Using the average estimator (3) one expects to have a
estimates error probabilit y that wil l be itself a stochastic
variable related to N. From the Central l imit Theorem
[22], one should expect a gaussian error distribution for
any meaningful value of N.

(3)

Since the error will have a flat spectral characteristic, a
highly over-sampled signal wil l converge to its punctual
value by reducing the total error power. Therefore,
resolution can be re-stated as probable resolution in
equation (4) where the worst case convergence is related
to the number of estimates N taken.

(4)

The factor Po defines the likelihood of a estimate under
the defined constraints. This property allows a framework
where graceful performance degradation is a built-in
design feature. A similar reasoning using PSD estimation
can be applied, to well -known narrow band periodic
signals as in passive sensor conditioning [9].

Figure 3. As averaging depth N increases, error
scattering diminishes allowing higher resolution
estimates.

Figure 3 displays a computer simulation of signal
acquisition through stochastic sampling using a uniform

noise reference. Output value is calculated through
averaging the train pulse and applying reconstruction
function Γ� .

For non uniform dither distributions Γ�   is a non linear
mapping and that may impact on resolution convergence.
For instance, using a gaussian dither, Γ�  is a erf  -1 function
that is asymptotic near ±1 (Figure 4).

Figure 4. Non linear noise reference distribution
(Gaussian) influence on resolution convergence.
For a fixed value of N, resolution decreases a the
DR fringes.

A higher gain in the periphery of the DR (Dynamic
Range) means that one needs more estimates (N) to
guarantee the same dispersion of the output. For fixed
values of N that means that an stochastically sampled
signal v wil l have a variable resolution with a peak next to
the central values of the noise distribution (E{γ� }). This
issue can be dealt with by using a noise amplitude greater
than the DR of the signal to acquire [9].

3.3. Parallelism and resolution

Equation 4 dictates how one can trade resolution by
bandwidth. As statistics estimation is a low pass process,
with logarithmic convergence, higher resolutions demand
really high over-sampling ratios or (5). But it is also
possible to see another way to increase resolution: one can
use a higher number of comparators, also zero-centered
but using uncorrelated noise references, and combine their
results. It is thus possible to take advantage of hardware
parallelism.

(5)                                               , where or = Fs /FMAX.

On a worst case estimate, if β comparators are used
together with N statistic averages for each comparator,
resolution wil l be give by r (6).

(6) r(v) = ½⋅� GΓ
�

 (v)⋅�  log2 [(β� ⋅� N)/kp]

Where GΓ
�

 (v) is a factor that mirrors the resolution
variation in the dynamic range, as it influences non-
linearity in reconstruction function. For acquisition with
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uniform noise GΓ
�

  is unitary. Using gaussian noise this
factor will have a big influence and may be mandatory in
the DR fringes. Redundancy, self-configuration and a
weighting mechanism provides the means to reduce this
influence by taking advantage of the scattering of the
reference distribution centers due to hardware variation.

3.4. Hardware variation

In the context of statistics acquisition only two types of
analog blocks are required: noise reference generators and
one-bit comparators. To allow a low area cost, one should
use highly variable blocks. For comparators, this means
randomly distributed offsets. For noise references this
means we cannot assure a perfect zero mean distribution.

To deal with this scenario, the proposed architecture is
adaptive. Digitally controlled switches can ground the
signal input at a self-configuration stage. Once reference
statistics are modeled the acquisition proceed. The
complete architectures is show in Figure 5a. This setup
provides two interesting characteristics: allow the use of
less expensive comparators and provides a framework
with embedded self-test capabili ties.

Statistic reconstruction follow the model given in Figure

5b. Since offset varies, each noise generator can feed more
than one comparator in a redundant circuit. Due to the
scattering of the centers, once the references are modeled
and the inputs are weighted one can reconstruct signal
statistics using equation (7). If a clustering technique is
them applied new center can be defined and the total
dynamic range can be further expanded into the gaussian
distribution fringes.

(7)

Several uncorrelated noise sources can be provided in
three ways: (i) using digitall y sampled analog generators
as the one proposed in [23] with different seeds; (ii)
operating over other noise sources in the analog domain
(e.g. using analog inverters); and (iii) delaying the original
noise output through sample and hold.

