
Implementation and Evaluation of an On-Demand Parameter-Passing Strategy
for Reducing Energy�

M. Kandemir
CSE Department

Penn State University
University Park, PA, 16802

I. Kolcu
Computation Department

UMIST
Manchester M60 1QD, UK

W.Zhang
CSE Department

Penn State University
University Park, PA, 16802

Abstract

In this paper, we present an energy-aware parameter-
passing strategy called on-demand parameter-passing. The
objective of this strategy is to eliminate redundant actual
parameter evaluations if the corresponding formal param-
eter in a subroutine is not used during execution. This on-
demand parameter-passing is expected to be very success-
ful in reducing energy consumption of large, multi-routine
embedded applications at the expense of a slight implemen-
tation complexity.

1. Introduction

It is possible to attack the energy consumption problem
from different angles. Throughout the years, circuit de-
signers developed numerous techniques to reduce energy
consumption (see [2] and the references therein). Recent
years have also witnessed several architectural and system
level optimizations. Among these are energy-efficient man-
agement of hardware components and use of low-power
operating modes. On the software side, operating sys-
tem (OS) based studies targeted at reducing energy con-
sumption through runtime monitoring, scheduling, and volt-
age/frequency scaling (e.g., [11]). More recently, com-
piler researchers (e.g., [10]) proposed several compila-
tion techniques for optimizing energy behavior of applica-
tions without impacting their performance severely. It is
also possible to reduce energy consumption using algorith-
mic/application level optimizations [3].

We strongly believe that addressing ever increasing en-
ergy consumption problem of integrated circuits must span
multiple areas. While advances in circuit, architecture,
OS, application, and compiler areas are promising, it might
also be important to consider programming language sup-
port for low power. This issue is very critical because
programming language defines the interface between algo-
rithm/application and the underlying architecture/execution
environment. The types of optimizations that can be per-
formed by the compiler and possible architectural hooks

�This work was supported in part by NSF CAREER Award #0093082.

that can be exploited by the runtime system are also de-
termined and/or controlled by the programming language.
Unfortunately, to the best of our knowledge, there has not
been a study so far for evaluating different language features
from an energy consumption perspective.

Parameter-passing mechanisms are the ways in which
parameters are transmitted to and/or from called subpro-
grams [9]. Typically, each programming language supports
a limited set of parameter-passing mechanisms. In C, one of
the most popular languages in programming embedded sys-
tems, all parameter evaluations are done before the called
subprogram starts to execute. This early parameter evalua-
tion (i.e., early binding of formal parameters to actual pa-
rameters), while it is preferable from the ease of implemen-
tation viewpoint, can lead to redundant computation if the
parameter in question is not used within the called subpro-
gram.

In this paper, we present an energy-aware parameter-
passing mechanism that tries to eliminate this redundant
computation when it is detected. The proposed mechanism,
calledon-demand parameter-passing,computes value of an
actual parameter if and only if the corresponding formal pa-
rameter is actually used in the subroutine. It achieves this
by using compiler’s help to postpone the computation of the
value of the actual parameter to the point (in the subroutine
code) where the corresponding formal parameter is actu-
ally used. It should be emphasized that our objective is not
just to eliminate the computation of the value of the actual
parameter but also all other computations that lead to the
computation of that parameter value (if such computations
are not used for anything else). Our on-demand parameter-
passing mechanism is entirely transparent to the user and
does not modify the meaning of the application irrespec-
tive of whether there exists redundant computation due to
parameter-passing or not. Our work is complementary to
the studies in [4, 5, 12]. There is also work on hardware-
based common case exploitation (e.g., [8]). In contrast, our
approach is software oriented and targets unused formal pa-
rameters rather than common case computations.

2. Review of Parameter Passing Mechanisms

Subroutines are the major programming language struc-
tures for enabling control and data abstraction [9]. The in-

1530-1591/03 $17.00  2003 IEEE

terface of the subroutine to the rest of the application code is
indicated in itsheaderusing subroutine name and its param-
eters. The parameters listed in the subprogram header are
calledformal parameters.Subprogram call statements must
include the name of the subroutine and a list of parameters,
calledactual parameters,to be bound to the formal param-
eters in the subprogram header. In a typical implementa-
tion, at the subroutine invocation time, the actual parame-
ters are computed and passed (copied) to formal parame-
ters using theparameter access path. After the execution
of the subroutine, depending on theparameter return path
used, the values of the formal parameters are copied back to
actual parameters. The parameter access path and param-
eter return path implementations depend on the parameter-
passing mechanism adopted and discussed below for the C
language.

