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Abstract
We investigate a characterization of hard-to-detect bridg-
ing faults. For circuits with large numbers of lines (or
nodes), this characterization can be used to select target
faults for test generation when it is impractical to target all
the bridging faults (or all the realistic bridging faults). We
demonstrate that the faults selected based on the proposed
characterization are indeed hard-to-detect by showing that
the fault coverage of a given test set with respect to this
subset is lower and more sensitive to the test set than the
fault coverage obtained with respect to a random subset of
the same size, with respect to the complete set of faults,
and when possible, with respect to a subset of realistic
bridging faults of the same size. We also demonstrate that
a test set for the selected subset of faults detects other
faults more effectively than when a test set is derived for a
randomly selected subset of faults of the same size.

1. Introduction
The number of bridging faults in a circuit with L lines (or
nodes) is on the order of L 2. Consequently, for large cir-
cuits, only a subset of the bridging faults can be con-
sidered in practice during test generation. In order to limit
the number of bridging faults targeted for test generation,
a set of bridging faults called realistic bridging faults is
selected in [1]-[3] based on layout information. This
selection procedure identifies faults that are most likely to
occur taking into account that physical defects are more
likely to bridge two lines if the lines are closer to each
other. In large industrial designs, such methods typically
generate bridging fault lists that are an order of magnitude
larger than the number of nodes in the circuit. For this rea-
son, typically only a portion of these faults that have the
highest probability of occurrence are actually targeted for
test generation. However, it has been observed that very
high percentages of these highest-probability faults are
also easy-to-detect. Consequently, the effectiveness of the
tests generated for these targeted faults is low as they
leave many untargeted faults undetected.
�����������������������������������

1. Research supported in part by NSF Grant No. CCR-0098091
and in part by SRC Grant No. 2001-TJ-950.
2. Research supported in part by NSF Grant No. CCR-0097905
and in part by SRC Grant No. 2001-TJ-949.

A fundamentally different approach to the selection
of a subset of bridging faults is to focus on
hard −to −detect faults. As with other fault models, hard-
to-detect faults are faults with relatively few tests, and
therefore, they are not likely to be detected by tests for
other faults. Moreover, tests for hard-to-detect faults are
likely to detect a large number of easier-to-detect faults.
In this work, we consider a way to characterize hard-to-
detect bridging faults. The proposed characterization pro-
vides a ranking of the faults according to their difficulty of
detection. Based on this ranking, it is possible to select a
subset of faults of the desired size as targets for test gen-
eration. When layout information is available, the pro-
posed ranking can be used for selecting a subset of the
realistic bridging faults that are the hardest-to-detect.
When layout information is not available and it is imprac-
tical to consider all the bridging faults in the circuit, the
proposed ranking provides a way to select a set of target
faults that maximizes the detection of other faults, which
are not included in the selected subset.

The proposed characterization is done based on
information available from structural analysis of the cir-
cuit and from logic simulation of a (small) subset of vec-
tors. Thus, its computational complexity is low. We
describe the characterization of bridging faults according
to their difficulty of detection in Section 2. We then report
the results of three experiments to demonstrate the effec-
tiveness of this characterization.

In Section 3, we perform bridging fault simulation
of deterministic test sets for single stuck-at faults and of
random test sets in benchmark circuits. We compare the
fault coverages with respect to the following subsets of
faults. (1) The complete set of bridging faults. (2) A sub-
set of bridging faults consisting of approximately 1% of
the faults that are the hardest-to-detect according to the
proposed characterization. (3) A randomly selected sub-
set of faults of the same size as that selected using the pro-
posed characterization. (4) A subset of realistic bridging
faults of the same size when they are available. The com-
parison shows that the fault coverage with respect to the
"hard-to-detect" faults is significantly lower than the other
fault coverages and more sensitive to the test set. Thus,
the selected faults are indeed hard-to-detect.
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In Section 4, we consider circuits with small
numbers of inputs, for which tests can be selected out of
the complete set of input vectors without the bias of
specific test generation or test compaction heuristics. We
use a (greedy) covering procedure to derive compact test
sets for subsets of bridging faults of increasing sizes. We
use subsets of hard-to-detect faults as measured by the
proposed characterization, as well as random subsets of
the same size for comparison. We compare test sets
derived for fault subsets of the same size by considering
the fault coverage obtained with respect to the complete
set of bridging faults. The results of this experiment show
that complete coverage of all the detectable bridging
faults is obtained for smaller subset sizes when subsets of
hard-to-detect faults are used. This experiment shows that
tests for hard-to-detect faults based on the proposed char-
acterization are more effective at detecting other, untar-
geted faults. We demonstrate the same point for larger
circuits in Section 5. Here, we use a specific test compac-
tion procedure that has fault selection embedded in it. We
replace the fault selection process by the selection of
hard-to-detect faults, and compare the resulting fault cov-
erages considering the complete set of bridging faults.

