
Layer Assignment Techniques for Low Energy in Multi-layered Memory
Organisations

E. Brockmeyer, M. Miranda, H. Corporaal∗, F. Catthoor†

∗ Also professor at the Technische Univ. Eindhoven, The Netherlands
† Also professor at the Katholieke Univ. Leuven, Belgium

Abstract

Nearly all platforms use a multi-layer memory hierar-
chy to bridge the enormous latency gap between the large
off-chip memories and local register files. However, most of
previous work on HW or SW controlled techniques for layer
assignment have been mainly focussed on performance. As
a result, the intermediate layers have been assigned too
large sizes leading to energy inefficiency. In this paper we
present a technique that takes advantage of both the tem-
poral locality and limited lifetime of the arrays of the ap-
plication for minimum energy consumption under layer size
constraints. A prototype tool has been developed and tested
using two real-life applications of industrial relevance. Fol-
lowing this approach we have been able to half the energy
consumed by the memory hierarchy for each of our drivers.

1 Introduction

Existing platforms nearly always have more than one
layer in their memory subsystem. These layers are inserted
to bridge the enormous performance, latency and energy
consumption gap between the large off-chip memories and
the processor. Memory hierarchy layers can contain normal
(software controlled) memories or caches. An application
has to be mapped efficiently on this memory hierarchy. Of-
ten this requires that smaller copies are made from larger
data arrays which can be stored in the smaller layers [2].
Those copies must be selected such that they minimize the
miss cost of all the layers globally. Any transfer of data
from a higher layer to the current one is considered to be
a miss for the current layer. This happens most efficiently
under software control because a compiler can take a global
view. In the case of local memories, copy operations should
be explicitly present in the code. However, in the case of
hardware controlled caches, the cache controller will make
the copies of signals at the moment they are accessed (and
the copy is not present in the cache yet). So the code must
be written such that the controller is forced to make the right
decision [4].

Memory Hierarchy Layer Assignment (MHLA) will take
advantage of temporal locality and limited lifetime of the ar-

rays in order to minimize the energy consumption within the
constraints. The search space is explored for the minimum
energy within timing and memory architecture constraints
while taking into account the copy overhead. In current de-
signs, the intermediate layers are not used efficiently and
can be made factors smaller consuming less energy while
maintaining an equally small miss rate and meeting the per-
formance requirements.

2 Problem statement

By exploiting data reuse, a part of an array is copied from
one layer to the lower layer from where it is read multiple
times. As a result, energy can be saved since most accesses
take place on the smaller copy and not on the large more
energy consuming original array. Many different opportu-
nities exist for making a data reuse copy. These are called
copy candidates (CCs). Only when it has been decided to
instantiate a CC we call it a copy. A relation exists be-
tween the size of a CC and the number of transfers from the
higher layer, typically called misses (see Fig. 1). This fig-
ure shows a loop nest with one reference to an array A with
size 250. The array has 10000 accesses. Several CCs for
array A are possible. For example we could add a copy A”
of size 10 which is made in front of the k-loop by adding the
statement “for (z=0; z<10; z++) A2[z]=A[j*10+z];”. This
copy1 statement is executed 100 times, resulting in 1000
misses to the A array. This CC point is shown in Fig. 1b.
Note that the good spatial locality in this example does not
influence the amount of misses to the next level. In theory
any CC size ranging from one element to the full array size
is a potential candidate. However, in practice only a limited
set of CCs leads to efficient solutions. Obviously, a larger
CC can retain the data longer and can therefore avoid more
misses. All possible CCs are shown in Fig. 1b. The most
promising CC sizes and miss counts are kept and put into
a data reuse chain as shown in Fig. 1c. These are exactly
those that have a relation to the loop bounds. This data
reuse chain is completed with the 250 writes to the array.
The above example considers only a single array with one
reference. In practice multiple arrays exist, each with one

1Though the copy candidates will be instantiated as arrays in the appli-
cation we reserve the name array for the “original array”.