In C, each subroutine parameter is passed using one
of two mechanisms: call-by-value (CBV) and call-by-
reference(CBR). In CBV (which is the default mechanism),
when a parameter is passed, the value of the actual param-
eter is computed and copied to the formal parameter; that
is, the parameter access path involves a value copy opera-
tion. This increases the storage overhead as the actual and
formal parameters occupy different locations. During the
execution of the subroutine, all references to the formal pa-
rameter uses only the location allocated for it; that is, the
content of the location that holds the actual parameter is
not modified. In fact, the said location remains unmodi-
fied even after the subroutine returns. In a sense, there is
no parameter return path. The CBV mechanism is an ex-
cellent parameter-passing method for the cases that require
only one-way communication (i.e., from caller to callee).

In comparison, in the CBR mechanism, the actual pa-
rameter and the formal parameter share the same location.1

At subroutine invocation time, a pointer to the actual pa-
rameter is passed to the subroutine. This parameter access
path speeds up the subroutine invocation. However, during
subroutine execution, each access to the formal parameter is
slower as it requires a level of indirection. Also, CBR can
lead to subtle aliasing problems [9]. Since a pointer, not ac-
tual value, is passed to the program, the parameter access
path and parameter return path are the same, and when the
subroutine returns, the actual parameter mirrors the latest
update to the formal parameter. In C, programmers enforce
the CBR mechanism by passing the address of the actual pa-
rameter. It should also be mentioned that arrays are always
passed using CBR as using CBV would incur a tremendous
copy overhead during subroutine invocation time.

Comparing the overheads incurred by these mechanisms
during parameter passing, we observe that CBR is more
efficient than CBV in terms of both time (it does not in-
volve memory copy) and space (it does not duplicate data).
It should be emphasized, however, that both these mecha-
nisms passes all parameters (i.e., values in CBV and point-
ers in CBR) at subroutine invocation time. While this
uniform treatment of parameters makes the implementa-
tion simpler, it may also cause some inefficiencies in cases

1Note that in reality C language does not implement CBR directly; it
mimics CBR by allowing to pass pointers as values in CBV.

I
II

III

IV
V

... z ...

...x...

...x...

...t...

...x...

...x...

...x...

...x...

...y...

Figure 1. An example control flow graph
(CFG).

where the parameter passed is not used in the subrou-
tine. This is particularly problematic if the computation
of the actual parameter involves an expensive expression
evaluation, an array element computation, or a subroutine
call itself (which occur in many large applications). As
an example, consider the scenario that occurs inWood
(one of our applications), where an actual parameter is
u[2i+1][j+k]*2v , whereu is a two-dimensional array
andv is a scalar variable. In order to pass this parameter,
the CBV mechanism first computes its value. It should be
noted that this process includes (i) computing the values of
subscript expressions, (ii) computing array index value us-
ing these subscript expressions, (iii) computing the value of
2v , and (iv) executing the multiplication operation. After
computing the value of this actual parameter, the CBV al-
locates a memory location (for the formal parameter) and
then copies this value to that location. Surprisingly, in this
case, the CBR mechanism is as costly as CBV. More specif-
ically, what CBR needs to do here is to compute the value
of the actual parameter using the same four steps mentioned
above and then store the result in some location and pass the
address of this location (as a pointer) to the called subrou-
tine. In fact, the overhead of the computation of the actual
parameter above can even be much higher if references tou
or v miss in the cache. If this parameter is not used in the
called subroutine, both CBV and CBR waste energy as well
as execution cycles. This magnitude of this penalty is mul-
tiplied if the parameter-passing occurs within a nested loop.
Our objective in this paper is to eliminate the energy and
performance overhead incurred in such cases using some
help from compiler.

