Software Architectural Transformations: A New Approach to Low Energy
Embedded Software

T. K. Tan', A. Raghunathan?, and N. K. Jha!

1 Dept. of Electrical Eng., Princeton University, NJ 08544
1 NEC Labs, Princeton, NJ 08540

Abstract— Previous work on software optimization for low en-
ergy has focussed on instruction-level optimizations and compiler
techniques. We argue, and demonstrate, that significant energy sav-
ings could be “left on the table” if energy is not considered during
the design of the software architecture. As a first step towards ad-
dressing this gap, we propose a systematic framework for software
architectural transformations to reduce energy consumption.

We consider software architectural transformations in the context
of the multi-process software style driven by an operating system
(0OS), which is very commonly employed in energy-sensitive embed-
ded systems. Owur methodology for applying software architectural
transformations consists of: (i) comstructing a software architec-
ture graph representation, (ii) deriving initial energy and perfor-
mance statistics using a detailed energy simulation framework, (iii)
constructing sequences of atomic software architectural transforma-
tions, guided by energy change estimates derived from high-level en-
ergy macro-models, that result in mazimal energy reduction, and (iv)
generation of program source code to reflect the optimized software
architecture. We employ a wide suite of software architectural trans-
formations whose effects span the application-OS boundary, includ-
ing how the program functionality is structured into architectural
components (e.g., application processes, signal handlers, and device
drivers), and connectors between them (inter-component synchro-
nization and communication mechanisms).

We present experimental results on several multi-process embed-
ded software programs, in the context of an embedded system that
features the Intel StrongARM processor and the embedded Linuz OS.
The presented results clearly underscore the potential of the proposed
methodology (up to 66.1% reduction in energy is obtained). In a
broader sense, our work demonstrates the impact of considering en-
ergy during the earlier stages of the software design process.

I. Introduction

Low power design techniques have been investigated in the
hardware design domain at various levels of the design hier-
archy. Fig. 1 presents the different levels of hardware design

Hardware Software

Behavior level Software

~

Q
B[ minutes| S
< architecture = : §
R x RTlevel | reremsesemfunfomsasnes <
2 P
g / - / Program-code level | "OUrS ‘g
2120% Logic level E
: [ g
£ 5% Instruction level |days %

£

Transistor level
L

Power reduction opportunities and analysis efficiency

Fig. 1. Analysis and optimization efficiency at different levels of design
abstraction

abstraction, and illustrates that the efficiency of analysis, and
the amount of power savings obtainable, are much larger at
higher levels [1-3]. It is natural to hypothesize whether such
an observation can be extended to the software design do-
main. In the software design domain, low power techniques

Acknowledgments: This work was supported by DARPA under contract
no. DAABO07-02-C-P302.

1530-1591/03 $17.00 & 2003 |IEEE

have been extensively investigated at the instruction level,
and through enhancements to various stages of the high-level
programming language compilation process. However, if we
consider the assembly instruction level for software to be
analogous to the logic level for hardware, and software com-
pilation to be analogous to logic synthesis, it is clear that
there exists a “gap” at the software architecture level, where
very little, if any, research has been conducted on energy
reduction.

There are two major aspects to consider at the software
architecture level of the design hierarchy:

« The first aspect concerns the selection of a design style,
generally called the software architectural style. Several
software architectural styles are known, which provide
designers with interesting tradeoffs between efficiency,
design effort, portability, maintainability, etc.

« The second aspect concerns the design of a concrete soft-
ware architecture within the framework of the selected
architectural style.

We believe that both of the above considerations may have
significant impact on the overall energy consumption of the
embedded system. In this paper, we focus on the impact of
concrete software architecture design on energy consumption.
We consider various software architectural transformations
that affect how the program functionality is structured into
architectural components, as well as the connectors among
them [4]. The specific software architectural style that we
use for our illustrations consists of multi-process applications
being executed in the run-time environment provided by an
embedded OS. We call this an OS-driven multi-process soft-
ware architectural style. The architectural components cor-
respond to software entities such as application processes,
signal handlers, device drivers, etc., while connectors in-
clude inter-process communication (IPC) and synchroniza-
tion mechanisms.

