
Processor/Memory Co-Exploration on Multiple Abstraction Levels

Gunnar Braun, Andreas Wieferink
Oliver Schliebusch, Rainer Leupers, Heinrich Meyr

Integrated Signal Processing Systems
Templergraben 55, 52056 Aachen, Germany

gunnar.braun@iss.rwth-aachen.de

Achim Nohl
LISATek Inc.

190 Sandhill Circle, Menlo Park, CA
achim.nohl@lisatek.com

Abstract

Recently, the evolution of embedded systems has shown
a strong trend towards application-specific, single-chip so-
lutions. As a result, application-specific instruction set pro-
cessors (ASIP) are more and more replacing off-the-shelf
processors in such systems-on-chip (SoC). Along with the
processor cores, heterogeneous memory architectures play
an important role as part of the system. According to last
year’s ITRS [5], in 2004 about 70 percent of the chip area
will be made up of memories. As such architectures are
highly optimized for a particular application domain, pro-
cessor core and memory subsystem design cannot be apart,
but have to merge into an efficient design process. In this
paper, we present a unified approach for processor/memory
co-exploration using an architecture description language.
We show an efficient way of considering instruction set and
memory architecture during the entire exploration process.
Finally, we illustrate the feasibility of our approach with a
real-world case study.

1. Introduction

One of the key factors for a successful design of
application-specific instruction set processors (ASIP) is an
efficient architecture exploration phase. The objective of the
architecture exploration is to reduce the huge design space
in order to find the best-suited architecture for a given appli-
cation under a number of constraints, such as performance,
power consumption, chip size, and flexibility. Although
there are a number of analytical approaches, large parts of
the design space exploration still have to be carried out by
simulating alternative architecture implementations. It be-
comes obvious that the design methodology and simulation
performance have a significant impact on the efficiency of
the exploration process, hence, on the quality of the archi-
tecture implementation and the design time. Particularly,
the ability to vary the abstraction level of the underlying ar-
chitecture model, that means, the refinement from an initial
functional specification to an RT-level implementation, is of
extreme importance to avoid expensive turn-around times.

In order to address the demands of the ASIP design pro-
cess, so-called architecture description languages (ADLs)
have been established with the objective to close the gap
between purely functional data-flow models and implemen-

tation models in a hardware description language (HDL)
like VHDL or Verilog. Few ADLs allow architecture explo-
ration on multiple abstraction levels, that is, the designer is
enabled to thoroughly explore the processor’s instruction set
before elaborating alternative implementations of the mi-
croarchitecture. However, a flexible choice of the abstrac-
tion level is not only a requirement for the specification of
the processor core, but also for the memory attached to it.

ASIPs are highly optimized for the performance of a par-
ticular task. This is achieved by employing application-
tailored instruction sets, special-purpose functional units,
and dedicated hardware resources with irregular data paths.
As the design of the memory subsystem has a major im-
pact on performance, power consumption, and chip size, the
memory architecture has to be designed to match the appli-
cation’s needs as much as the processor core does. How-
ever, this cannot be achieved by employing conventional
one- or two-level memory hierarchies as found in most
general-purpose processors, but leads to very application-
specific, heterogeneous memory architectures. Further-
more, the essential tight interaction between processor core
and memory subsystem forbids a decoupled design of both.

This leads to the following conclusions: first, the archi-
tecture exploration must go along with the memory subsys-
tem exploration, and second, the design language must sup-
port a flexible and efficient way of modeling heterogeneous
memory architectures on different levels of abstraction.

This work presents a unified approach for an ADL-based
architecture/memory co-exploration on multiple abstraction
levels. Our approach allows to explore ASIP core and mem-
ory subsystem, starting from a functional ISA model with-
out implementation details down to a cycle-accurate mi-
croarchitecture model. Along with the refinement of the
processor model, the abstraction level of the memory model
is also lowered – from an initial assumption of ideal mem-
ories via functional models down to cycle-accurate simula-
tion models with the same temporal and structural accuracy
as the processor model. We will show that the ability to
model on abstract level has a number of benefits, such as
short turn-around times, less modeling effort, and high sim-
ulation performance. This allows to explore a much larger
part of the design space before evaluating alternative mi-
croarchitecture implementations on cycle-accurate level.

