
Reducing Power Consumption for High-Associativity Data Caches in Embedded
Processors

Dan Nicolaescu Alex Veidenbaum Alex Nicolau

Dept. of Information and Computer Science
University of California at Irvine

{dann, alexv, nicolau}@cecs.uci.edu

Abstract

Modern embedded processors use data caches with
higher and higher degrees of associativity in order to in-
crease performance. A set–associative data cache con-
sumes a significant fraction of the total power budget in
such embedded processors. This paper describes a tech-
nique for reducing the D–cache power consumption and
shows its impact on power and performance of an embed-
ded processor. The technique utilizes cache line address
locality to determine (rather than predict) the cache way
prior to the cache access. It thus allows only the desired
way to be accessed for both tags and data. The proposed
mechanism is shown to reduce the average L1 data cache
power consumption when running the MiBench embedded
benchmark suite for 8, 16 and 32–way set–associate caches
by, respectively, an average of 66%, 72% and 76%. The
absolute power savings from this technique increase sig-
nificantly with associativity. The design has no impact on
performance and, given that it does not have mis-prediction
penalties, it does not introduce any new non-deterministic
behavior in program execution.

1. Introduction

A data caches is an important component of a modern
embedded processor, indispensable for achieving high per-
formance. Until recently most embedded processors did not
have a cache or had direct–mapped caches, but today there’s
a growing trend to increase the level of associativity in order
to further improve the system performance. For example,
Transmeta’s Crusoe [7] and Motorola’s MPC7450 [8] have
8–way set associative caches and Intel’s XScale has 32–way
set associative caches.

Unfortunately the power consumption of set–associative
caches adds to an already tight power budget of an embed-
ded processor.

In a set–associative cache the data store access is started
at the same time as the tag store access. When a cache ac-
cess is initiated the way containing the requested cache line
is not known. Thus all the cache ways in a set are accessed
in parallel. The parallel lookup is an inherently inefficient
mechanism from the point of view of energy consumption,
but very important for not increasing the cache latency. The
energy consumption per cache access grows with the in-
crease in associativity.

Several approaches, both hardware and software, have
been proposed to reduce the energy consumption of set–
associative caches.

A phased cache [4] avoids the associative lookup to the
data store by first accessing the tag store and only accessing
the desired way after the tag access completes and returns
the correct way for the data store. This technique has the
undesirable consequence of increasing the cache access la-
tency and has a significant impact on performance.

A way–prediction scheme [4] uses a predictor with an
entry for each set in the cache. A predictor entry stores
the most recently used way for the cache set and only the
predicted way is accessed. In case of an incorrect predic-
tion the access is replayed, accessing all the cache ways in
parallel and resulting in additional energy consumption, ex-
tra latency and increased complexity of the instruction issue
logic. Also, given the size of this predictor, it is likely to in-
crease the cache latency even for correct predictions.

Way prediction for I-caches was described in [6] and
[11], but these mechanisms are not as applicable to D-
caches.

A mixed hardware–software approach was presented in
[12]. Tag checks are avoided by having the compiler output
special load/store instructions that use the tags from a previ-
ous load. This approach changes the compiler, the ISA and
adds extra hardware.

This paper proposes a mechanism that determines, rather
than predicts, the cache way containing the desired data be-
fore starting an access (called way determination from now
on). Knowing the way allows the cache controller to only

1530-1591/03 $17.00  2003 IEEE

To Data Path

Address Way

Way Determination

Unit

Cache

Controller
L1

Cache

MUX

Figure 1. Cache hierarchy with way determi-
nation

access one cache way, thus saving energy. The approach
is based on the observation that cache line address locality
is high. That is, a line address issued to the cache is very
likely to have been issued in the recent past. This local-
ity can be exploited by a device that stores cache line ad-
dress/way pairs and is accessed prior to cache access. This
paper shows that such a device can be implemented effec-
tively.

2. Way Determination

Way determination can be performed by a Way Determi-
nation Unit (WDU) that exploits the high line address local-
ity. The WDU is accessed prior to cache access and supplies
the way number to use as shown in Figure 1.