3. On-Demand Parameter Passing

3.1. Approach

As noted in the previous section, early evaluation of an
unused formal parameter can lead to performance and en-

ergy loss. In this section, we describe an energy-efficient
on-demandparameter-passing strategy. In this strategy, the
value of an actual parameter is not computed unless it is
necessary. Note that this not only eliminates the computa-
tion for the value of the parameter, but also all computations
that lead to that value (and to nothing else). In develop-
ing such a strategy, we have two major objectives. First,
if the parameter is not used in the called subroutine, we
want to save energy as well as execution cycles. Second,
if the parameter is actually used in the subroutine, we want
to minimize any potential negative impact (of on-demand
parameter-passing) on execution cycles.

We discuss our parameter-passing strategy using the con-
trol flow graph (CFG) shown in Figure 1. Suppose that
this CFG belongs to a subroutine. It is assumed thatx ,
y , z , and t are formal parameters and the corresponding
actual parameters are costly to compute from the energy
perspective. Therefore, if it is not necessary, we do not
want to compute the actual parameter and perform pointer
(in CBR) or data value (in CBV) passing. We also assume
that...x... in Figure 1 denotes the use of the formal pa-
rameterx (and similarly for other variables). It is assumed
that these variables are not referenced in any other place in
the subroutine. In this CFG, CBV or CBR strategies would
compute the corresponding actual parameters and perform
pointer/value passing before the execution of the subroutine
starts. Our energy-conscious strategy, on the other hand,
postpones computing the actual parameters until they are
actually needed.

We start by observing that the CFG in Figure 1 has five
different potential execution paths from start to end (de-
noted usingI , II , III , IV , andV in the figure). However,
it can be seen that not all formal parameters are used in all
paths. Consequently, if we compute the value of an actual
parameter before we start executing this subroutine and then
execution takes a path which does not use the correspond-
ing formal parameter, we would be wasting both energy and
execution cycles. Instead, we can compute the actual pa-
rameter on-demand (i.e., only if it really needed). As an
example, let us focus on the formal parametert . As shown
in the figure, this parameter is used only in pathII . So,
it might be wiser to compute the corresponding actual pa-
rameter only along this path (e.g., just before the parameter
is used). When we consider formal parameterz , however,
we see that this parameter is used as soon as the subrou-
tine is entered. Therefore, it needs to be computed when
the subroutine is entered, which means that it does not ben-
efit from on-demand parameter passing. A similar scenario
occurs when we focus on formal parametery . This pa-
rameter is used at the very end of the subroutine where all
paths merge. Consequently, the corresponding actual pa-
rameter needs to be computed irrespective of the execution
path taken by the subroutine. Here, we have two options.
We can either compute that actual parameter as soon as the
subroutine is entered; or, we can postpone it and compute
just before it needs to be accessed (at the very end of the
subroutine). Our current implementation uses the latter al-
ternative for uniformity. Accesses to parameterx present
a more interesting scenario. This variable is accessed in
all but two paths. So, if the execution takes pathII or

III , the on-demand parameter-passing strategy can save
energy. If the execution takes any other path, however, we
need to compute the actual parameter. A straightforward
implementation would compute the values of actual param-
eter in six different places (one per each use). As will be
discussed later in this paper, a careful implementation can
reduce the number of these computations to three, one per
path. It should be noted, however, that even these three
evaluations (i.e., one per path) present a code size over-
head over CBV or CBR parameter-passing strategies (as
both CBV and CBR perform a single evaluation per param-
eter). Therefore, to be fair in comparison, this increase in
code size should also be accounted for.

3.2. Global Variables

In this subsection, we show that global variables present
a difficulty for on-demand parameter-passing. Consider the
following subroutine fragment, assuming that it is called us-
ing foo(c[index]) , wherec is an array andindex is
a global variable:

foo(int x)
{

int y;
...
if (...){

...
index++;
...
y=x+1;
...}

else {
...