The rest of this paper is organized as follows. Section 2
presents related work. The modeling language and underly-
ing memory model is introduced in section 3. In section 4,

1530-1591/03 $17.00 2003 IEEE

an exemplary exploration process illustrates the feasibility
of our approach. Finally, section 5 concludes this work and
gives an outlook on future research topics.

2. Related Work

Related work can be separated into two areas, architec-
ture description languages and memory exploration, model-
ing, and simulation.

The former category comprises an extensive amount of
work about design space exploration for processor-based
embedded systems, in both academia and industry. Exam-
ples are ISDL [10], EXPRESSION [16], MIMOLA [17],
nML [6], ARC [1], Target [18], and Tensilica [19]. While
these approaches capture various aspects of the processor
architecture and address different abstraction levels, no pre-
vious approach except EXPRESSION has explicit support
for the modeling of memory architectures.

The EXPRESSION language is one of few architecture
description languages that allow for processor/memory co-
exploration. Besides the ability to model the processor core
on microarchitecture level, the memory subsystem can be
described by choosing from predefined memory models for
DRAM, SRAM, caches, etc. and describing the intercon-
nectivity as a netlist. However – in contrast to this work
– the EXPRESSION language only supports cycle-accurate
memory modeling without the capability to refine the de-
scription from abstract to microarchitecture level. Further-
more, no results on simulation efficiency have been pub-
lished so far.

Poseidon Technologies [4] offers a memory architecture
exploration tool, MemBrain, which is based on an exten-
sible architecture description language XADL. However,
similar to EXPRESSION, only cycle-accurate modeling is
supported.

Besides the above approaches, many publications can be
found in the area of memory exploration, modeling, simu-
lation, and synthesis. Dinero-IV [9] is a popular memory
simulator written in C, which is capable of modeling arbi-
trary deep cache hierarchies. The simulator takes a memory
trace as input and generates memory profiling data. Simi-
lar approaches are Active-Memory [13], MemSpy [14], and
Tycho [12]. However, all these simulators are decoupled
from the processor design process, and do not allow the
modeling of very heterogeneous memory architectures. A
good overview of existing work about memory simulation
and synthesis can be found in [8].

In addition to the above mentioned work, there are a
number of companies in the area of embedded memories.
Denali Software [2] offers configurable memory models
written in C and hardware description languages. Although
inevitable for synthesis, configurability is generally very
limited, and the stand-alone models contradict the need for
a unified processor/memory architecture design process.

The architecture description language LISA [7] is capa-
ble of modeling processor architectures on different levels
of abstraction, e.g. on instruction or cycle accuracy. In this
work, we pick up with our previous research, and introduce

extensions that allow for processor/memory co-exploration
with LISA, hence presenting a unified approach for the de-
sign of processor-based, embedded systems.

3. Memory Exploration using LISA

The language for instruction set architectures (LISA) has
been designed for the description of instruction set proces-
sor architectures. LISA belongs to the class of so-called
mixed structural/behavioral ADLs, that is, a model descrip-
tion is composed of a structural part describing the proces-
sor resources such as registers, memories, pipelines, and a
behavioral part reflecting the processor’s instruction set in-
cluding instruction encodings, assembly syntax, functional
behavior, and timing. LISA is capable of modeling the pro-
cessor architecture on different abstraction levels regard-
ing the hardware structure as well as time. That means, a
purely functional model of the instruction set can be refined
in structure by e.g. adding a pipeline or i/o interfaces, and
by increasing temporal accuracy, e.g. by changing the gran-
ularity from instructions to clock cycles.

However, LISA is not yet capable of modeling non-
ideal memories, that means, there is no notion of laten-
cies, caches, or memory interconnects. These limitations
have been overcome within this work by adding language
support for a flexible and intuitive description of arbitrary
memory architectures. The necessary extensions can be
separated into two major parts, first, the description of the
different types of memories and their interconnections, and
second, the description of the memory access in the instruc-
tion/operation behavior description.

3.1. Memory Modules

Each memory present in the architecture has to be de-
fined in the model description by providing memory type,
data type, size, and a number of (partly) optional parameters
depending on the memory type. Predefined memory types
are bus1, cache, ram, and write buffer, but user-defined
modules can be easily added as long as they are present in
the form of C(++) code or libraries. The parameters avail-
able for configuration of the predefined modules are shown
in table 1. Additionally, all memories can be configured for
read-only or read-write access.