The WDU records previously seen cache line addresses
and their way number. An address issued to the cache is
first sent to WDU. If the WDU contains an entry with this
address the determination is made and only the supplied
cache way is accessed for both tags and data. Since the
address was previously seen it is not a prediction and is al-
ways correct. If the WDU does not have the information for
the requested address, a cache lookup is performed with all
the ways accessed in parallel. The missing address is added
to the WDU and the cache controller supplied way number
is recorded for it.

Because of the high data cache address locality the num-
ber of entries in the WDU can be small, thus allowing fast
access and low energy overhead. WDU lookup can be done
in parallel with load/store queues access as it has about the
same latency. This should add no extra latency to the cache

Way

Cache Line

Address

Modulo

counter

Cache line

address

Way

LOOKUP

UPDATE

Tag}

{Replacement

logic

} Way store

Valid bit

Figure 2. Way determination unit

access.
The way determination system proposed here is based on

access history. It has an energy penalty on misses similar to
the mis-prediction penalty in a predictor. But it doesn’t have
the performance penalty of a mis-prediction.

3. The Way Determination Unit design

The WDU, as shown in Figure 2, is a small, cache–like
structure. Each entry is an address/way pair plus a valid bit.
The tag part is fully associative and is accessed by a cache
line address. The address is compared to a tag on lookup to
guarantee the correct way number.

There are two types of WDU access: lookup and update.
The lookup is cache-like: given a cache line address as in-
put, the WDU returns a way number for a matching tag if
the entry is valid. Updates happen on D–cache misses or
WDU miss and cache hit. On a miss the WDU entry is im-
mediately allocated and its way number is recorded when
the cache controller determines it. If there are no free en-
tries in the WDU the new entry replaces the oldest entry
in the WDU. Our initial implementation uses a FIFO entry
pointed to by the modulo counter.

One other issue the WDU design needs to address is co-
herence: when a line is replaced or invalidated in the L1
cache the WDU needs to be checked for the matching en-
try. The WDU entry can be made invalid. Another possible
approach is to allow the access to proceed using the WDU–
supplied way and a cache miss to occur when the cache tag
access is performed. The way accessed was the only place
the line could have been found. The WDU can be updated
when a line is allocated again. This is the approach used in
the design presented here.

4. Experimental Setup

To evaluate the WDU design, the Wattch version 1.02
simulator [1] was augmented with a model for the WDU.

2

45

50

55

60

65

70

75

80

85

90

95

100

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
_
c

s
u
s
a
n
_
e

s
u
s
a
n
_
s

jp
e
g
_
c

jp
e
g
_
d

la
m

e

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

d
ijk

s
tr

a

p
a
tr

ic
ia

g
h
o
s
ts

c
ri
p
t

is
p
e
ll

s
tr

in
g
s
e
a
rc

h

b
lo

w
fis

h
_
d

b
lo

w
fis

h
_
e

p
g
p
_
s
a
z

p
g
p
_
z

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

s
h
a

C
R

C
3
2

a
d
p
c
m

_
c

a
d
p
c
m

_
d

ff
t_

d

ff
t_

i

g
s
m

_
t

g
s
m

_
u

size8 size16 size32 size64

Figure 3. Percentage load/store instructions “covered” by way determination for a 32–way set asso-
ciative cache

Based on SimpleScalar [2], Wattch is a simulator for a su-
perscalar processor that can do detailed power simulations.
The CMOS process parameters for the simulated architec-
ture are 400MHz clock and .18µm feature size.

The processor modeled uses a memory and cache orga-
nization based on XScale [5]: 32KB data and instruction L1
caches with 32 byte lines and 1 cycles latency, no L2 cache,
50 cycle main memory access latency. The machine is in-
order, it has a load/store queue with 32 entries. The machine
is 2–issue, it has one of each of the following units: integer
unit, floating point unit and multiplication/division unit, all
with 1 cycle latency. The branch predictor is bimodal and
has 128 entries. The instruction and data TLBs are fully
associative and have 32 entries.