}
}

It can be seen from this code fragment that a normal
parameter-passing mechanism (CBR or CBV) and our on-
demand parameter-passing strategy might generate differ-
ent results depending on which value of the global variable
index is used. In on-demand parameter evaluation, the ac-
tual parameter is computed just before the variablex is ac-
cessed in statementy=x+1 . Since computing the value of
c[index] involvesindex which is modified within the
subroutine (using statementindex++) before the param-
eter computation is done, the value ofindex used in on-
demand parameter-passing will be different from that used
in CBR or CBV. This problem is called theglobal variable
problemin this paper and can be addressed at least in three
different ways:

� The value ofindex can be saved before the subroutine
starts its execution. Then, in evaluating the actual parameter
(just beforey=x+1), this saved value (instead of the current
value ofindex) is used. In fact, this is the strategy adopted
by some functional languages that use lazy evaluation [9].
These languages record the entire execution environment of
the actual parameter in a data structure (calledclosure) and
pass this data structure to the subroutine. When the subrou-
tine needs to access the formal parameter, the corresponding
actual parameter is computed using this closure. While this

strategy might be acceptable from the performance perspec-
tive, it is not very useful from the energy viewpoint. This is
because copying the execution environment in a data struc-
ture itself is a very energy-costly process (in some cases,
it might even be costlier than computing the value of the
actual parameter itself).

� During compilation, the compiler can analyze the code
and detect whether the scenario illustrated above really oc-
curs. If it does, then the compiler computes the actual pa-
rameter when the subroutine is entered; that is, it does not
use on-demand parameter-passing. In cases the compiler
is not able to detect for sure whether this scenario occurs,
it conservatively assumes that it does, and gives up on on-
demand parameter-passing.

� This is similar to the previous solution. The difference
is that when we detect that the scenario mentioned above oc-
curs, instead of dropping the on-demand parameter-passing
from consideration, we find the first statement along the
path that assigns a new value to the global variable and ex-
ecute the actual parameter evaluation just before that state-
ment. For example, in the code fragment given above, this
method performs the actual parameter computation just be-
fore theindex++ statement.

It should be mentioned that Algol introduced a
parameter-passing strategy calledcall-by-name(CBN) [9].
When parameters are passed by call-by-name, the actual
parameter is, in effect, textually substituted for the cor-
responding formal parameter in all its occurrences in the
subprogram. In a sense, CBN also implements lazy bind-
ing. However, there is an important difference between our
on-demand parameter-passing strategy and CBN. In CBN,
the semantics of parameter passing is different from that of
CBV and CBR. For example, in the subprogram fragment
given above, the CBN mechanism uses the new value of
index (i.e., the result of theindex++ statement) in com-
puting the value of the actual parameter (and it is legal to
do so). In fact, the whole idea behind CBN is to create such
flexibilities where, in computing the values of actual pa-
rameters, the effects of the statements in the called subrou-
tine can be taken into account. In contrast, our on-demand
parameter-passing strategy does not change the semantics
of CBV/CBR; it just tries to save energy and execution cy-
cles when it is not necessary to compute the value of an
actual parameter and the computations leading to it.

3.3. Multiple Use of Formal Parameters

If a formal parameter is used multiple times along some
path, this creates some problems as well as some opportu-
nities for optimization. To illustrate this issue, we consider
the uses of the parameterx in pathI of Figure 1. It is easy
to see that this parameter is used twice along this path. Ob-
viously, computing the value of the corresponding actual
parameter twice would waste energy as well as execution
cycles. This problem is called themultiple uses problem
in this paper. To address this problem, our strategy is to
compute the value of the actual parameter in the first use,
save this value in some location, and in the second access
to x , use this saved value. Obviously, this strategy tries to
reuse the previously-computed values of actual parameters

as much as possible.
Depending on the original parameter-passing mecha-

nism used (CBV or CBR), we might need to perform
slightly different actions for addressing the multiple uses
problem. If the original mechanism is CBV, the first use
computes the value and stores it in a new location, and the
remaining uses (on the same path) use that value. If, on
the other hand, the original mechanism is CBR, the first use
computes the value (if the actual parameter is an expres-
sion), stores it in a location, and creates a pointer which is
subsequently used by the remaining uses (on the same path)
to access the parameter. In either case, the original seman-
tics of parameter-passing is maintained.

