Platform-based Testbench Generation

R. Henftling, A. Zinn, M. Bauer, W. Ecker, M. Zambaldi
Corporate Logic, Design Automation
Infineon Technologies AG, Munich, Germany

Abstract

This paper presents a new technology that
accelerates system verification. In a real life
example, we achieved a speed-up of a factor of
about 5000. The key for this speed-up is a
configurable, synthesizable testbench
architecture, which can be completely mapped to
emulators or FPGAs. Exploiting generic
controllers and re-using protocol-specific stimuli
generators combined with topology and micro-
program generation is responsible for almost
zero overhead compared to behavioral
testbenches.

1. Introduction

The complexity of large designs described on
system level and therefore the complexity of the
testbenches used for verification have steadily
increased over the last decades. Accordingly, the
verification time for such a design has
dramatically risen and has reached an
unacceptable level. It consists of the time
needed for building the testbench, the pure
simulation time and the time of a turn-around
cycle.

Corresponding to design, re-use is a key
methodology to increase the complexity of
testbenches [2], [8], [9], [10]. This methodology
can obviously applied to standardized protocol
generators -, because many designs serves one
or more of these protocols. The protocol
generators give the possibility to abstract the
input stimuli and improve the test pattern
generation [11]. These generators are usually
tool-specific or language-specific and contain
abstract generic protocols, coding templates,
and/or a set of common subprograms[5].
Unfortunately, there is no standard for these
solutions.

An other method to reduce verification time is to
shorten the execution time for simulation, for
example by using emulators or FPGA-based
prototypes. Mapping the design to an emulator is
straightforward, because it is nothing else than a
re-mapping of the design to another target
technology. However, the testbench is mostly
written in a behavioral way and thus it is not
synthesizable (i.e., it cannot be mapped
automatically to hardware). A time consuming re-

! The naming strongly depends on the underlying language.
So, names as virtual component, testbench element, protocol
generator, or transactor are used.

1530-1591/03 $17.00 & 2003 IEEE

modeling of the testbench in a synthesizable way
is needed.

The starting point for our work was a behavioral
testbench environment as presented in [1]. The
test patterns are written in a very abstract way,
like micro instructions. The advantage of this
approach is that the tests can be implemented
efficiently and almost error-free with an obvious
test coverage. The protocol instructions are
passed to protocol generation units PGUSs) that
serves the interfaces to the device under test
(DUT). This approach guaranties as much
flexibility as possible with a maximum of re-use.
The evaluation of the test patterns is written back
in form of a report that allows a fast and easy
analysis, whether the test pattern were correctly
executed and whether the expected values were
reached.

In the following, we tried to combine the flexibility
of a behavioral testbench with the execution
performance of a synthesizable one. To reduce
verification time without a dramatically increase
in modeling time, we developed a re-use-centric
method, which shows similarities to platform-
based design [6], [7]. The method uses
programmable control units, well defined
interfaces and protocol-specific, synthesizable
testbench elements. The control units can be
generally re-used, whereas the synthesizable
protocol generators can only be protocol-
specifically re-used.

As for behavioral testbenches, the code for
protocol generators are written in a re-usable,
but synthesizable way. The sequencing and
synchronization is done by a general, but generic
and programmable hardware unit that behaves
like a micro sequencer [12].

In addition, the behavior of the synthesizable
testbench is the same as its behavioral
counterpart, especially regarding synchronization
and report mechanism. The new approach is as
hardware independent, despite of the memories.
To verify the new approach we decided to use an
emulator, but also an FPGA-based prototype is
conceivable.

This paper is organized as follows: First, related
work is referenced. Next, the semantic of the
abstract model and the target architecture are
presented. Afterwards, the fundamental points
how to come from a behavioral to a
synthesizable testbench are explained. Finally,
application of the testbench, experimental
results, and enhanced concepts are discussed.

2. Related Work

As mentioned, the dramatically increasing chip
and testbench complexity is responsible for
permanently increasing simulation times required
for verification. In addition, larger time windows
of the simulated scenarios increase the
simulation times further. Hardware accelerated
simulation is seen as one key technology to
counter this phenomenon.