We consider AND-type and OR-type bridging
faults [4] as well as four-way bridging faults [5], [6]. The
four-way bridging fault model addresses at the gate-level
the fact that the effects of a bridging fault depend on the
relative strengths of the driving nodes and on the thres-
hold voltages of the driven nodes [7]. We experiment with
AND-type and OR-type bridging faults in Sections 3 and
4, and with four-way bridging faults in Section 5.

We use multi-level implementations of Berkeley
PLAs for experiments with circuits that have small
numbers of inputs, and the combinational logic of
ISCAS-89 benchmark circuits for experiments with cir-
cuits that have larger numbers of inputs.

2. Hard-to-detect bridging faults
In this section, we first describe the proposed characteri-
zation for AND-type and OR-type bridging faults. We
then apply it to four-way bridging faults.

2.1. AND-type and OR-type bridging faults
An AND-type bridging fault between lines g 1 and g 2 is
represented as (g 1,g 2,AND ). An OR-type bridging fault
between lines g 1 and g 2 is represented as (g 1,g 2,OR ).

The proposed characterization is based on two sets
of values associated with every (single) line in the circuit.
The first set of values is obtained by logic simulation of a
small set of input vectors, denoted by Vchar . The size of
Vchar is denoted by Nchar . During the logic simulation
process of Vchar , we collect information about the values
assigned to every line in the circuit. We denote by v [g ]

the value of line g under vector v ∈ Vchar . These values
are used as follows. For a test t to detect a bridging fault
associated with a pair of lines g 1,g 2, it is necessary for t
to assign g 1 = 0 and g 2 = 1, or g 1 = 1 and g 2 = 0. Using
the values v [g ] collected during logic simulation of Vchar ,
we can associate with the pair g 1,g 2 the number of vectors
v ∈ Vchar such that v [g 1] = 0 and v [g 2] = 1, or v [g 1] = 1
and v [g 2] = 0. The lower this number, the more difficult
it is to set g 1 and g 2 to different values, and the faults
associated with g 1,g 2 are likely to be harder-to-detect.

To make the characterization more accurate, we
compute for every line g a set of necessary assignments
A (g ). A necessary assignment of g is a value that must be
assigned to a line in the circuit in order to propagate a
change in the value of g toward the primary outputs. The
set A (g ) is similar to the set of necessary assignments for
a stuck-at fault on line g , except that we do not associate a
faulty value with line g . To define the necessary assign-
ments for g , we use structural analysis of the circuit. We
consider the path from g to the closest primary output or
fanout stem (whichever comes first). Every off-path input
along this path must have the non-controlling value for a
change in the value of g to propagate.

For illustration, we show in Figure 1 the combina-
tional logic of ISCAS-89 benchmark circuit s 27. To pro-
pagate a change in the value of line 4, line 16 must be set
to 0, line 18 must be set to 1, and line 5 must be set to 0.
We obtain A (4) = {(5,0), (16,0), (18,1)}, where in every
pair (h ,α) ∈ A (g ), h is a line and α is the value that must
be assigned to h in order to propagate a change in the
value of g .
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Figure 1: The combinational logic of s 27
Using the method described above, we obtain a

relatively small number of necessary assignments for
every line by using a simple structural analysis of the cir-
cuit. More sophisticated implication-based techniques can
be used to find necessary assignments. Dominator gates
can also be used for this purpose. However, these
methods would be more time-consuming than the method
we use here, and would result in larger numbers of neces-
sary assignments that would have larger memory require-
ments. It is interesting to note that for fanout stems, our
structural analysis does not yield necessary assignments.