3.4. Problem Formulation and Solution

To perform analyses on a program, it is often neces-
sary to build a control flow graph (CFG). Each statement
in the program is a node in the control flow graph; if a state-
ment can be followed by another statement in the program,
there is an edge from the former to the latter in the CFG
[1]. In this paper, the CFG nodes are individual statements,
whereas in most data-flow analysis problem, a CFG nodes
contain a sequence of statements without branch. Note that
CFG can contain one or more loops as well. In the follow-
ing discussion, we use the termsnode, block, andstatement
interchangeably. Each node in the CFG has a set of out-
edges that lead tosuccessor nodes,and in-edges that lead
to predecessor nodes. The setpred(b) represents all prede-
cessor nodes for statementb and the setsucc(b) denotes all
successors ofb [1].

Data-flow analysis is used to collect data-flow informa-
tion about program access patterns [1]. A data-flow analysis
framework typically sets up and solves systems of equations
that relate information at various points in a program (i.e.,
in various points in the corresponding CFG). Each point of
interest in the code contributes a couple of equations to the
overall system of equations. In our context, data-flow equa-
tions are used to decide the points at which the actual pa-
rameter evaluations for a given formal parameter need to be
performed. We define a function calledUSE() such that
USE(b; x) returns true if statement (basic block)b uses
variablex ; otherwise, it returns false. Using theUSE()
function, we make the following definition:

EV AL(b; x) =

8>>><
>>>:

true, if USE(b; x) and
9p 2 pred(b) !EV AL(p; x)

true, if !USE(b; x) and
8p 2 pred(b) EV AL(p; x)

false, otherwise
(1)

In this formulation,p denotes a predecessor statement for
b. For a given statementb and formal parameterx where
x is used inb, EV AL(b; x) returns true if and only if an
actual parameter computation corresponding to the formal
parameterx needs to be performed to accessx in b. Such a
parameter evaluation would be required if and only if there
exists at least a path (coming to statementb) along which
the actual parameter evaluation in question has not been

.......

...x...

= false(,x)EVAL 1
p

1
p 2p

= true(b,x)EVAL

1
p

2p

(bEVAL ,y) = false

(EVAL ,y) = true1
p = true(EVAL ,y)2p

...y...

...y......y...

(b)

...x...

(a)

EVAL(p
2 ,x) = true

b b

Figure 2. Two different scenarios for EV AL()
computation.

performed yet. As an example, suppose that statementb
has two predecessors:p1 and p2. Assume that a formal
parameterx is used inb andp2, but not used inp1; that
is,USE(b; x), USE(p1; x), USE(p2; x) return true, false,
and true, respectively. Assuming that no statement along
the path starting from the beginning of the subroutine top1
and no statement along the path starting from the beginning
of the subroutine top2 use the parameterx . In this case,
EV AL(p1; x) computes false andEV AL(p2; x) computes
true. This indicates that the actual parameter evaluation has
been performed along the path that containsp2 but not along
the path that containsp1. Since statementb can be accessed
throughp1 or p2, we need to (conservatively) perform the
evaluation of actual parameter inb (see Figure 2(a)); that is,
EV AL(b; x) will return true. Suppose now that another for-
mal parameter,y , is used by all these three statements:b, p1,
andp2. In this case, bothEV AL(p1; y) andEV AL(p2; y)
return true. Assuming thatp1 andp2 are the only statements
through whichb can be reached,EV AL(b; y) will return
false. Note that in this last scenario when execution reaches
b, it is guaranteed that the value of the actual parameter (cor-
responding toy) has been computed (see Figure 2(b)).

It should be noted that although we also compute the
EV AL() function even for the statements that donotaccess
the formal parameter in question, the meaning of this func-
tion in such cases is different. Specifically, theEV AL()
function for such statements is used only for conveying the
value (ofEV AL()) from the previous statements (if any)
that use the formal parameter to the successor statements
that use it. In technical terms, suppose thatb0 is a state-
ment that does not access the formal parameterx , andp1,
p2, ...,pk are its predecessor statements. If there is at least
an i such that1 � i � k andEV AL(pi; x) is false, then
EV AL(b0; x) is set to false; otherwise, it is true.

It should be emphasized that, usingEV AL(), we can
also place actual parameter evaluation code into the subrou-
tine. More specifically, for a given statementb and formal
parameterx , we have four possibilities:

� USE(b; x) = true andEV AL(b; x) true: In this case,
the actual parameter needs to be computed to access the for-
mal parameter. This means that there exists at least one path
from the beginning of the subroutine tob which does not
contain the actual parameter computation in question.