In the next section, we highlight our contributions in this
paper and discuss some related work. In Section III, we de-
scribe our software architectural transformation methodol-
ogy in detail. Section IV describes the experimental method
used to evaluate our techniques, and presents the experimen-
tal results. Section V presents the conclusions.

II. Contributions and Related Work

In this section, we highlight our contributions and discuss
some related work.

A. Paper Contributions

The major contributions of this paper are as follows:

o We propose a systematic methodology for applying soft-
ware architectural transformations, which consists of:
(i) constructing a software architecture graph to repre-
sent a software program, (ii) deriving an initial profile of
the energy consumption and execution statistics using
a detailed energy simulation framework, (iii) evaluating
the energy impact of atomic software architecture trans-
formations through the use of energy macro-models, (iv)



constructing sequences of atomic transformations that
result in maximal energy reduction, and (v) generation
of program source code to reflect the optimized software
architecture.

o We show how to use OS energy macro-models to pro-
vide energy change estimates that predict the effect of
various software architectural transformations.

o We experimentally demonstrate the utility of our tech-
niques in the context of several typical programs run-
ning on an embedded system that features the Intel
StrongARM processor and embedded Linux as the OS.
Significant energy savings (up to 66.1%) were achieved
through the energy-efficient software architectures gen-
erated by the proposed techniques.

B. Related Work

System-level software energy reduction strategies usually
involve some kind of resource scheduling policy, whether it
is scheduling of the processor or the peripherals. In complex
embedded systems, this often centers around the adaptation
of the OS. Some general ideas on adapting software to man-
age energy consumption were presented in [5-7]. Vahdat et
al. [8] proposed revisiting several aspects of the OS for poten-
tial improvement in energy efficiency. Lu et al. [9] proposed
and implemented OS-directed power management in Linux
and showed that it can save more than 50% power compared
to traditional hardware-centric shut-down techniques. Bel-
losa [10] presented thread-specific online analysis of energy-
usage patterns that are fed back to the scheduler to control
the CPU clock speed.

Software architecture has been an active research area for
the past few years in the real-time software and software
engineering communities, with emphasis on software under-
standing and reverse engineering. Many common software
architectural styles are surveyed in [4]. Wang et al. [11]
evaluated the performance and availability of two different
software architectural styles. Carriére et al. [12] studied the
effect of connector transformation at the software architec-
tural level in a client-server application. None of these stud-
ies considered the effect of the software architecture on en-
ergy consumption. Our work, on the other hand, provides a
systematic framework for harnessing software architectural
transformations to minimize energy consumption.

IMEC’s work on embedded software synthesis [13] consid-
ers synthesis of real-time multi-threaded software based on
a multi-thread graph (MTG) model. They focus on static
scheduling of the threads without the use of an operating
system. They do not target energy consumption. Our work
also considers multi-process embedded software, but empha-
sizes the energy-efficient use of the operating system through
proper software transformations.

II1. Energy Minimization through Software
Architectural Transformations

In this section, we describe a methodology for minimiz-
ing the energy consumption of embedded software through
software architectural transformations. Section III-A pro-
vides an overview of the entire flow, while Sections III-B
through ITI-D detail the important aspects.

A. Overview of the Software Architectural Energy Minimiza-
tion Methodology

The proposed software architecture level energy minimiza-
tion flow is shown in Fig. 2. In the figure, the cylinders
represent the entities to be operated upon, and the rectan-
gles represent the steps in the algorithm. The methodology

Initial program
code

Implementation

Initial SAG

Energy
simulation

SAG and
energy statistics

Find possible
transformations
OS energy Evaluate all Final SAG
macro-models transformations and energy
Select
transformation
Apply

transformation

Fig. 2. The software architecture level energy minimization methodol-
ogy

starts with an initial software architecture, represented as
a software architecture graph or SAG (as described in Sec-
tion III-B). The energy consumption Eg of the initial soft-
ware architecture is obtained by compiling the correspond-
ing program source code into an optimized binary for the
target embedded system, and by profiling this implementa-
tion using a detailed energy simulation framework.! The
execution and energy statistics collected from this step are
subsequently used to guide the application of software ar-
chitectural transformations. Our methodology optimizes the
software architecture by applying a sequence of atomic soft-
ware architectural transformations, or moves, that lead to
maximum energy savings. These transformations are formu-
lated as transformations of the SAG, and are described in
detail in Section III-D. We use an iterative improvement
strategy to explore sequences of transformations. Selection
of a transformation at each iteration is done in a greedy
fashion. That is, at each iteration, we choose from all the
possible transformations the one that yields maximum en-
ergy reduction. The iterative process ends when no more
transformation is possible.