Partially accelerated testbenches can be
modeled via API for most of the emulators. When
using this approach, you can avoid writing
synthesizable testbenches, but unfortunately you
can not get the hole performance of the
accelerator. In 1999, we used an Ikos NSIM
accelerator and achieved a speed-up of about a
factor of ten against a plain simulation with a
software simulator [3].

An average speed-up of about a factor of 100 is
feasible by using modern emulation technology
[4]. For certain applications a higher speed-up is
achievable. However, the speed-up is generally
limited by the not accelerated part and the
communication overhead as said by Amdahl's
law [13].

In order to avoid this bottleneck, a synthesizable
protocol generator must be written by hand or an
existing data stream generator (e.g., from the
companies Agilent or Heynen) must be used.
The drawback of this solution is its limited
application domain and limited debugging
capabilities.

Our testbench environment reaches from a
behavioral to a fully synthesizable abstraction
level. It is possible to run the testbench with the
same test patterns on a fast HDL simulator (e.g.
for debugging), partially on an accelerator, or full
on a hardware emulator. An automatic
generation of most parts of the environment
guaranties the consistence between the different
variations.

3. Our Approach

After the description of the semantic, the
realization of the target architecture is presented.
On the base of this architecture we describe the
testbench synthesis, which takes into
consideration the instruction encoding.

3.1. Semantic of Abstract Description

In our behavioral testbench, the testcases are
executed according to a static set of parallel
threads, each consisting of a sequence of
protocol operations, sequential control
operations, object write operations, or
synchronization operations. Data exchange
between protocol threads as well as within one
threads is done via global objects. The semantic
of reading and writing the objects is deterministic

because objects are updated at synchronization
operations? only.

The number of threads is equivalent to the
number of interfaces®. The pins and so the
number of interfaces to the chip are assumed to
be exclusive resources, so that one thread per
interface is sufficient.

Protocol
< A Generdion
Linit 1

Gener -
Pratocal
= [« ation

Unit3

Master

Figure 1: Implementation of the abstract
description

The behavioral architecture for the execution of
the testcases is implemented according to the
master-worker pattern as shown in Figure 1. The
workers are responsible for generating the
protocols applied to the DUT and are
consequently called PGU. The master reads the
testcase description and executes statement by
statement. The following cases can be
distinguished:

1. If the statement requests the execution of a
protocol operation, then the operation is not
immediately executed. Instead, the request
for the execution is stored in a queue. There
is one queue for each worker.

2. If a synchronization statement is executed,
then all operations stored in the queues are
executed by sending a request for execution
to the different PGUs in parallel, but only one
request per PGU at a time. If one PGU has
finished execution, then the request is
acknowledged. If another protocol operation
is in the queue (i.e., is planned for execution),
then the next request is sent to the PGU. This
continues until all queues are empty (i.e., all
planned protocol operations are executed).

3. In all other cases (e.g., a control statement or
an object assignment) the statement is
executed immediately.

3.2. Target Architecture

To gain full performance we chose a
decentralized approach as shown in Figure 2.
The central controller of the behavioral testbench
is split into one controller per testbench element
(TBE). The controller is written in a re-usable and
synthesizable way. Further, it will be called
micro sequencer and is part of each TBE. A
TBE is the unit, which interprets the testcase
description and generates the protocol-specific
signals to the DUT. Each TBE serves one
protocol interface of the DUT. Besides this micro
sequencer, a protocol generator and two
memory blocks are instantiated inside a TBE.

2 This is similar to the VHDL execution semantic, where
signals are updated at the next wait statement earliest.

% An interface is a set of pins from the DUT which pertain to a
specific protocol.

Al
\ 4

sequencer |- generator

micro protocol

synchro-
nization
unit

TBE2

Figure 2: Testbench target architecture

The testcase description is distributed to the
appropriated TBE, and stored inside a memory
block called instruction memory unit. This
sequence of instructions is interpreted as a micro
program.

The return values of the protocol generators are
the content of the other memory block. These
are status values, start and end cycle of the
instructions, and maybe return values from the
DUT.