We collect a set of necessary assignments A (g ) for
every line g before we simulate the set of vectors Vchar .
During the logic simulation process of Vchar , we update a
variable sat (v ,g ) according to whether or not v ∈ Vchar

satisfies the necessary assignments A (g ). We set
sat (v ,g ) = 1 if the necessary assignments of g are
satisfied by v , and we set sat (v ,g ) = 0 otherwise. The
variables sat (v ,g ) are used as follows. For a test t to
detect a bridging fault associated with g 1,g 2, it is neces-
sary for t to assign g 1 = 0 and g 2 = 1, or g 1 = 1 and
g 2 = 0. At the same time, t must satisfy the necessary
assignments for propagating a change in the value either
of g 1 or of g 2.

Using {v (g )} and {sat (v ,g )}, we define a number
δ(g 1,g 2,AND ) for an AND-type bridging fault and a
number δ(g 1,g 2,OR ) for an OR-type bridging fault to cap-
ture the difficulty of detecting the fault, as follows.

The number δ(g 1,g 2,AND ) is equal to the number
of vectors v ∈ Vchar such that (1) v [g 1] = 0, v [g 2] = 1
and sat (v ,g 2) = 1 (with these values, an AND-type bridg-
ing fault will change the value of g 2 from 1 to 0, and a
necessary condition for the change in the value of g 2 to
propagate is sat (v ,g 2) = 1); or (2) v [g 1] = 1, v [g 2] = 0
and sat (v ,g 1) = 1 (with these values, an AND-type bridg-
ing fault will change the value of g 1 from 1 to 0, and a
necessary condition for the change in the value of g 1 to
propagate is sat (v ,g 1) = 1).

The number δ(g 1,g 2,OR ) is equal to the number of
vectors v ∈ Vchar such that (1) v [g 1] = 0, v [g 2] = 1 and
sat (v ,g 1) = 1; or (2) v [g 1] = 1, v [g 2] = 0 and
sat (v ,g 2) = 1.

We use δ(g 1,g 2,AND ) and δ(g 1,g 2,OR ) to associate
a difficulty of detection with every fault. The lower the
value, the harder-to-detect the fault is expected to be.
Thus, we can rank the faults according to their difficulty
of detection using δ(g 1,g 2,AND ) and δ(g 1,g 2,OR ). To
select N hard-to-detect faults, we select the N faults with
the lowest values of δ.

2.2. Four-way bridging faults
Under the four-way bridging fault model [5], [6], a pair of
lines g 1,g 2 is associated with four faults corresponding to
two possible combinations of values (0,1 and 1,0) on
g 1,g 2, and two possibilities for selecting a line whose
value may change in the presence of a fault. Thus, the
first fault is activated when g 1 = 0, g 2 = 1, and it causes
the value of g 1 to change from 0 to 1. The second fault is
activated when g 1 = 0, g 2 = 1, and it causes the value of
g 2 to change from 1 to 0. The third fault is activated
when g 1 = 1, g 2 = 0, and it causes the value of g 1 to
change from 1 to 0. The fourth fault is activated when
g 1 = 1, g 2 = 0, and it causes the value of g 2 to change
from 0 to 1.

To use the characterization of hard-to-detect faults
based on δ for four-way bridging faults, we extend the
definition of δ as follows. We denote by (g 1,α1,g 2,α2) a
bridging fault between lines g 1 and g 2, which is activated
on g 1 when g 1 = α1 and g 2 = α2. Detection of this fault
requires setting g 1 = α1 and g 2 = α2, and propagating the
effects of a change in the value of g 1 to an output. The
number δ(g 1,α1,g 2,α2) is thus equal to the number of vec-
tors v ∈ Vchar such that v [g 1] = α1, v [g 2] = α2 and
sat (v ,g 1) = 1. Again, δ allows a ranking of the faults
according to their difficulty of detection. A lower value of
δ(g 1,α1,g 2,α2) indicates that the fault (g 1,α1,g 2,α2) is
harder-to-detect.

3. Results of fault simulation
In this section, we report the results of an experiment
where we fault simulate various test sets using different
subsets of AND-type and OR-type bridging faults, one of
them including hardest-to-detect faults according to the
characterization defined in the previous section. The
results indicate that these faults are indeed hard-to-detect.