During the iterative process, for each architectural trans-
formation considered, we need to estimate the resulting
change in energy consumption. Since this estimation is iter-
ated a large number of times, it needs to be much more effi-
cient than hardware or instruction-level simulation. We uti-
lize high-level energy macro-models to provide energy change
estimates, as described in Section III-C.

After an energy-efficient software architecture is obtained
(as an SAQG), the program source code is generated to re-
flect the optimized software architecture. The optimized pro-
gram code can be executed in the low-level energy simulation
framework to obtain accurate energy estimates for the opti-
mized software architecture.

The remainder of this section details the important steps
in the proposed methodology.

B. Software Architecture Graph

We represent the architecture of an embedded software
program as an SAG. An example of an SAG, for a program

1 Note that the energy simulation framework needs to simulate the OS to-
gether with the application, since the effects of the software architectural
transformations span the application-OS boundary.



mai n_upsem

Timer
peripheral

read_heart _
rate

Timer
device
driver

Cardiac
monitor

Battery . v
gauge
read_battery_ /

gauge

read_resp_
Respiration rate

,

\ )
\~--%i gnal _handl er 1

UART

/ 1," sem

Thermometer ' read_t her moneter /
w1

.~ updat e_oper at i on_node

Camera D_E..«—' )
VE take_picture

Fig. 3. Software architecture graph for a situational awareness sub-
system

employed in a situational awareness system, is depicted in
Fig. 3. In the SAG, vertices represent hardware or software
entities. Vertices can be of several types:

« Hardware devices are represented by an empty box, with
an optional crossbar for active devices (e.g., the UART
peripheral in Fig. 3).

« Device drivers are represented by a parallelogram (e.g.,
the timer device driver in Fig. 3).

o Application processes are represented by an ellipse
with an arrow on the perimeter (e.g., process
read_heart_rate in Fig. 3).

o Signal handlers are represented by a dotted circle
attached to the corresponding application process
(e.g., signal _handlerl, which is attached to process
update_operation mode in Fig. 3).

The association between hardware devices and device drivers
is depicted by a solid line connecting them. Arrowed edges
between any two vertices represent the communication of
data or control messages, and are annotated with the se-
lected TPC mechanisms. Since the system is OS-driven,
they are to be implemented as calls to the system functions.
For example, the edge from process main_upsem to process
read_heart_rate in Fig. 3 is a control message that is im-
plemented using the semaphore service provided by the OS.
Naturally, an edge from or to a hardware device represents
the transfer of data using OS system functions. A small solid
square at the termination of an edge indicates a blocking
communication. Otherwise, the communication is assumed
to be non-blocking.

C. Energy Modeling at the Software Architecture Level

We denote a specific software architecture configuration
for a given embedded software program as C. The en-
ergy consumption of this software architecture for a fixed
amount of computation (application functionality) is denoted
by E(C). The energy consumption of the initial architecture
Co is denoted by Eo = E(Cp). In an absolute sense, for a
given embedded system, E(C) depends on various param-
eters related to how the software architecture is translated
into the final executable implementation (e.g., compiler op-
timizations used). The energy consumption of each software
architecture could be accurately evaluated by specifying it as
program source code, feeding it through the software com-
pilation flow, and using a detailed system simulation frame-
work. However, this would be too time-consuming to use in

the context of an automatic software architectural transfor-
mation framework, since each candidate architecture could
require hours to evaluate. In our context, the following ob-
servations are worth noting:

« We are only interested in comparing the inherent en-
ergy efficiency of different software architectures with-
out regard to the subsequent software implementation
process.

o We perform a (one-time) detailed energy profiling of the
initial software architecture. The initial architecture is
modified by applying a sequence of atomic transforma-
tions. Hence, we only require energy change estimates,
i.e., estimates of the difference in energy consumption
before and after the application of each atomic software
architectural transformation.

e The transformations utilized in our methodology do
not affect the “core functionality” of an application.
Rather, they affect energy consumption by altering the
manner in which OS services are employed. As shown
later, this implies that we can use high-level OS energy
macro-models to evaluate the energy impact of software
architectural transformations.