Each TBE has the same micro sequencer for
reading the next instruction and an instruction
decoder. All TBEs have to be synchronized by a
synchronization unit. They are connected by a
logical conjunction. This conjunction shows the
micro sequencer, whether all other protocol
generator units are waiting or if there is at least
one protocol generator unit that is still operating.
The protocol generator can be protocol-
specifically re-used only; all other parts can be
generally re-used. The only adaptation of the
memory blocks and the micro sequencer, which
depends on the instructions, can be done by
generics which adjust the width of signals.
Recapitulating, the synchronization unit, the
memories, and the micro sequencer are re-
usable, synthesizable, and re-configurable. The
protocol generator is protocol-specific.

3.3. Testbench Synthesis

When we talk about testbench synthesis, we
have in mind the way how to come from our
behavioral testbench and abstract testcases to
the target architecture and the definite instruction
memory contents. At the moment, most parts of
the target architecture have to be assembled by
hand. In principle, the architecture could be
automatically derived from the corresponding
behavioral testbench. It must be pointed out that
almost every component of the testbench is a
general one that can be re-used and adapted to
the current circumstances by generics. Only the
protocol generator is interface specific, but it can
taken from a re-use library or has to be written in
synthesizable HDL. In addition, some VHDL
packages are generated that contain the
instruction information as well as the generic
values and ease the adaptation of the TBE. On
the other hand, the memory contents are
completely generated.

The process how to gain the generated parts is
illustrated in Figure 3. Basically, it is split into two
phases. In the first phase the master of the
behavioral testbench generates some

intermediate files that contain the necessary
information in an abstract format. During the
second phase a post-processor written in Perl
generates the final instruction encoding
information and the final memory contents based
on these intermediate files.

[
behavioral SW setup file functional test
instruction program
definition HWgen=true/flase
VHDL 7 ASCII ASCII

JL
analysis ﬂ U
elaboration
41

simulation of behavioral testbench
with a software simulator
HW setup file intermediatefiles | |intermediate files
withinstructions with memory
rom_width=90 definitionsin an contentsin an
. abstract format abstract format
ASCII ASCI ASCI
post-processor in Perl
[N/ [N/
packagethat definite memory
contains constants content
for theinstruction 000101011011101]
encoding 100010101101101
VHDL 7 ASCI v

Figure 3: Data flow of testbench synthesis

The first phase of the testbench synthesis is a
modified simulation of our behavioral testbench.
Accordingly, the master firstly evaluates the
setup file” that contains the information which
testcase is currently to be simulated. It starts
interpreting the functional testcases. However,
instead of executing protocol instruction and
synchronization operations, it generates the
intermediate code files. There is one file that
contains all defined instructions with all their
parameters of all used TBEs. In addition, there is
one intermediate file for every TBE that contains
the micro program that has to be executed by
this element. The synchronization operations are
generated into all files.

As indicated in Figure 3, the generation of the
intermediate file also depends on the instruction
definition of the behavioral PGUs. These
instruction definitions are placed in VHDL

4 Generally, the setup file contains information that must be
know right at the beginning of the simulation. In addition, it
specifies, if a traditional behavioral simulation has to be done
or if the necessary files for the synthesizable testbench
should be generated.

packages and are stored in a sophisticated table
structure. The tables contain the information
which instructions are defined for a specific PGU,
how many arguments and return arguments of
an instruction are expected, and of which type
the arguments and return arguments are.

During the second phase, first, the Perl post-
processor reads a special setup file. It contains
the information that is important for the
generation of the final memory contents. Among
other things, the width of the memory units and
the format for the instruction encoding (see
Section 4) is defined. Second, the post-
processor reads the intermediate file with the
instruction definitions and generates one VHDL
package for every used TBE. These packages
include all information for the generic parameters
and preserves consistency between the
instruction files, the memory contents, and the
PGUs. Third, the post-processor reads the
instruction files and generates based on the
information of the setup file the final memory
contents.