We simulate the following subsets of faults.
(1) The set Fall of all the non-feedback AND-type and
OR-type bridging faults between every pair of lines that
are not fanout branches or inputs of the same gate.
(2) A subset Fhard consisting of approximately 1% of the
faults in Fall that have the lowest values of δ(g 1,g 2,AND )
and δ(g 1,g 2,OR ). The subset Fhard is defined as follows.
Initially, Fhard = φ. For δ = 0,1, . . . ,δmax, we add to Fhard

every fault (g 1,g 2,AND ) ∈ Fall with δ(g 1,g 2,AND ) = δ
and every fault (g 1,g 2,OR ) ∈ Fall with δ(g 1,g 2,OR ) = δ.
The value of δmax is determined such that it is the first
value of δ for which the size of Fhard reaches or exceeds
1% of the number of faults in Fall .
(3) A subset Frand of the same size as Fhard , where the
faults are selected randomly out of Fall .
(4) A subset Freal of the same size as Fhard that includes
the faults identified as most likely to occur by a realistic
bridging fault extraction tool [1]. We consider only non-
feedback bridging faults provided by the extraction tool in
order to be consistent with the selection of Fhard and
Frand . We consider only several of the circuits, for which
sets Freal are available to us.

We simulate two types of test sets, deterministic
compact test sets for single stuck-at faults from [8], and
random test sets of the same size as the deterministic test
sets. We use Nchar = 100 random vectors for the set Vchar

to compute the detection difficulty measures
δ(g 1,g 2,AND ) and δ(g 1,g 2,OR ). The results are shown in
Tables 1 and 2, as follows.

In Table 1, after the circuit name, we show the total
number of faults in Fall and the number of faults in the
selected subsets Fhard , Frand and Freal . We then show the



Table 1: Parameters of simulated faults and tests
faults ave. δ

circuit total sel all hard rand real tsts� �������������������������������������������������������������������������������������������������������������������
s208 10792 554 32.13 0.00 31.58 27
s298 16612 228 33.02 0.97 34.91 44.93 24
s344 32210 332 32.23 0.33 30.41 41.76 15
s382 29622 411 35.56 1.72 37.35 44.47 25
s400 30932 352 35.90 1.13 37.02 44.30 24
s420 45756 6716 32.19 0.00 32.25 43
s444 37526 514 35.02 1.05 37.41 43.11 24
s510 50190 574 30.89 0.00 31.01 54
s526 43330 667 30.94 0.00 33.45 41.50 50
s641 144752 1761 35.46 0.34 35.19 22
s820 90696 14566 15.26 0.00 15.29 94
s953 175568 12995 40.40 0.00 40.59 76
s1196 283014 20183 25.52 0.00 25.53 118
s1423 463760 7508 31.28 0.43 31.45 26
s1488 419444 39469 14.85 0.00 14.79 101
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Table 2: Fault coverages
determ. f.c. random f.c.

circuit all hard rand real all hard rand real� �����������������������������������������������������������������������������������������������������������������������������������
s208 98.09 82.85 96.57 83.71 10.11 83.57
s298 98.85 62.28 99.56 98.68 97.51 34.65 98.68 94.30
s344 95.11 29.52 95.18 97.59 90.16 12.95 89.16 90.66
s382 99.35 82.73 99.76 99.51 97.88 44.77 98.30 96.11
s400 99.21 73.30 99.43 99.43 93.22 40.06 91.19 92.33
s420 97.61 92.45 97.23 71.90 3.80 71.75
s444 99.11 75.88 99.42 99.81 97.99 58.37 98.05 97.47
s510 97.12 61.50 96.17 94.94 33.97 93.73
s526 99.11 73.61 99.40 98.22 95.52 27.29 96.85 92.75
s641 99.21 81.89 99.15 95.97 17.55 96.02
s820 96.05 83.78 96.08 81.01 44.86 80.65
s953 99.21 96.85 99.18 89.13 47.13 89.21
s1196 97.49 85.45 97.66 87.55 45.98 87.82
s1423 98.80 68.66 98.67 92.78 11.40 92.83
s1488 97.99 82.97 97.97 89.40 54.64 89.04� �����������������������������������������������������������������������������������������������������������������������������������
average 98.15 75.58 98.10 90.58 32.50 90.46
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average value of δ computed over all the faults in Fall ,
over the faults in Fhard , over the faults in Frand , and over
the faults in Freal . The average value of δ for a subset of
faults Fs is computed as

| Fs |

Σ{δ(g 1,g 2,α):(g 1,g 2,α) ∈ Fs ,α ∈ {AND ,OR }}
� ��������������������������������������������������������������������������� .