Given a software architecture configuration Ci, and a
transformation T¢, ¢,, a new configuration C is created.
The equation relating the energy consumption of these two
configurations is:

E(C>) — E(C1) = AE(Tc,-0s) ey
where AE(T¢, - c,) denotes the energy change incurred by
performing transformation T, —c,.

As mentioned earlier, the effect of software architectural
transformations is to alter the manner in which OS services
are employed during execution of the application. Hence,
we are able to estimate AE using high-level energy macro-
models specific to the OS. An energy macro-model is a func-
tion (e.g., an equation) expressing the relationship between
the energy consumption of a software function and some pre-
defined parameters. In the above-mentioned context, these
energy macro-models are called the OS energy characteristic
data [14]. OS energy macro-models proposed in [14] show on
average 5.9% error with respect to the energy data used to
obtain the macro-models. This level of accuracy is sufficient
for relative comparison of different transformations.

Basically, the OS energy characteristic data consists of the
following:

o The explicit set: These include the energy macro-models
for those system functions that are explicitly invoked
by application software, e.g., IPC mechanisms. Given
these energy macro-models and execution statistics col-
lected during the initial system simulation, the energy
change due to an atomic software architectural trans-
formation can be computed. For example, suppose the
energy macro-models for two IPC’s, IPC; and IPC,,
are given by:

l%ﬁcl(x)
£Z¢c2($)

(2)
3)

where z is the number of bytes being transferred in each
call, and ¢'s are the coefficients of the macro-models.
The amount of energy change incurred by replacing
IPC, with IPC> is given by

c11 + ci2x
c21 + C22%

AE [Eipe2(T) — Eipe1(z)] Nipe

[(e21 — c11) + (c22 — c12)2] Nipe

(4)
(5)



where Njpc is the number of times this IPC is invoked
in the specific application process under consideration.
The values of parameters such as N;p. and x are col-
lected during the detailed profiling of the initial software
architecture. The energy changes due to other system
function replacements can be calculated similarly.

o The implicit set: These include the macro-models for the
context-switch energy, timer-interrupt energy and re-
scheduling energy. In particular, the context-switch en-
ergy, Ects, is required to calculate the energy change due
to process merging. Ec¢; is defined to be the amount of
round-trip energy overhead incurred every time a pro-
cess is switched out (and switched in again) [14].

In the next section, we introduce a set of atomic software
architectural transformations that we have selected. Com-
putation of the energy changes incurred by these transfor-
mations is facilitated by the availability of the OS energy
macro-models.

D. Software Architectural Transformations Employed in the
Proposed Methodology

Since we have adopted the OS-driven multi-process soft-
ware architectural style, the moves that we consider are
mainly manipulations of the components (application pro-
cesses, signal handlers, and device drivers), and the con-
nectors (inter-process synchronization and communication
mechanisms). Some of the specific transformations presented
here, including manipulation of application processes or pro-
cess structuring, have been investigated in other related areas
such as software engineering, mostly in a qualitative manner.
For example, a good introduction to process structuring can
be found in [15]. In this sub-section, we formulate a wide
range of atomic software architectural transformations and
show how they can be systematically applied as transforma-
tions of the SAG. For each atomic transformation, we also
include a brief analysis of the energy change incurred. Note
that some of these atomic transformations may not directly
result in large energy reduction, but may enable other moves
that reduce more energy eventually. Also, note that the in-
verse of any move discussed here is also a valid move.

D.1 Temporal cohesion driven process merging

This transformation involves merging of two software pro-
cesses that are driven by events whose instances have a one-
to-one correspondence. A special case is periodic events that
occur at the same rate. Application of this transformation
decreases the number of processes by one. This transforma-

Fig. 4. Temporal cohesion driven process merging

tion is illustrated in Fig. 4. The energy change due to this
transformation is estimated as:

AE = _Ectmth:c (6)
where Ec¢; is the context switch energy explained above,
and N, is the number of times each of the processes is ac-
tivated. Note that this transformation can be collated with
other transformations such as code computation migration

and IPC merging to further reduce energy, as illustrated
later.