3.4. Instruction Encoding

As mentioned, the micro sequencer is
responsible for reading one word from the
instruction memory unit, for interpreting the read
value, and for passing the extracted instruction
and parameters to the PGU. Thus, it is an
essential condition that the format of the
instructions is well defined in order to execute
them correctly.
The format of an instruction strongly depends on
several factors. The most important one is the
word width of the instruction memory unit.
Number and length of the parameters of an
instruction also have a wide impact on its format.
Moreover, the fact whether the length of a
parameter is static or may change dynamically
must be considered. Finally, the number of
different instructions defined for this TBE also
influences the format. As a result of these facts
the format may vary from instruction to
instruction.
The basic instruction format is characterized in
Figure 4. A complete word in the instruction
memory unit is divided into two parts. One of
these parts takes the instruction, while the other
contains the parameters required for this
instruction. The width of the instruction field can
be derived from the number of defined
instructions for this TBE. The rest of the memory
word is considered to be the parameters.

n-1.. number of bit 0

Parameters instruction

Figure 4: Basic instruction format

There are two principle ways in which the
parameters are assembled in the parameter
field: serial and parallel. In this context, serial
means that all parameters are stored one after

the other. In contrast, parallel means that there
are columns in the memory unit and one column
is used to store one parameter.

The serial format is illustrated in Figure 5. As
mentioned, the parameters are stored one after
the other. Accordingly, two different alternatives
may occur. First, the width of all parameters and
the width of the instruction together are smaller
than the word width of the memory unit. In this
case the rest of the memory word is unused and
is filled up to the instruction length with zeros
(see Figure 5, instrl). Second, the width of all
parameters and the width of the instruction
together are bigger than the word width of the
memory unit. In this case the command is split
into two or more memory words as shown (see
Figure 5, instr2).

n-1.. number of bit 0
00000 |param2 | paraml instrl
param2 | paraml instr2
000 | param4 | param3 instr2

Figure 5: Serial instruction format

The parallel format is pictured in Figure 6. Every
parameter has its own column in which it is
stored. If one parameter is bigger than the width
of its column the whole command has to be split
over two or more memory words. The part of a
column that is not used by a parameter is filled
up to the column width with zeros. Generally, the
parallel format is only used for very long
parameters and if the parameters are required
inside the PGU at the same time.
n-1... number of bit 0

param2 paraml instrl
00000000 | param2 |00 | paraml |instrl

Figure 6: Parallel instruction format

In addition, parameters with arbitrary data length
have to be discussed. In this case, the parameter
in the memory unit is split into a pair of values.
The first value specifies the length of the second
value, while the second value is the parameter
itself. In this case the length field must of course
have a defined size. Consequently, we come to a
format that is shown in Figure 7.

n-1.. number of bit 0
paraml length instrl
00000000 | paraml instrl

Figure 7: Parameter of arbitrary length

The coding of the instructions and the parameter
length are generated from the existing behavioral

instruction specification. Therefore, it is
necessary to supplement the instruction
definition. Further information about the

instruction format is given in a setup file. Here
the data width of the memory unit is specified. In

addition, the user can determine, whether the
parameters of an instruction are assembled in
serial or parallel format. Finally, the width of the
length field for parameters of arbitrary data
length must be defined.

To guarantee full compatibility between the
memory content and the protocol generator, a
TBE-specific VHDL package is generated. This
package contains constants that represent all
important information of the instruction encoding.
Accordingly, the micro sequencer
unexceptionally uses these constants to access
the instruction memory unit. Instructions which
regard the micro sequencer (e.g. synchronization
commands) are defined in an own sequencer
VHDL package for re-use reasons.

Instructions with tristate or don’t care values in
the parameters have to be replaced. Each value-
bit ‘0", ‘1, ‘Z’, and/or ‘D’ is represented by two
bits which means that two data signals must be
used when mapped to a hardware platform. The
second signal is like an enable signal. Because
many emulation systems do not support tristate,
the tristate-pads of the DUT are replaced by a
logic to evaluate the 2bit-coded values.