In the last column of Table 1 we show the number of tests
simulated.

In Table 2, after the circuit name, we show the fault
coverages obtained by simulating the deterministic single
stuck-at test sets from [8] under the sets of faults Fall ,
Fhard , Frand and Freal . We then show the fault coverages
obtained by simulating random test sets of the same size
under the sets of faults Fall , Fhard , Frand and Freal .

From Table 1 it can be seen that the average value
of δ for faults in Fhard is significantly lower than the aver-
age value of δ for faults in Fall , Frand or Freal . From
Table 2 it can be seen that the fault coverages computed
with respect to the subset of hard-to-detect faults Fhard are
significantly lower than the fault coverages computed with
respect to Fall , Frand or Freal . In addition, the fault cover-
age computed over the faults in Fhard is more sensitive to
the test set being simulated. With random test sets, the
fault coverage over Fhard is significantly lower than the

fault coverage obtained by deterministic test sets. The
difference in fault coverage between the two test sets is
significantly lower when considering the randomly
selected set Frand , the realistic set Freal or the set of all the
faults Fall . It is important to note that if fault sampling is
done for the purpose of fault simulation, Frand provides a
better approximation of the actual fault coverage; how-
ever, when the goal is to select a subset of target faults for
test generation, the faults in Fhard are more difficult to
detect and thus should be targeted explicitly.

Information not provided by this experiment is the
extent to which the subset of hard-to-detect faults includes
undetectable faults. We address this issue in the following
section.

4. Test selection using hard-to-detect faults
In this section, we describe the results of an experiment
where we derive compact test sets for subsets of hard-to-
detect faults of increasing sizes. For comparison, we also
obtain compact test sets for randomly selected subsets of
faults. The test sets are generated for fault subsets of the
same sizes. We compare the fault coverage achieved by
the two types of test sets with respect to the complete set
of faults Fall . This experiment provides an indication of
the relative ability of tests for hard-to-detect faults to
detect other faults.

To remove as much as possible the effects of test
generation heuristics on the comparison, we consider in
this section circuits with small numbers of inputs. For a
given subset of faults Fs , we derive a compact test set by
using a greedy covering procedure that selects tests out of
the set of all possible input vectors of the circuit. The
greedy heuristic first selects a yet-undetected fault in Fs

that has the smallest number of tests. Out of the tests for
the selected fault, it selects the test that detects the largest
number of yet-undetected faults in Fs .

The subsets of hard-to-detect faults are determined
as follows. For δ = 0,1, . . . , if there is at least one fault
with δ(g 1,g 2,AND ) = δ or δ(g 1,g 2,OR ) = δ, we define a
subset of faults F δ that consists of every fault with
δ(g 1,g 2,AND ) ≤ δ or δ(g 1,g 2,OR ) ≤ δ. We denote the
resulting subsets of faults F δ

1
,F δ

2
, . . . ,F δ

m
.

We also define subsets of the same sizes consisting
of randomly selected faults. We denote the random sub-
sets by Fr

1
,Fr

2
, . . . ,Fr

m
, respectively. We have

| Fr
i
| = | F δ

i
| for 1 ≤ i ≤ m .

We are interested in the first subset F δ
i

(or Fr
i
) for

which the compact test set detects all the detectable bridg-
ing faults in the circuit (i.e., the test set achieves 100%
fault efficiency with respect to the set Fall of all the bridg-
ing faults). However, we observed that, especially with
random selection of target faults, the fault coverage may



decrease when the size of the fault subset is increased. To
remove the effects of fault coverage fluctuations, we cap-
tured the first subset size after which 100% fault
efficiency was obtained for all the larger subsets con-
sidered. We denote this subset by F 100%

hard for the proposed
selection criterion, and by F 100%

rand for randomly selected
faults. We use Nchar = 500 random vectors for the charac-
terization of hard-to-detect faults.