4.1. The WDU power model

The WDU tags and way storage are modeled using a
Wattch model for a fully associative cache. The processor
modeled is 32bit and has a virtually indexed L1 data cache
with 32 byte lines, so the WDU tags are 32 − 5 = 27 bits
wide, and the data store is 1, 2, 3, 4 or 5 bits wide for a 2,
4, 8 or 32–way set associative L1, respectively. The power
consumption of the modulo counter is insignificant com-
pared to the rest of the WDU. The power model takes into
account the power consumed by the different units when
idle.

For a processor with a physically tagged cache the size
of the WDU is substantially smaller and so would be the
power consumption of a WDU for such an architecture.

Cacti3 [10] has been used to model and check the timing

parameters of the WDU in the desired technology.

4.2. Benchmarks

MiBench[3] is a publicly available benchmark suite de-
signed to be representative for several embedded system
domains. The benchmarks are divided in six categories
targeting different parts of the embedded systems market.
The suites are: Automotive and Industrial Control (ba-
sicmath, bitcount, susan (edges, corners and smoothing)),
Consumer Devices (jpeg encode and decode, lame, tiff2bw,
tiff2rgba, tiffdither, tiffmedian, typeset), Office Automation
(ghostscript, ispell, stringsearch), Networking (dijkstra, pa-
tricia), Security (blowfish encode and decode, pgp sign and
verify, rijndael encode and decode, sha) and Telecommuni-
cations (CRC32, FFT direct and inverse, adpcm encode and
decode, gsm encode and decode).

All the benchmarks were compiled with the -O3 com-
piler flag and were simulated to completion using the
“large” input set. Various cache associativities and WDU
sizes have been simulated, all the other processor parame-
ters where kept constant during this exploration.

5. Performance Evaluation

Figure 3 shows the percentage of load/store instructions
for which a 8, 16, 32 or 64–entry WDU can determine the
correct cache way. An 8–entry WDU can determine the way
for between 51 and 98% of the load/store instructions, with
an average of 82%. With few exceptions (susan s, tiff2bw,

3

40

45

50

55

60

65

70

75

80

85

90

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
_
c

s
u
s
a
n
_
e

s
u
s
a
n
_
s

jp
e
g
_
c

jp
e
g
_
d

la
m

e

tif
f2

b
w

tif
f2

rg
b
a

tif
fd

ith
e
r

tif
fm

e
d
ia

n

d
ijk

s
tr

a

p
a
tr

ic
ia

g
h
o
s
ts

c
ri
p
t

is
p
e
ll

s
tr

in
g
s
e
a
rc

h

b
lo

w
fis

h
_
d

b
lo

w
fis

h
_
e

p
g
p
_
s
a
z

p
g
p
_
z

ri
jn

d
a
e
l_

d

ri
jn

d
a
e
l_

e

s
h
a

C
R

C
3
2

a
d
p
c
m

_
c

a
d
p
c
m

_
d

ff
t_

d

ff
t_

i

g
s
m

_
t

g
s
m

_
u

a
v
g

size8 size16 size32 size64

Figure 4. Percentage data cache power reduction for a 32–way set associative cache using different
WDU sizes

tiff2rgba, pgp, adpcm, gsm u) for the majority of bench-
marks increasing the WDU size to 16 results in a signifi-
cant improvement in the number of instructions with way
determination. The increase from 16 to 32 entries only im-
proves the performance for a few benchmarks, and the in-
crease from 32 to 64 for even fewer benchmarks.

Figure 4 shows the percentage data cache power savings
for a 32–way cache when using an 8, 16, 32 or 64–entry
WDUs. For space and legibility reasons all other results
will only show averages, the complete set of results can be
found in [9].

A summary of the average number of instructions for
which way determination worked for 2, 4, 8, 16 and 32–
way set–associative L1 data cache and 8, 16, 32 and 64–
entry WDU is presented in Figure 5. It is remarkable that
the WDU detects a similar number of instructions indepen-
dent of the L1 cache associativity. Increasing the WDU size
from 8 to 16 produces the highest increase in the percentage
of instructions with way determination, from 82% to 88%.
The corresponding values for a 32 and 64-entry WDU are
91% and 93%.