D.2 Sequential cohesion driven process merging

This transformation involves merging of two software pro-
cesses that are executed sequentially because one process
passes data or control to the other. It decreases the num-
ber of processes by one and also removes the IPC between
them. This transformation is illustrated in Fig. 5. The en-

el

Fig. 5. Sequential cohesion driven process merging

ergy change due to this transformation is estimated as:

AE = —Eipc(x)Nipc — E¢ia Netw (7)
where E;pc(z) is the total IPC (read and write) energy for
communicating £ amount of data, N is the number of times
the IPC between the two processes is invoked, and N, is

the number of times each of the processes is activated.

D.3 Intra-process computation migration

This transformation involves moving some of the code in
a process so that two IPC writes (or sends) can be replaced
by a single write (or send). It exploits the capability of IPC
system calls that can accept multiple messages (with poten-
tially different destinations), e.g., the msg_snd () function in
Linux. It is useful in reducing the constant overhead involved
in invoking the IPC function. It is illustrated in Fig. 6. The

. “.‘\w ::> Q S

Fig. 6. Computation migration

energy change due to this transformation is estimated as:

AE = — (Eipc_wr (37) + Eipc_wr (y) - Eipc_w'r (x + y)) Nz’pc_qz)é‘)

where Ejpc_wr refers to IPC write energy, Nipc_wr is the num-
ber of times one of the IPC writes is invoked, and = and y
represent the average amount of data transferred per call
through the first and second IPC writes, respectively. Note
that this transformation enables further IPC merging in some
cases.

D.4 Temporal cohesion driven IPC merging

This transformation involves merging of two IPC’s that are
driven by the same event. This move is illustrated in Fig. 7.
The energy change due to this transformation is estimated

Oy O
(¥ |

Fig. 7. Temporal cohesion driven IPC merging

as:

AE = _Ez’pc_read(m)Nipc_read (9)
where Fjpc_reqd 1S the IPC read energy for z amount of data
and Nipc_read is the number of times one of the IPC reads is
invoked.



D.5 IPC replacement

This transformation involves replacing the IPC mechanism
associated with an edge in the SAG by another functionally
equivalent mechanism. For example, message passing can be
replaced by shared memory with semaphore protection. This
transformation is illustrated in Fig. 8. The energy change

Fig. 8. IPC replacement

due to this transformation is estimated as:

AE = [Eipe2(x) — Eipe1(x)] Nipe (10)
where Ejpc1 and Ejpca refer to the energy of the first and
second IPC mechanism, respectively, and Njj. is the number
of times this IPC is invoked.

D.6 System function replacement

System functions initially used in the application program
may not be the most energy-efficient choices under the spe-
cific context in which they are used. In this case, replace-
ment of these system functions by lower energy alternatives
leads to energy reduction. This transformation is illustrated
in Fig. 9. The energy change due to this transformation is

Fig. 9. System function replacement

estimated as:

AE = [EsySZ - Esysl] Nsys (11)
where E,ys1 (Esys2) is the energy of system function sysl
(sys2) and Ngys is the number of times the system function
is invoked.

D.7 Process embedding as signal handlers

This advanced transformation embeds a process as a signal
handler into another process. By doing so, the number of
processes is reduced by one, reducing context switch related
energy. However, there is an overhead due to signal handling.
This transformation is illustrated in Fig. 10. The dashed

OO = @ """ O

Fig. 10. Process embedding

circle attached to the second process of the transformed SAG
represents the signal handler of the second process. The
energy change due to this transformation is estimated as:

(12)

where Ng;4 is the number of times the signal handler, being
the replacement of the embedded process, is activated. E;g4
is the signal handling energy.