The results of this experiment are shown in Table 3.
In Table 3, after the circuit name, we show the total
number of faults and the number of undetectable faults.
We then show the proportion of faults included in F 100%

hard ,
and in F 100%

rand . Under column tests we show the number
of tests included in the test set selected for F 100%

hard , and in
the test set selected for F 100%

rand .
Table 3: Achieving 100% fault efficiency

faults selected tests
circuit total undet hard rand hard rand� ���������������������������������������������������������������������������������������������������
Z9sym 30574 805 0.838 0.993 161 161
add6 8912 80 0.374 0.975 37 36
adr4 3882 68 0.722 0.998 16 17
alu1 1530 1 0.387 0.980 24 27
alu2 4992 11 0.551 0.986 32 31
alu3 7740 40 0.478 0.997 36 38
co14 3988 335 0.794 0.998 42 42
dk17 3632 6 0.825 0.990 22 22
dk27 710 2 0.803 0.934 9 9
dk48 3568 3 0.686 0.925 19 20
radd 2600 38 0.550 0.997 13 13
rd53 2692 28 0.178 0.990 24 24
z4 2218 29 0.425 0.992 14 15� ���������������������������������������������������������������������������������������������������
average 0.585 0.981
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From Table 3 it can be seen that using the proposed
characterization, all the selected as well as unselected
detectable faults are detected, on the average, after only
0.585 of the faults are targeted. For random selection of
faults, this happens after 0.981 of the faults are targeted.
The test set sizes are approximately the same when 100%
fault efficiency is reached for both fault subsets.

We also observed that for very small subset sizes,
the proposed characterization leads to the selection of a
relatively large proportion of undetectable faults, for
which no tests are selected. As a result, the initial fault
coverage for small subsets of faults may be small. This
can be alleviated by replacing undetectable faults with
faults having the lowest values of δ that are not included
in the selected subset. In this context, methods such as the
one in [9] for identifying redundant single stuck-at faults
without explicit test generation could be modified to iden-
tify undetectable bridging faults and exclude them from
the subset of selected faults. For larger subset sizes, this
effect becomes insignificant.

For the circuits considered in Table 3, information
about undetectable faults and the values of δ associated
with them is given in Table 4. After the circuit name, we
show the total number of faults and the number of

undetectable faults. We then consider the first three
values of δ, δ = 0,1,2. For every value of δ, we show the
total number of faults with δ(g 1,g 2,AND ) = δ or
δ(g 1,g 2,OR ) = δ, and the number of undetectable faults
with this value of δ. Table 4 shows that many undetect-
able faults have δ = 0. However, not all the faults with
δ = 0 are undetectable. Thus, it is important to include
these faults in the set of faults targeted for test generation.

Table 4: Undetectable faults
all δ = 0 δ = 1 δ = 2

circuit flts und flts und flts und flts und� ���������������������������������������������������������������������������������������������������������������������
Z9sym 30574 805 5780 747 3896 0 3423 2
add6 8912 80 60 60 0 0 1 0
adr4 3882 68 53 49 8 0 0 0
alu1 1530 1 0 0 1 0 2 0
alu2 4992 11 31 6 84 0 45 0
alu3 7740 40 67 24 88 0 123 1
co14 3988 335 1493 326 186 0 36 0
dk17 3632 6 236 3 352 0 182 0
dk27 710 2 24 2 45 0 23 0
dk48 3568 3 710 0 88 0 53 0
radd 2600 38 30 30 0 0 0 0
rd53 2692 28 24 23 10 0 12 0
z4 2218 29 20 20 0 0 1 0
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5. Test compaction using hard-to-detect faults
In the experiment reported next, we use a test compaction
procedure for bridging faults to further demonstrate the
effectiveness of targeting hard-to-detect faults.

The test compaction procedure we use considers the
four-way bridging fault model from [5], [6]. A subset of
bridging faults was originally selected as part of this com-
paction procedure such that for every pair of lines gi ,gj

used for defining four faults, the difference between the
indices | i −j | does not exceed a preselected constant. We
denote the subset of bridging faults selected in this way by
F ind (since it is based on line indices). We set the max-
imum value of | i −j | such that approximately 10% of the
circuit faults are included in F ind.

Using the proposed characterization of hard-to-
detect faults, we then replace the subset F ind with a subset
of faults Fhard of the same size. We compare the results
of the compaction procedure when applied to F ind and
when applied to Fhard by considering two parameters. (1)
The average value of δ for the selected faults. (2) The
percentage of faults detected out of the set Fall of all the
four-way bridging faults when the test set is generated for
Find and for Fhard .