Figure 6 shows the average data cache power savings for
the MiBench benchmark suite due to using the WDU, com-
pared to a system that does not have a WDU. When com-
puting the power savings the WDU power consumption is
added to the D–cache power. For all the associativities stud-
ied the 16–entry WDU has the best implementation cost /
power savings ratio. It’s average D–cache power savings of
36%, 56%, 66%, 72% and 76% for, respectively, a 2, 4, 8,
16 and 32–way set associative cache are within 1% of the
power savings of a 32–entry WDU for a given associativ-

76

78

80

82

84

86

88

90

92

94

96

size8 size16 size32 size64

%

2-way 4-way 8-way 16-way 32-way

Figure 5. Average percentage load/store in-
structions “covered” by way determination

0

10

20

30

40

50

60

70

80

90

size8 size16 size32 size64

%

2-way 4-way 8-way 16-way 32-way

Figure 6. Average percentage D–cache power
reduction

4

0

2

4

6

8

10

12

14

16

size8 size16 size32 size64

%

2-way 4-way 8-way 16-way 32-way

Figure 7. Total processor power reduction

ity. The even smaller 8–entry WDU is within at most 3%
of the best case. For the 64–entry WDU the WDU power
consumption overhead becomes higher than the additional
power savings due to the increased number of WDU entries,
so the 64–entry WDU performs worse than the 32–entry one
for a given associativity.

Figure 7 shows the percentage of total processor power
reduction when using a WDU. For a 16–entry WDU
the power savings are 3.73%, 6.37%, 7.21%, 9.59% and
13.86% for, respectively a 2, 4, 8, 16 and 32-way set as-
sociative L1 data cache. The total processor power savings
are greater for higher levels of associativity due to the in-
creased D–cache power savings and to the increased share
of the D–cache power in the total power budget.

6. Conclusions

This paper addresses the problem of the increased power
consumption of associative data caches in modern embed-
ded processors. A design for a Way Determination Unit
(WDU) that reduces the D-cache power consumption by al-
lowing the cache controller to only access one cache way for
a load/store operation was presented. Reducing the number
of way accesses greatly reduces the power consumption of
the data cache.

Unlike previous work, our design is not a predictor. It
does not incur mis-prediction penalties and it does not re-
quire changes in the ISA or in the compiler. Not hav-
ing mis-predictions is an important feature for an embed-
ded system designer, as the WDU does not introduce any
new non–deterministic behavior in program execution. The
power consumption reduction is achieved with no perfor-
mance penalty and it grows with the increase in the associa-
tivity of the cache.

The WDU components, a small fully associative cache
and a modulo counter, are well understood, simple devices
that can be easily synthesized. It was shown that very a
small (8-16 entries) WDU adds very little to the design gate

count, but can still provide significant power savings.
The WDU evaluation was done on a 32–bit processor

with virtually indexed L1 cache. For a machine with a
physically indexed cache the WDU overhead would be even
smaller resulting in higher power savings.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. In ISCA, pages 83–94, 2000.

[2] D. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, 1997.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commer-
cially representative embedded benchmark suite. In IEEE
4th Annual Workshop on Workload Characterization, pages
83–94, 2001.

[4] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low energy
consumption. In ACM/IEEE International Symposium on
Low Power Electronics and Design, pages 273–275, 1999.

[5] Intel. Intel XScale Microarchitecture, 2001.
[6] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Mi-

cro, 19(2):24–36, Mar./Apr. 1999.
[7] A. Klaiber. The technology behind Crusoe processors. Tech-

nical report, Transmeta Corporation, january 2000.
[8] Motorola. MPC7450 RISC Microprocessor Family User’s

Manual, 2001.
[9] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. Reducing

power consumption for high-associativity data caches in em-
bedded processors. Technical Report TR-2002, University
of California, Irvine, 2002.

[10] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated
cache timing, power, and area model.

[11] W. Tang, A. Veidenbaum, A. Nicolau, and R. Gupta. Simul-
taneous way-footprint prediction and branch prediction for
ener gy savings in set-associative instruction caches.

[12] E. Witchel, S. Larsen, C. S. Ananian, and K. A. ic. Direct ad-
dressed caches for reduced power consumption. In Proceed-
ings of the 34th Annual International Symposium on Microa
rchitecture (MICRO-34), December 2001.

5

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