To test the concept a straightforward  averaging
process was employed to self-configuration. Despite the
simplicity the results are promising and an optimal
configuration algorithm is still an open issue for research.

In the following section a series of measurements are
performed in order to validate the proposed approach for
signal acquisition.

4. Experimental Results

A prototype board was setup with four off-the-shelf
LM311 comparators. Two HP3120 signal generators
produced gaussian noise references. To generate four
uncorrelated sources two analog inverter circuits where
used. References where also low-pass filtered
(@ ~105Hz ) to cope with LM311 band restrictions. Data
was acquired using a digital osciloscope (HP54645D).

Analog circuits where not fine-tuned, any correction
should be performed in the digital domain. Before any
acquisition, inputs where grounded and the digital data
acquired to provide statistics estimation algorithm with a
self-configuration stage. Statistics estimation assumed a
single center combining all the inputs.

Two kinds of test where then performed: static tests,
where a low frequency triangular signal where applied,
and dynamic tests with sinusoidal inputs. A Tektroniks
CFG 353, provided the inputs.  Figure 6 shows a
screenshot ; one of the four reference noise signals is also
featured with a full scale sinusoidal input.

From the first set of measures the maximum resolution,
IO characteristic, and the resolution variation with N, β
and maximum dynamic range were verified.
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Figure 5: Acquisition architecture relies heavily on digital processing and self configuration using
highly variable analog elements (a). Statistics estimation uses multiple noise references with
overlapping regions of influence (b). This way analog offset variation expands the dynamic range (DR).
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4.1. Static features

Using a triangular signal with amplitude A = 2.1875V,
offset VQ = 0.25V, and frequency f =24.9 (ou 249) Hz.
Data was sampled with a frequency of Fs =  5Msamples/s.
Noise references were set to have 6V around 3σ. Figure 7
shows the input/output characteristic of the process.

Figure 7. Outputs from averaging in each
comparator and after non-linear statistics
mapping.

Final output is calculated using equation 7 and the
outputs of the four comparators. Since we have a
stochastic convergence, estimating the resolution from the
error will result in a distribution.

Figure 8, shows the distribution for different number of
averages (N) and distinct degree of paralleli sm (β). The
marked spots show that we can achieve a 8 bits resolution
either using two comparators and N=20000, or using
10.000 averages and four comparators.

In Figure 8b is possible to see how the designer  can
exchange parallel comparators  for additional averaging
cycles.  A continuum design-space using only low cost
blocks is thus made available.

Figure 8. Parallelism and resolution. Equation 6
predicts min. resolution for a given pair (N,β

�
)

On stochastic sampling, resolution also is a function is
worst at the noise fringes. Figure 9 shows how the
combined output reflects this characteristic. On the bottom

of the figure the γn references are indicated.

Figure 9. Resolution as a function of deviation
from noise references centers. Dashed line
shows the actual centers for γ� n.

5. Final Remarks and Future Work

This work puts forward the concept of direct highly
digital, statistics acquisition. Measured results verified the
theoretical data. However, these are only the first results,
and there are still a number of open issues.
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are used in the acquisition algorithm.



In future works we would li ke to:
(i) to determinate an optimal algorithm for the

configuration stage of the architecture, ideally one should
use noise sources with distinct variations and ranges;

(ii ) use more sophisticated adaptive modeling to
statistics reconstruction;

(ii i) establi sh the minimal features and ideal
architecture for the noise generator block;

(iv) define a automatic path from a higher level
description of the application to the smaller statistics
acquisition hardware.

Some of these results have already been achieved. A
digital full prototype of the converter was designed and
the costs evaluated. Table I shows the results.

SS-ADC
DIGITAL BLOCKS (GATE COUNT)
For 5 bits N ⋅ β =  214 β =1 β =2 β =4
Averaging and weighting the
acquired bitstream

2153 2250 2444

Random sampling
generation*

764

ANALOG BLOCKS AREA (µM2)
Generator Reference 27.474
Comparator area 1.325 2.650 5.300

Table 1. Statistics acquisition cost

Next we intend to test the approach using digital
specific digital process information. We also want to
determinate the implementation cost of a prototype and
compare results with other mainly digital low-area signal
acquisition designs.
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