AE = _Ectchtm + EsigNsig

D.8 Computation migration to device drivers

This advanced transformation migrates some of the pre-
liminary computation from the process interfacing with an
active device into the device driver for the device. By doing

s0, data transfer initiated by the active device can be poten-
tially reduced in its quantity or frequency. A common exam-
ple is device buffering, wherein data are aggregated within
the device driver and sent to the application process in larger
chunks, reducing the rate at which the device driver activates
the application process. This transformation is illustrated in
Fig. 11. As one can see, this transformation requires changes

=

Fig. 11. Computation migration to device drivers

to the device driver. In conventional general-purpose sys-
tems, a clear separation is advocated between application
functionality and low-level drivers or system software. Nev-
ertheless, for embedded systems, such changes are usually
permissible. The energy change due to this transformation
is roughly estimated as:

_ (2) (1)
AE = Ecie Z (thm,i - Nth,i)

i

(13)

where Nc(tlazl (Nc(fazt
tivated before (after) the change. Note that since the reduc-
tion in process activations may further propagate beyond the
process directly interfacing with the device driver, we take
the sum of reductions in process activations across all the

processes in the SAG.

) is the number of times process 7 is ac-

IV. Experimental Results

As a proof of concept, we applied our software archi-
tecture energy minimization methodology to various multi-
process example programs designed to run under the em-
bedded Linux OS, specifically arm-linux v2.2.2 [16]. The
benchmarks include: Aware — the situational awareness sys-
tem shown in Fig. 3, Headphone — a program used in an
audio headset application, Vcam — embedded software from
a video camera recorder, Climate — a telematics application
for collecting and processing climate information, Navigator
— software from a global navigation system, and ATR — a
part of an automatic target recognition program. The hard-
ware platform for our experiments was based on the Intel
StrongARM embedded processor [17]. We used EMSIM [18]
as the detailed energy simulation framework in our exper-
iments. With detailed system models, EMSIM allows exe-
cution of the Linux OS within the simulated environment.
The high-level energy macro-models of the Linux OS, which
were used to guide the application of software architectural
transformations, were obtained from [14].

Table I shows the experimental results. Major columns 2
and 3 show the details of the original and optimized software
programs, respectively. # proc denotes the number of pro-
cesses. # ipc denotes the number of IPC’s involved. Major
column 4 shows the energy reduction as a percentage of the
original energy consumption. Significant energy reductions
(up to 66.1%, average of 25.1%) can be observed for the ex-
amples. Note that the energy savings obtained through soft-
ware architectural transformations are largely independent
of, and complementary to, energy savings obtained through
lower-level optimizations, including compiler techniques.

In the next sub-section, we illustrate the application of
architectural transformations to a simple software program.



TABLE I
EXPERIMENTAL RESULTS SHOWING THE ENERGY IMPACT OF SOFTWARE ARCHITECTURAL TRANSFORMATIONS.

Examples Original Optimized % Energy

Energy (mJ) [ # proc | # ipc || Energy (mJ) | # proc | # ipc || reduction
Aware 12.956 8 11 8.204 7 9 36.7%
Headphone 1.668 6 8 1.461 3 2 12.4%
Vcam 1.572 4 5 1.375 2 1 12.5%
Climate 0.239 4 5 0.081 2 1 66.1%
Navigator 1.659 5 7 1.456 3 3 12.2%
ATR 6.940 4 7 6.199 3 4 10.7%

rangeem mepgsem mate is obtained to be E = 0.081mJ, which corresponds to
oeee] ] timer —{Jimer an energy savings of 66.1%.

read_temp

l:l' _______
- é read_calculate
- j et 0O L ]
l:l read_hum
read_hum -
(@ (b)
main_upsem
------ '{:ltimer

D- B -—r_ééa._—cgl.culale“’l:l
(©

Fig. 12. Sequence of software architectural transformations for an ex-
ample system

A. Software Architecture Level Energy Minimization: A
Case Study

We consider the climate system from Table I. An SAG
that represents the initial software architecture for this pro-
gram is shown in Fig. 12(a). Explanation of the annotations
in the figure were provided in Section III-B. For the purpose
of illustration, we consider this program to execute under
the embedded Linux OS. Edges coming from the hardware
devices (indicated as empty square boxes) indicate the data
flow from the devices to the application processes, and are
implemented using read() system calls in Linux. Some of
these reads are blocking, indicated by a small square box at
the tip of the arrow.