1530-1591/03 $17.00 2003 IEEE

or more references. To each read reference corresponds a
reuse chain. These chains are combined in a reuse tree. For
example, the upper left of Fig. 2 shows two data reuse trees
(array A has 2 references). Indeed, the second reference of
A has no promising CC. More details on identification of
data reuse chains and trees can be found in [2, 12].

Data reuse possibilitiesProgram

1000

250

10000

A

A’’

100

A’

int A[250];
for (i=0; i<10; i++)
 for (j=0; j<10; j++)
 for (k=0; k<10; k++)
 for (l=0; l<10; l++)
 Read(A[j*10+l]);

Size=10

Size=100

Size=250
10000

1000

100

10 100 250
size

#misses

Selected copy candidates
(reuse chain)

a b c

Figure 1. Data reuse information

In the next step, CCs and arrays are mapped to a data
memory hierarchy. We consider a generic target platform.
It contains multiple memory layers Li, each layer contains
multiple memory partitions, where each partition contains
multiple memory modules. All memory modules within a
partition are of the same type but can have different sizes
and number of ports. Typical types are software controlled
SRAM or DRAM (typically called scratchpad memories),
off-chip (S)DRAM and caches.

A

A’

A"

B

B’

10000500

1000

100

250 150

5000

2000

L2

L1

A

A" B

L2

L1

10000500

1000

250

150

5000

Reads = 1000+500
Writes = 250
Passes = 0
E=17.5mJ

Reads = 10000+5000
Writes = 1000+150
Passes = 500
E=16.6mJ

MHLA

Size=1Mb
E/acc=10uJ/acc

Size=1Kb
E/acc=1uJ/acc

(select & assign)

underlined accesses are
 overhead for copies

Figure 2. MHLA problem definition

Now we are capable of defining the MHLA problem:
MHLA=minimizing the energy consumption of the data
memory hierarchy for a given program and platform by se-
lecting a set of CCs and assigning them together with the

arrays to the memory partitions within the layers of the plat-
form.

MHLA determines the energy consumption of a map-
ping by calculating the activity of the individual partitions
and using the energy consumption per access. This cost
is a function of size and other memory parameters and is
modeled in a memory library. The MHLA process and its
mapping result are depicted in Fig. 2. MHLA has selected
the A” and B to be stored in L1 and the A array in L2. As a
result 250 writes occur on L2 for A, 500 reads for the first
access and 1000 misses for A”. The L1 layer has 150 writes
for the B array, 1000 writes due to the misses of A” and
15000 reads for both A” and B. Note that the 500 accesses
of the first A reference do not affect the activity of the L1
for this architecture. This may not be the case for hard-
ware controlled caches. Because all accesses have to pass
through the cache when no bypass is foreseen. Also note
that for caches no explicit copies are introduced in the code.
However, the cache controller can be enforced to make the
desired copy by a proper memory layout [4].

Nr misses = 3000

Nr misses = 2750

Nr misses = 5250

Nr misses = 5250

Layer size

copy size

m
is

se
s

(x
10

00
)

copy size
0

6

m
is

se
s

(x
10

00
)

0

6

}
}

}
}

00

A[] B[]

3 3

Figure 3. Trading of the copy candidate size

The mapping of arrays and CCs must be performed glob-
ally in order minimize the energy consumption. The size of
one copy must be traded for the size of another copy be-
cause layer size is constraint or must be kept low for en-
ergy reduction. A simple illustrative example of the data
reuse tradeoff having multiple references is given in Fig. 3.
The two left hand side curves show the miss count versus
copy size tradeoff for two access references in an applica-
tion. The access to array A has a maximum of 6000 misses
which can be reduced below 1000 misses when the largest
interesting CC is selected. Similarly, the array B has about
4000 misses without CC and 500 for the largest CC. The
number of misses is minimal when selecting the largest CC
for both. However, this assignment leads to an infeasible
implementation as the total size does not obey the layer size
constraint given at the right hand side of Fig. 3. The column
at the right hand side of this figure shows the feasible com-
bination of CCs in this layer. The upper solution combines
the largest CC of B and the largest feasible CC of A. The to-