� USE(b; x) = true andEV AL(b; x) false: This case
means that the statementb needs to access the formal pa-
rameterx and the value of the corresponding actual param-

b
3

b
4

b5

b6

b1

b
2

b
3

b
4

b5

b6

b1

b
2 �����

�����
�����
�����

�����
�����
�����
�����

(a)

I
...x...

...x...

...x...

...x...

...x...

.......

.......

(b)

...x...

...x...

...x...

...x...

...x...

...x...

.......

.......

I
II

...x...

Figure 3. (a) An example CFG. (b) Inserting a
basic block for parameter evaluation.

eter has been computed earlier. Consequently, it does not
need to be recomputed; instead, it can be used from the lo-
cation where it has been stored.

� USE(b; x) = false andEV AL(b; x) false: In this case,
the statementb does not usex and is not involved in the
computation of the value of the corresponding actual pa-
rameter.

� USE(b; x) = false andEV AL(b; x) true: This case
is the same as the previous one as far as inserting the ac-
tual parameter evaluation code is concerned. No action is
performed.

It should be noted that theEV AL() function can be
computed in a single traversal over the CFG of the subrou-
tine. The evaluation starts with the header statementh, as-
sumingEV AL(h; x) = ; for each formal parameterx . It
then visits the statements in the CFG one-by-one. A state-
ment is visited if and only if all of its predecessors have al-
ready been visited and theirEV AL() functions have been
computed. These values are used in computing the value
of theEV AL() function of the current statement using the
expression (1) given above. While it is possible to com-
pute theEV AL() function of all variables simultaneously
in a single traversal of the CFG, our current implementation
performs a separate traversal for each variable. This is a vi-
able option as the number of formal parameters for a given
subroutine is generally a small number.

We now give an example to explain how our approach
handles a given formal parameter. Consider the CFG in
Figure 3(a), assuming thatb1, b2, b3, b4, b5, and b6 are
the only statements that use formal parameterx . We start
by observing thatEV AL(b1; x) should be true as there is
no way that the value of the actual parameter might be re-
quired before reachingb1 (along the path that leads tob1).
Having computedEV AL(b1; x) as true, it is easy to see that
EV AL(b2; x) should be false asb1 is the only predecessor
to b2. Informally, what this means is that, since we compute
the value of the actual parameter inb1, we do not need to re-
compute it inb2. In a similar fashion, it can easily be seen

INPUT: A CFG withUSE(b; x) computed
for each basic blockb and formal parameterx

OUTPUT: The computedEVAL(b; x) function

for each nodeb in CFG do
b.processed � false;

endfor;
B � nodes in CFG without predecessor;
while (B 6= ;)
remove a nodeb fromB

computeEVAL(b; x) using the expression (1);
b.processed � true;
for eachs 2 succ(b) do
if 8p 2 pred(s) p.processed = true then
if s.processed = true then
B �B [s;

endfor;
endwhile;

Figure 4. Algorithm to compute EV AL().

thatEV AL(b3; x),EV AL(b4; x),EV AL(b6; x) should be
true, false, and false. The statementb5 presents an interest-
ing case. Since this statement can be reached through two
different paths (shown as I and II in the figure), in deciding
whatEV AL(b5; x) should be, we need to consider both the
paths. Ifb5 is reached throughb3, we can see that no actual
parameter computation (inb5) is necessary. If, however, it
is reached through path I, we need to compute the value of
the actual parameter. Consequently, we conservatively de-
termine thatEV AL(b5; x) is true; that is, the value of the
actual parameter should be computed before the formal pa-
rameter is accessed inb5.

Figure 4 gives the data-flow algorithm for computing the
EV AL() function for each statement in a given subpro-
gram. The setB in this algorithm holds the basic blocks
(statements) that can be processed; that is, the ones whose
all predecessors have already been computed. Assuming
that we haveS subroutines, the overall optimization ap-
proach is bounded byO(SV M2), whereV is the maximum
number of formal parameters to any subroutine in the appli-
cation andM is the maximum number of statements in any
subroutine.