4. Application and Results

The usability of our approach has already been
proven both in a pilot project as well as in a real
world application. During the pilot project, the
DUT was a simple multiplication unit. For
computing the result, it needs a certain number
of clock cycles depending on the applied stimuli.
The synthesizable testbench consisted of three
TBEs: two stimuli generators and one analyzer.
After the successful evaluation in the pilot
project, we continued with a real world example.
Here, the DUT was a hard disc controller with
several interfaces (e.g. micro controller interface,
JTAG interface, pin-manipulation interface). This
application of our approach showed very
promising results as well.

Both the pilot project and the real world example
were executed on the Celaro emulator from
Mentor Graphics. In the first case, the testbench
and the DUT ran with full speed of the Celaro
which is about 2 MHz. In the latter one, the
testbench with the DUT ran with at least 300 kHz
in full probing mode®. Table 1 shows the
reachable execution frequencies of all used
TBEs separately, the complete testbench (with
the four testbench elements), the DUT
component itself, and the testbench in
combination with the DUT. In addition, the sizes
of all parts are displayed. The table clearly
shows that the design - not the testbench
environment - is the execution time limiting
factor. If it is possible to improve the execution
speed, especially of the design (e.g., by using

® Full probing mode means that all signals in the design are
recorded and can be shown in the waveform viewer.

FPGA prototypes), then the simulation speed
can be increased further on.

Used components Number6 Frequency

of gates” | on Celaro
JTAG TBE 12,000 1,200 kHz
Micro TBE 7,500 700 kHz
Reset TBE 4,300 1,400 kHz
Shell TBE 101,000 700 kHz
Complete testbench 130,000 660 kHz
Disc controller 530,000 395 kHz
Disc controller with 660,000 395 kHz
testbench

Table 1: Frequency and size of all used
blocks

Our new approach reduces simulation time
dramatically. This can be illustrated by
comparing the execution performance of
traditional simulation on a software simulator and
the execution performance using our new
approach. With traditional simulation,
frequencies of about 10 Hz up to 100 Hz are
reachable. Our behavioral testbench runs with
78 Hz'. This frequency depends very much on
the executed testcase: An event-driven simulator
is very fast when executing only a few events. In
contrast, our real world example could be
executed with almost 400 kHz. Therefore, with
our new approach a speed-up of about a factor
of 5000 can be achieved against plain
simulation. In other words, a verification time of
one week using traditional simulation can be
reduced to 120 seconds.

As already mentioned, the memory contents for
the synthesizable testbench are automatically
generated from its behavioral counterpart.
Hereby, the generation is done in two phases.
The time needed to generate the intermediate
files based on a varying number of protocol
instructions is shown in Table 2. The second
phase takes only about two seconds and is
relatively independent from the number of
protocol instructions.

. Numbgr Ofg Time in seconds
instructions

81 4.9

145 7.4

874 30.0

Table 2: Runtime to generate intermediate
files

5. Enhanced Concepts

The presented concept is not restricted to one
thread per PGU. Descriptions which allow mixing
of protocol operations inside one thread and a
dynamically changing number of threads can
also be mapped to the target architecture with

® Number of gate equivalents without memories

" The frequency is calculated by dividing the executed clock
cycles by the absolute simulation time.

8 Equivalent to number of lines in the instruction file

one micro sequencer per protocol unit. Two

extensions must be made:

1. Each access to the protocol unit remains an
exclusive operation (i.e., if two threads
request the execution of a protocol from one
protocol unit) then they must be synchronized
implicitly.

2. The synchronization concept must be
enhanced. It is no longer sufficient to have
only one signal from each TBE to the central
synchronization wunit to indicate that a
synchronization point has been reached. This
is necessary because the synchronization
points are no longer definite.

The presented concept also works fine if pins are

no longer exclusive resources of one protocol.

This is the case if the DUT possesses

multiplexed pins or protocol processors. We

insert in this case a switching unit called
testbench shell between the PGU and the DUT

(see Figure 8). We keep one controller and one

sequential execution thread per protocol that is

to be generated. However, we switch the
connection by configuring the switching unit
similarly to requesting execution of protocols
from a protocol generator. Alternatively, each

PGU could be extended by an active signal. This

active signal is then used in the testbench shell

to configure the switch.