The test compaction procedure starts from a given
deterministic test set for single stuck-at faults, and it adds
a minimal number of tests to this test set in order to detect
bridging faults. We use the stuck-at test set as the set Vchar

for identifying hard-to-detect faults.
We considered non-feedback four-way bridging

faults between every pair of lines that are outputs of
multi-input gates and are not inputs of the same gate. For



the larger circuits (s 5378 and larger), considering the set
of all the bridging faults Fall was not practical because of
its size. We therefore restricted the set Fall to include
bridging faults involving lines gi ,gj such that | i −j | ≤ D
for D that resulted in close to one million bridging faults.
Both Find and Fhard are contained in Fall . The results are
shown in Tables 5 and 6, as follows.

Table 5: Results of test compaction
faults ind hard

circuit total select ave.δ f.c. ave.δ f.c.� �������������������������������������������������������������������������������������������������������������
s298 10188 1116 3.84 84.95 0.00 53.76
s344 17596 1876 2.39 92.91 0.00 65.14
s382 17816 1812 3.92 92.33 0.00 64.24
s400 20480 2180 3.75 90.18 0.00 63.72
s510 59460 6336 8.83 80.18 0.00 18.34
s526 37744 4056 7.01 86.27 0.00 52.19
s641 16900 1724 3.06 94.32 0.00 88.11
s820 126440 12716 6.72 75.50 0.00 20.01
s1196 274104 27764 15.09 86.43 0.00 39.20
s1423 385292 38784 4.48 95.16 0.00 90.21
s1488 589220 59628 6.38 84.19 0.00 15.73
s5378*1 980964 98788 12.45 96.69 0.00 74.59
s9234*2 950968 95940 10.74 89.58 0.00 72.07
s13207*3 896856 93380 20.68 89.21 0.00 75.89

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

*1 D=900 *2 D=400 *3 D=300

Table 6: Fault coverages for test compaction
f.c. wrt all f.c. wrt all

circuit ind hard circuit ind hard
� ������������������������������������������� � �����������������������������������������������

s298 86.32 88.71 s820 73.75 74.25
s344 91.91 92.59 s1196 85.11 85.84
s382 90.70 93.43 s1423 96.57 98.17
s400 89.36 92.05 s1488 83.87 84.02
s510 78.77 79.28 s5378*1 94.94 96.84
s526 88.65 90.47 s9234*2 89.75 90.57
s641 95.46 97.29 s13207*3 87.82 89.23
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In Table 5, after the circuit name, we show the total
number of four-way bridging faults and the number of
faults targeted by the compaction procedure (the number
of faults in F ind and Fhard ). For the set F ind, we show the
average value of δ for the faults in F ind, and the fault cov-
erage with respect to F ind. We also show the same infor-
mation when test generation is performed for the set of
faults Fhard . The values of D that result in fewer than one
million bridging faults in the larger circuits are given
below Table 5.

In Table 6, we show the fault coverage, with respect
to Fall , of the test sets obtained when F ind and when Fhard

are targeted for test generation.
From Table 5 it can be seen that the compaction

procedure detects significantly more faults out of F ind than
out of Fhard . This is partly due to the fact that the set of
hard-to-detect faults includes undetectable faults.
Nevertheless, Table 6 shows that when the set Fall of all
the four-way bridging faults is simulated, the tests gen-
erated for Fhard detect larger percentages of the faults than
tests generated for Find . Since most of the faults in Fall

are easy-to-detect, the differences in fault coverage are

not large, but the fault coverages are consistently higher
when using the proposed subset of hard-to-detect faults.

6. Concluding remarks
We proposed a characterization of hard-to-detect bridging
faults based on the results of logic simulation of a small
set of vectors, and on necessary assignments for propaga-
tion of changes of single line values in the circuit. For a
fault characterized as hard-to-detect, only a small number
of vectors assign different values to the fault sites and
satisfy the necessary assignments for propagating a
change from the fault site whose value will change in the
presence of the fault. For circuits with large numbers of
lines, this characterization can be used to select target
faults for test generation when it is impractical to target all
the faults (or all the realistic faults).

We demonstrated that the faults selected by the pro-
posed characterization are indeed hard-to-detect by show-
ing that the fault coverage with respect to this subset is
lower than the fault coverage obtained with respect to an
arbitrary subset of the same size, and with respect to the
complete set of faults. We considered realistic bridging
faults when possible. We simulated deterministic single
stuck-at test sets as well as random test sets in order to
demonstrate this point.

We also demonstrated that a test set for the selected
faults detects other, unselected faults more effectively
than when a test set is derived for a randomly selected
subset of faults of the same size.
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