2

tal number of 3000 cache misses is the sum of the individual
CCs. While constructing the other solutions, some space of
the B copy candidate is traded for the A copy candidate. As
a result the number of misses for A reduces and the number
of misses of B increases. In this simple example it is easy
to determine the optimal solution having 2750 misses. In
general however, realistic applications have too many pos-
sibilities to still find the best solutions manually. Certainly
when trading the selection and assignment of CCs together
with the assignment of arrays to a layer. This is needed in
order to avoid unnecessary copying from one layer to the
next. Additionally the problem must be considered over the
memory hierarchy globally because misses of one layer can
be traded for misses on another layer. So an automated tech-
nique and tool is needed.

3 Related work

Optimizing the memory hierarchy for performance is a
well explored topic [3, 7, 11, 6]. Also several recent papers
address the energy related issues [9, 12].

The characterization of [14] clusters the data sets into
different types. These different clusters have certain mem-
ory type preferences and are assigned accordingly. The
mapping is sub optimal (especially for the regular accesses)
because it is based on some average characteristics and does
not allow and accurate prediction. Afterward, the perfor-
mance is measured by simulation. Also [15] made a distin-
guish between caches and scratchpad memories. However,
no real layer assignment was made. The technique pre-
sented in [18] assign data (and instructions) to the scratch-
pad. However, no consideration is made to benefit from
reuse and inplace opportunities.

The closest work is presented in [12]. It analyses and ex-
ploits the temporal locality by inserting local copies. Their
layer assignment builds a separate hierarchy per loop nests
and then combines them into a single hierarchy. However,
a global view of the assignment and lifetime of the arrays
and copies is required for real life applications having im-
perfect nested loops. Moreover, no overhead estimation is
made which makes it impossible to tradeoff copies versus
arrays in a certain layer. Similarly, the work published [8]
lacks of a global application view.

Access trace based analysis techniques like pre-
sented [10] have limited optimization capabilities. The
quality of the analysis depends on the preceding compila-
tion step. For instance, from access profile point of view
all elements of an array are accessed equally while a small
data reuse copy could be present. As a result, the explo-
ration space cannot be searched properly.

To our knowledge no one has combined the opportuni-
ties for data reuse and inplace in an automatable technique
for real life application that is not based on simulation. Our
approach allows finding the optimal assignment in a pre-

dictable way for both memories and hardware caches.

4 Exploration methodology

An efficient mapping of arrays and CCs to partitions
must be found within reasonable time. The exploration is
performed in two phases. The first phase assigns all the ar-
rays to the partitions. Indeed, all arrays have to be assigned
to guarantee functionality. In the second phase, a selection
of CCs is mapped to the remaining partition space for each
valid array assignment. In principle we can fully search all
possible mappings of arrays and CCs. This may take sev-
eral hours though. Therefore we have implemented a steer-
ing heuristic and have optimized the implementation by so
called incremental assignment.

Steering heuristic: The arrays having the highest access
over size ratio are assigned to the cheapest possible partition
first. Intuitively this makes sense, as then the cheapest par-
titions will get most accesses. A similar heuristic is used for
the CCs. However, for CCs we do not know the number of
accesses before all possible CCs are mapped. For example,
in Fig.1 the number of reads to A’ is 1000 or 10000 depend-
ing on whether A” is mapped or not. Therefore we use the
highest ratio of misses over CC size. This is also logical
because these copies avoid a larger amount of misses.