<
Switching [
Protocols [=—={
i Genaric
nsx Mioo- ~ [Generator TeEen
ti control i
on Unit 2 Shall
DUT
Generic | Protocol
< Mico- [Generator
control Unit 3
Generic | Protocol - P m——
< Miao [Generator (’?’I’i:‘;
control | Unit 4 e

Protocol
Sequences
and
Synchro

Figure 8 Switching protocols

The testbench shell concept can also be applied
if the description style of the testcases would
allow several threads accessing a PGU (as
described above). The implicit synchronization
concept of exclusive protocol operations must
then be extended from one PGU to a set of
PGUs sharing the same physical signal.

6. Summary

Our new testbench approach was applied on a
real world design of a hard disc controller. The
evaluation showed that the time required for the
execution of the test scenarios can be reduced
up to an average factor of 5000.

We presented a methodology that combines the
benefit of abstract testcases with the execution

performance of a synthesizable testbench. Our
approach includes a seamless flow to generate
most parts of the synthesizable testbench from
its behavioral counterpart.

The key attributes of our approach are
separation of protocols, higher level
communication/synchronization mechanism,
accelerated verification, and re-use.

Our further work will allow the wuse of
SystemVerilog for testcase descriptions. In
addition, we will realize our approach on an
FPGA- based prototyping board in order to
speed up the simulation up to 50 MHz. Another
interesting point is the random generation of test
patterns in hardware.

Acknowledgement

The verification of this approach was done in
cooperation with Mentor Graphics. We thank the
whole disk drive team from Infineon for giving the
design to us and for supporting us in
understanding it. Also we thank Mr. Dirk Hansen
from Mentor Graphics for fruitful discussions, for
setting up several testcases on Mentor Graphics’
Celaro emulator, and for his help during the
generation of the results for this paper.

7. Bibliography

[1] Bauer, M. and W. Ecker: “Hardware/Software Co-
Simulation in a VHDL-Based Testbench Approach”,
DAC, 1997.

[2] York, G., Mueller-Thuns, R., Patel, J., and D. Beatty:
"An integrated Environment for HDL Verification”.
International Verilog HDL Conference, 1995.

[3] Bauer, M., Ecker, W., Henftling, R., and Zinn, A.: "A
Method for Accelerating Test Environments*,
EUROMICRO, Milano, 1999.

[4] Eric Melancon: “A C/C++ Testbench for Acceleration”,
Cadence white paper, Talk Verification Newsletter,
August 2002, Volume 7, Issue 2

[5] EVCs from Verisity: http://www.verisity.
com/products/evc.html

[6] Gary Smith: “Analysis of platform based
Desing”,http://www.eedesign.com/story/
OEG2000906S0074

[7] Alberto Sangiovanni-Vincentelli: “Defining Platform
based Design”, http://mww.eedesign.com/features
/exclusive/lOEG20020204S0062

[8] Davik Dempster, Michael Stuart: “Verification Methodo-
logy Manual — Techniques for Verifying HDL Designs”.
Teamwork International and TransEDA Limited, Second
Edition June 2001, ISBN 0-9538-4821-3

[9] Marc Erickson: “Verification Crisis: Braccio tackles
reusable verification”, EETimes 18 June 2001,
http://mww.mint-tech.com/marc_erickson.htm

[10] Schiitz, M.: “How to Efficiently Build VHDL
Testbenches”. European Design Automation
Conference, S. 554-559, Brighton, England, September
1995

[11] Bauer, M., Ecker W.: “A VHDL-Based Hierarchical,
Highly Flexible, and Extendable Testbench Approach”.
IEEE International High Level Design Validation and
Test Workshop, Oakland, USA, November 1996

[12] Donnamaie E. White.: “Bit-Slice Design: Controllers and
ALUs", Garland STPM Press, available at
http://www10.dacafe.
com/book/parse_book.php~?article=BITSLICE/index.html

[13] David A. Patterson and John L. Hennessy: “Computer
Organization & Design — The Hardware/Software
Interface”; Morgan Kaufmann Publishers, Inc, S. 75

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