The initial software architecture program code is written
in C. The energy consumption statistics of this program are
obtained by running it in the energy simulation framework
EMSIM [18]. Under the initial software architecture, the en-
ergy consumption of the entire system for three iterations
of program execution is 0.239mJ. That is, Ey = 0.239m.J.
The first two transformations merge the software processes
read_temp and calculate as well as the IPC edges that in-
volve them, resulting in the read_calculate process. The
new SAG is shown in Fig. 12(b). Note that the evaluation of
the transformations is performed with the help of OS energy
macro-models, as described in Section III-C. The next two
transformations merge read_hum and read_calculate as well
as the IPC edges that involve them. The final SAG is shown
in Fig. 12(c).

The transformed program is re-constructed from the final
software architecture, and simulated again in the EMSIM
energy simulation framework. The energy consumption esti-

V. Conclusions

Energy minimization of embedded software at the software
architecture level is a new field that awaits exploration. As a
first step in this direction, we presented a systematic method-
ology to optimize the energy consumption of embedded soft-
ware by performing a series of selected software architec-
tural transformations. As a proof of concept, we applied the
methodology to a few multi-process example programs. Ex-
periments with the proposed methodology has demonstrated
promising results, with energy reductions up to 66.1%. We
believe that software architecture level techniques for energy
reduction can significantly extend and complement existing
low power software design techniques.

References

[1] J. Rabaey and M. Pedram (Editors), Low Power Design Methodologies,
Kluwer Academic Publishers, Norwell, MA, 1996.

[2] L. Benini and G. De Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, Norwell, MA,
1997.

[3] A. Raghunathan, N. K. Jha, and S. Dey, High-level Power Analysis and
Optimization, Kluwer Academic Publishers, Norwell, MA, 1998.

[4] D. Garlan and M. Shaw, “An introduction to software architecture,”
Tech. Rep. CMU-CS-94-166, School of Computer Science, Carnegie-
Mellon Univ., Jan. 1994.

[5] J.R.Lorch and A. J. Smith, “Software strategies for portable computer
energy management,” I[EEE Personal Communications, vol. 5, no. 3, pp-
60-73, June 1998.

[6] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” in Proc. ACM Symp. Operating System Principles, Dec.
1999, pp. 48-63.

[7] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. Anderson,
“Quantifying the energy consumption of a pocket computer and a Java
Virtual Machine,” in Proc. SIGMETRICS, June 2000, pp. 252-263.

[8] A. Vahdat, A. Lebeck, and C. S. Ellis, “Every Joule is precious: The
case for revisiting operating system design for energy efficiency,” in
Proc. 9th ACM SIGOPS European Workshop, Sept. 2000.

[9] Y. H. Lu, L. Benini, and G. De Micheli, “Operating-system directed

power reduction,” in Proc. Int. Symp. Low Power Electronics & Design,

July 2000, pp. 37-42.

F. Bellosa, “The benefits of event-driven energy accounting in power-

sensitive systems,” in Proc. ACM SIGOPS European Workshop, Sept.

2000.

W. L. Wang, M. H. Tang, and M. H. Chen, “Software architecture

analysis - A case study,” in Proc. Annual Int. Computer Software &

Applications Conf., Aug. 1999, pp. 265-270.

S. J. Carriére, S. Woods, and R. Kazman, “Software architectural

transformation,” in Proc. 6th Working Conf. Reverse Engineering, Oct.

1999.

M. Cornero, F. Thoen, G. Goossens, and F. Curatelli, “Software syn-

thesis for real-time information processing systems,” in Code Gener-

ation for Embedded Processors, P. Marwedel and G. Goossens, Eds.,

Chap. 15, pp. 260-296. Kluwer Academic Publishers, Boston, MA,

1994.

T. K. Tan, A. Raghunathan, and N. K. Jha, “Embedded operating sys-

tem energy analysis and macro-modeling,” in Proc. Int. Conf. Computer

Design, Sept. 2002, pp. 515-522.

H. Gomaa, Software Design Methods for Real-time Systems,

Wesley, Boston, MA, 1993.

ARM Linux, http://www.arm.linux.org.uk/.

Intel Corporation, Intel StrongARM SA-1100 Microprocessor Developer’s

Manual, Aug. 1999.

T. K. Tan, A. Raghunathan, and N. K. Jha, “EMSIM: An energy

simulation framework for an embedded operating system,” in Proc.

Int. Symp. Circuit & Systems, May 2002, pp. 464-467.

[11]

[12]

[13]

Addison-



	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index