Assigned
copy candidates Platform

NOT Assigned
copy candidates

1000

250

10000
11000

L0

L1

L2

L3A

A’’

1250
350

100

1100

A’

Assigned
copy candidates Platform

NOT Assigned
copy candidates

1000

100

250

10000

1250

11000
L0

L1

L2

L3A

A’

A’’

Current assignment Next assignment

step1

step2

Figure 4. The next assignment is incremen-
tally calculated

Incremental assignment: The MHLA exploration
works in an incremental way for exploration efficiency.
From a given, current assignment a new one is constructed;
see Fig. 4. The left hand side shows an example of the cur-
rent assignment where the array A is assigned to L3, A” to
L0 and the copy candidate A’ unassigned. First a new CC is
selected. In the example, A’ is the only CC remaining and
is selected. This CC is assigned iteratively to those mem-
ory partitions that are in between the layers to which the
higher and lower CC are assigned. In Fig. 4, A’ can only
be assigned to partitions in L1 and L2. Other partitions do
not have to be searched for. Independent of the partition
assignment of A’, the misses 1000 of A” do not take place
anymore on L3 but are replaced by the 100 misses of A’.

3

If A’ is assigned to L1, the 100 misses of A’ and the 1000
misses of the next lower assigned CC (A”) are added to L1.
Furthermore the size impact of the assignment to L1 must
be evaluated. The most simple size estimation adds the CC
size to its assigned partition. This will lead however to a
very poor layer usage. An improved estimation based on
limited lifetime is explained in Section 6. The changes in
size, accesses and the effects on the total energy consump-
tion can be calculated without knowing all details of the
already assigned CCs.

5 Design flow

MHLA is part of a design flow that optimizes the data
memory hierarchy. Two phases can be distinguished in
this flow. First a platform independent phase performs
program transformations in order to improve locality, data
reuse opportunities and required storage size. If this phase
is skipped the approach still works but the final results will
typically be worse due to the worse temporal locality. The
second phase maps the application to the target platform.
This is performed in four decoupled steps. First MHLA de-
termines for each data set a layer and type. Afterwards we
have more detailed timing information about the array refer-
ences. This is required for the following step that optimizes
the required memory access parallelism for meeting the tim-
ing constrains. Techniques like [19, 13] could be used here.
Certain accesses must happen in parallel in order to meet the
target budget. The conflicting memory accesses must be ei-
ther stored in different memories or in a dual port memory.
The third step, memory allocation and assignment, assigns
the data within the memory partition to the various memo-
ries obeying the required parallelism [10, 16]. A final data
layout step decides on the storage layout of the data inside
the memory. This allows for instance to minimize the re-
quired storage size (see next section). At the MHLA step, it
is important to estimate the later data layout step. Especially
the storage size of the next section has a large impact.

6 Partition size estimation

The exploitation of limited lifetime allows to have
smaller layers or to store more data in an equal sized layer.
Both can have a huge impact on the (energy) performance.
Especially, the short lifetime of the CCs should be consid-
ered carefully. Also, it can be expected that a technique
without inplace estimation is useless for larger applications.
All arrays will have relatively a smaller lifetime when the
application size increases.

Fig. 5 explains how we can exploit limited life times and
reuse locations. The left part shows how elements of A and
B are used in time. The shaded areas indicate which ele-
ments are used and for how long. Clearly, the declared size
of array A can be reduced by a factor three by reusing the

same locations. This is called intra inplace [5]. Furthermore
the lifetime of the elements of array B do not overlap with
A. Therefore B can also reuse the locations of A. This is
called inter inplace [5]. The result of both inplace opportu-
nities is shown on the right of Fig. 5.

We have implemented a low complexity inter inplace es-
timation. The storage size estimation is based on the simul-
taneous alive data in the most inner loops of the application.
As a result we only have to update the storage size of those
inner loops that span the lifetime of the CC.

Time

Index
Required

size

Time

Index

Required
size{

{B

A

Intra inplace of A array

Inter inplace of A and B

lifetime of A

Figure 5. Inplace concept explanation

7 Case studies

Two demonstrators having different characteristics are
selected to present the impact of MHLA. The first demon-
strator from the video compression fields works mainly on
two dimensional arrays and has a lot of data reuse. The sec-
ond demonstrator is a wireless receiver with limited reuse
and only single dimensional arrays. It is worth noting that
both algorithms span several pages of complex C code.