3.5. Additional Optimization

In data-flow analysis, we generally accept safe (or con-
servative) solutions which might, in some cases, lead to in-
efficiencies. In our case, theEV AL() computation algo-
rithm presented in the previous subsection might recompute
the value of an actual parameter more than once when dif-
ferent execution paths merge at some CFG point. For exam-
ple, consider the statementb5 in Figure 3(a). If, during exe-
cution, path II is taken, then the value of the actual parame-
ter corresponding tox will be computed twice, wasting en-
ergy as well as execution cycles. In this work, we consider
two different methods to handle this problem. In the first
method, calledblock insertion, we create a new basic block
and put the actual parameter computation code there. Fig-
ure 3(b) illustrates this solution, which creates a new block
(shown shaded) and inserts it along path I just before the
statementb5 is reached. The actual parameter evaluation is

performed in this new basic block and the statementb5 does
not perform that evaluation. In this way, we guarantee that
whenb5 is reached, the actual parameter has already been
computed; so,b5 can just use the value.

The second method, calledpath control,is based on the
idea of using a variable (or a set of variables) to determine at
runtime which path is being executed. For example, assume
that we use a variablep to determine which path (leading to
b5) is being executed. Without loss of generality, we can
assume that if path I is takenp is assigned 1, otherwisep
is set to zero. Under this method, whenb5 is reached, we
can check the value ofp, and depending on its value, we
perform actual parameter value evaluation or not. It should
be noted that, as compared to the first method, this method
is expected to result in a smaller executable size (in gen-
eral); but, it might lead to a higher execution time due to
comparsion operation.

4. Conclusions

Embedded systems demand energy efficiency in order to
maximize the battery life. While previous work has concen-
trated on reducing energy consumption using circuit, archi-
tecture, and OS level techniques, in this work, we studied
the possibility of modifying the parameter-passing mecha-
nism of the language with some help from compiler. Using
a set of five real-life applications and a custom simulator,
we investigated the energy and performance impact of an
on-demand parameter-passing strategy. In this strategy, the
value of an actual parameter is not computed if the corre-
sponding formal parameter is not used within the subrou-
tine.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques,
and Tools,Addison-Wesley Publishing Company, 1986.

[2] A. Chandrakasan, W. J. Bowhill, and F. Fox.Design of High-Performance
Microprocessor Circuits. IEEE Press, 2001.

[3] L. Benini and G. De Micheli. System-level power optimization: techniques
and tools.ACM Transactions on Design Automation of Electronic Systems,
5(2), pp.115-192, April 2000.

[4] E.-Y. Chung, L. Benini, and D. De Micheli. Energy-efficient source code
transformation based on value profiling. InProc. the 1st Workshop on Com-
pilers and Operating Systems for Low Power,Philadelphia, PA, 2000.

[5] E.-Y. Chung, L. Benini, and D. De Micheli. Automatic source code special-
ization for energy reduction. InProc. the International Symposium on Low
Power Electronics and Design,Huntington Beach, CA, August 2001.

[6] K. Cooper, M. Hall, and K. Kennedy. A methodology for procedure cloning.
Computer Languages,Vol 19, No 12, pp. 105-117, April 1993.

[7] M. Kamble and K. Ghose. Analytical energy dissipation models for low
power caches. In Proc.the International Symposium on Low Power Electron-
ics and Design, page 143, August 1997.

[8] G. Lakshminarayana, A. Raghunathan, K. Khouri, K. Jha, and S. Dey.
Common-case computation: a high-level technique for power and perfor-
mance optimization. In Proc.the Design Automation Conference,pp. 56-61,
1999.

[9] R. W. Sebesta.Concepts of Programming Languages,Addison-Wesley Pub-
lishing, 2001.

[10] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a
first step towards software power minimization.IEEE Transactions on Very
Large Scale Integration Systems,2(4), December 1994.

[11] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced
CPU energy. InProc. the USENIX Symposium on Operating Systems Design
and Implementation,1994, pp. 13–23.

[12] W. Wang, A. Raghunathan, G. Lakshminarayana, and N. K. Jha. Input space
adaptive design: a high-level methodology for energy and performance opti-
mization. InProc. the Design Automation Conference,Las Vegas, NV, 2001.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