Initially we assume the architecture to have two layers.
The used partition energy model is based on a real memory
model and is displayed by the solid line in Fig. 7. Rela-
tive energy figures are sufficient for the tool explore on. All
the memory model numbers are relative to the fixed size
off-chip memory of 1Mbyte. The largest on-chip memory
of 16Kb is a factor 3 less energy consuming than off-chip
memory. This conservative factor is realistic and surely not
in favor of the method. The energy model is slightly super
logarithmic so a memory which is 256× larger consumes
8.6× more energy per access. This same energy model is
used for L0 and L1 in both drivers. The energy consumption
is computed by multiplying by the memory activity. The
memory activity is obtained by executing an instrumenta-
tion version of the source code.

7.1 QSDPCM

The Quadtree Structured Difference Pulse Code Modu-
lation (QSDPCM) algorithm is an inter-frame compression
technique for video images. It involves a hierarchical mo-
tion estimation step, and a quadtree based encoding of the
motion compensated frame-to-frame difference signal [17].

A global view of the QSDPCM main signals and their
reuse is given in Fig. 6. Many data reuse opportunities ex-

4

pre
v_

fra
m

e

pre
v_

fra
m

e_
su

b2

pre
v_

fra
m

e_
su

b4

Data-path / functional units / processing elements

"a
rr

ay
s"

"c
o

p
y

ca
n

d
id

at
es

"
fra

m
e

fra
m

e_
su

b2

fra
m

e_
su

b4

m
4,

n4
,t4

,Q
C_

t2
,Q

C_
m

2
m

ea
n

2

m
2,

n
2,

t2
,Q

C
_t

4

Figure 6. Assignment to memory hierachy.

ists for the QSDPCM application as can be seen from the
many data reuse chains. Different runs of the MHLA tool
explore the L1 size. Fig. 7 shows the energy contribution of
the L1 (bottom bar) and main memory (top bar). When in-
creasing the layer size, the energy goes down because fewer
accesses occur on the more energy consuming main mem-
ory. The L1 miss rate reduction does not decrease much fur-
ther for a L1 size larger than 640. Therefore the L1 energy
per access increase penalty is not compensated by the lower
amount of misses. Hence the overall energy consumption
increases. The optimal assignment corresponding to this
optimum is given in Fig. 6. The circled arrays and CCs are
stored in the L1. The other arrays are stored in the main
memory. The not circled CCs are not selected. Inserting
an extra smaller third layer did not significantly reduce the
energy, as the L1 in the two-layer optimum architecture is
already small. When we compare the presented technique
to an array assignment technique (crosses) we gain a fac-
tor 2 in energy. When switching of the inplace estimation
(triangles) we require a L1 of 1K instead of 640 elements
to reach the minimum energy. Moreover, it consumes 3.2%
more energy.

assignment only
data reuse exploited

0 64 12
8

25
6

51
2
10

24
20

48
40

96

81
92

16
38

4

of
f-c

hip

Size L1

0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 e

ne
rg

y
(a

cc
es

se
s+

ov
er

he
ad

)

E in main mem
E in L1

0.0

0.2

0.4

0.6

0.8

1.0

E
/acc

E/acc in L1

Figure 7. Energy for varying L1 size.

7.2 DAB

Digital Radio is a typical application for portable usage.
Therefore low energy issues are very important to extend
the battery lifetime. The DAB channel coding standard in-
volves several complex data-dominant algorithms.

Similar to the previous driver, a L1 size exploration is
performed and shown in the top curve of Fig. 8. The mini-
mum energy is consumed for a L1 size of 8K elements. The
relatively large decrease in energy while increasing the L1
size from 0 to 64 reveals that it might be interesting to in-
sert an L0 of size 64. Therefore we repeat the experiments
with an additional layer of size 64 and 128. The additional
energy reduction is 15% for both layer sizes at the optimal
point. Deeper investigation showed that the additional gain
was obtained in the FFT function. Up to 25% of the L1
accesses were removed due to this additional layer.

0 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92

16
83

4

32
76

8

65
53

6

Size L1

0

2000

4000

6000

8000

10000

E
ne

rg
y L0=0
L0=64
L0=128

Figure 8. Architecture exploration for DAB.

The most energy efficient assignment has been used to
map the DAB application to the TriMedia processor. This
processor is selected because it has a data memory hierarchy
that matches the optimal architecture. The processor has an
L0 layer of 128 registers, 16Kb cache and 8Mb of SDRAM.
Importantly, the exploitation of the L0 register file has to be
careful evaluated. On one hand, the number of data load
stores will reduce because more data remains in the L1. On
the other hand, the higher register pressure might counter-
act this gain as register spilling is required to schedule all
instructions. Also the required unrolling, in order to keep
the data in the register file, needs more instruction cache
space. The tradeoff between the load stores, spilling and
instruction cache is given in Table 1. The native TriMe-
dia simulator is used for the evaluation of three differently
transformed implementations having a more or less aggres-
sive L0 register usage (second column). The large reduction
of 34% in memory accesses has of course a large impact on
data memory consumption and performance. Also very im-
portant to note, the prediction of the MHLA is very close to
the actual number of accesses made by the compiled code.
The small difference between the MHLA predicted activ-
ity and simulation results are largely explained by the few
register spillings and some low level compiler details.

5

#reg #ld/st pred data cache cycles
#ld/st misses

Standard reg. usage 6 — 23532 — —
Mild reg. usage 22 18408 17152 2895 91552
Aggressive reg. usage 70 11837 11232 763 47341

Table 1. DAB results on TriMedia simulator

7.3 Execution time measurements

The tool exploration time is an important factor next to
the quality of the results. Table 2 shows the number of
explored assignments before finding the optimal solution
in comparison to the total number in the huge exploration
space. The last column clearly shows that the chosen heuris-
tic allows to find the best solutions within reasonable time.
Interesting to note is that the current implementation makes
about 20000 evaluations per second on a Pentium-IV.

Size L1 nr. explored nr. valid Optimum in
assignments assignments # iterations

64 46951 4767 3333
128 351819 45976 34027
256 2563636 540651 1514
512 934606 6175295 9279
1024 20711631 12356321 1077
2048 25552456 23460160 786
4096 28311552 28311552 12

Table 2. Tool performance on QSDPCM

8 Conclusion and future work

This paper has presented the first automated technique
to perform layer assignment taking reuse and inplace into
account. A fast exploration technique and heuristic is pro-
posed. This technique is implemented in a prototype tool
that has allowed us to do exploration on real life demonstra-
tors of industrial relevance. The energy is more than halved
by exploiting limited lifetime and reuse in arrays.

The intention is to extend the technique such that it can
handle more memory types. The currently supported types
are both software and hardware controlled memories. Cur-
rently we are adding cycle budget estimation such that it
trades energy for performance. Limited data dependent con-
ditions and data dependent addressing is supported. Further
research is required to remove more dynamic and data de-
pendent limitations.

References

[1] Radio broadcasting systems; digital audio broadcasting to
mobile, portable and fixed receivers. Standard RE/JTC-
00DAB-4, ETSI, ETS 300 401, May 1997.

[2] T. Achteren, R.Lauwereins, and F.Catthoor. Systematic data
reuse exploration techniques for non-homogeneous access
patterns. In Proc. 5th ACM/IEEE Design and Test in Europe
Conf. (DATE), pages 428–435, Paris, France, Apr. 2002.

[3] e. a. C.Ancourt. Automatic data mapping of signal process-
ing applications. In Proc. Intnl. Conf. on Applic.-Spec. Array
Processors, pages 350–362, Zurich, Switzerland, 1997.

[4] C.Kulkarni. Cache optimization for multimedia applications.
Doctoral dissertation, ESAT/KUL, Belgium, 2001.

[5] E. Greef. Storage size reduction for multimedia applications.
Doctoral dissertation, ESAT/KUL, Belgium, Jan. 1998.

[6] H-B.Lim and P-C.Yew. Efficient integration of compiler-
directed cache coherence and data prefetching. In Proc.
Intnl. Parallel and Distr. Proc. Symp.(IPDPS), pages 331–
339, Cancun, Mexico, May 2000.

[7] J.Anderson, S.Amarasinghe, and M.Lam. Data and compu-
tation transformations for multiprocessors. In 5th ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Program-
ming, pages 39–50, Aug. 1995.

[8] e. a. K.Masselos. Memory hierarchy layer assignment for
data re-use exploitation in multimedia algorithms realized on
predefined processor architectures. In The 8th IEEE Intnl.
Conf. on Electronics, Circuits and Systems (ICECS), pages
285–288, Oct. 2001.

[9] L.Benini, A.Bogliolo, and G. Micheli. A survey of de-
sign techniques for system-level dynamic power manage-
ment. IEEE Trans. on VLSI Systems, pages 299–, 2000.

[10] L.Benini, L.Macchiarulo, A.Macii, and M.Poncino. Layout-
driven memory synthesis for embedded system-on-chip.
IEEE Trans. on VLSI, pages 96–105, 2002.

[11] M.Kampe and F.Dahlgren. Exploration of spatial locality
on emerging applications and the consequences for cache
performance. In Proc. Intnl. Parallel and Distr. Proc.
Symp.(IPDPS), pages 163–170, Cancun, Mexico, May 2000.

[12] M.Kandemir and A.Choudhary. Compiler-directed scratch
pad memory hierarchy design and management. In 39th
ACM/IEEE Design Automation Conf., pages 690–695, Las
Vegas NV, June 2002.

[13] P.Grun, N.Dutt, and A.Nicolau. Mist: an algorithm for mem-
ory miss traffic management. In Proc. IEEE Intnl. Conf. on
CAD, pages 431–437, Santa Clara CA, Nov. 2000.

[14] P.Grun, N.Dutt, and A.Nicolau. Apex: access pattern based
memory architecture exploration. In The 14th International
Symposium on system synthesis, pages 25–32, Montreal,
Canada, Oct. 2001.

[15] P.R.Panda, N.D.Dutt, and A.Nicolau. Data cache sizing for
embedded processor applications. In Proc. 1st ACM/IEEE
Design and Test in Europe Conf. (DATE), pages 925–926,
Paris, France, Feb. 1998.

[16] P.Slock, S.Wuytack, F.Catthoor, and G. Jong. Fast and exten-
sive system-level memory exploration for atm applications.
In Proc. 10th ACM/IEEE Intnl. Symp. on System-Level Syn-
thesis (ISSS), pages 74–81, Antwerp, Belgium, Sept. 1997.

[17] P.Strobach. Qsdpcm – a new technique in scene adaptive
coding. In Proc. 4th Eur. Signal Processing Conf. (EU-
SIPCO), pages 1141–1144, Grenoble, France, Sept. 1988.

[18] S.Steinke, L.Wehmeyer, B-S.Lee, and P.Marwedel. Assign-
ing program and data objects to scratchpad for energy reduc-
tion. In Proc. 5th ACM/IEEE Design and Test in Europe Conf.
(DATE), pages 409–415, Paris, France, Apr. 2002.

[19] S.Wuytack, F.Catthoor, G. Jong, B.Lin, and H. Man. Flow
graph balancing for minimizing the required memory band-
width. In Proc. 9th ACM/IEEE Intnl. Symp. on System-Level
Synthesis (ISSS), pages 127–132, La Jolla CA, Nov. 1996.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