A major advantage is the free choice of the desired data
type of the memory blocks, in other words, the memory
model is not limited to byte- or word-wise organized mem-
ories. Although less frequently appearing in practice, some
very application-specific architectures with extremely tight
constraints on code size employ program memories with
bit-widths which are not a multiple of eight [11]. In these
cases, it is possible to use a bit data type provided by LISA
language in order to define e.g. 21-bit instruction memories.
This allows the definition of a very compact instruction set
without wasting memory for each stored instruction.

1Although the bus cannot be understood as a memory, it is part of
the memory model, since it establishes the interconnects among different
memories and processor.

Memory type Parameters
CACHE line size, number of lines, associativity, write allocation pol-

icy, write back policy, replacement policy, read/write latency,
block size, subblock size, endianess

RAM size, page size, read/write latency for normal, burst, and page
mode access, endianess, block size, subblock size, number of
banks

BUS transfer block/subblock size, address type, latencies
WRITEBUFFER line size, block size, subblock size, flush policy, write latency,

endianess

Table 1. Memory Module Parameters

MEMORY_MAP
{

BUS(pbus), RANGE(0x0800000,0x087ffff) -> icache[(31..2)];
BUS(dbus), RANGE(0x0200000,0x020ffff) \

-> banked1[(1..0)][(31..2)];
BUS(dbus), RANGE(0x0300000,0x030ffff) \

-> banked2[(19..18)][(17..0)];
}

Figure 1. Sample Memory Mapping Scheme

3.2. Interconnectivity

The interconnectivity of the instantiated memories and
the processor core is established by specifying the next level
module(s) for each memory component. Each cache, bus, or
buffer sees only the next level memory it can access. Buses
play a particular role, since they can connect to more that
one memory, hence, each attached memory is identified by
an address space unique for that particular bus.

The connection between processor and memories is es-
tablished by assigning separate address ranges from the pro-
cessor’s address space to the defined memories components.
A memory map as part of the LISA model describes how
memory addresses are mapped onto the physical addresses
of the respective memories. A sample address mapping
scheme is shown in figure 1.

The LISA code excerpt shows mappings for three dif-
ferent address ranges. The first line defines a mapping of
the address range specified by the RANGE keyword onto a
memory icache. The parameter in square brackets follow-
ing the memory name describes the actual address trans-
lation through a bit mask. The range (31..2) indicates
that the last two bits of the address are ignored for address-
ing icache, or, each four consecutive addresses refer to the
same memory block. This is a common setup for byte-wise
addressable memories with a block size of 32 bits. Further-
more, the memory is attached to a bus pbus.

The second and third line of the example show two com-
mon address mapping schemes for banked memories, block
addressing and interleaved addressing. In the second map-
ping, the two least significant bits of an address are used to
address the first dimension of the two-dimensional memory
banked1. As the first dimension selects the memory bank,
this is an interleaved address mapping where consecutive
addresses refer to different banks. In the block addressing
scheme in the third line, bits 18 and 19 are used to select the
bank, i.e. coherent blocks of addresses are mapped onto the
same memory banks.

The description contained in the memory map allows the
modeling of most address mappings commonly in found

in embedded processors. However, it is not possible to
formally describe complex virtual address translation as
performed in processors with a memory management unit
(MMU) (e.g. MIPS and some ARM implementations). In
such cases, the address translation has to be described by
means of a custom C(++) function.

3.3. Memory Interface

While the description of memories and their intercon-
nects determines the structural abstraction level, the tempo-
ral accuracy is defined by how the memory is accessed from
the model of the processor core. Two memory interfaces are
provided to access data from the defined memories, a func-
tional and a cycle-accurate interface.

3.3.1 Functional Interface

The functional memory interface allows basic access to the
memory subsystem. It is made up of only two methods,
a read and a write function. Both accept a number of pa-
rameters for specifying access mode (e.g. burst) and re-
quested block or subblock. The requested memory access
is performed immediately, and the accumulated latency is
returned (in case of success).

The use of the functional interface has a number of ad-
vantages compared to the cycle-accurate interface. Firstly,
it is very simple to use within a functional, instruction-based
model description, since the designer can just assume that
data is available when requested. This prevents from mod-
eling complex memory controllers, and allows to quickly
establish a working model of the architecture. Obviously,
this implies a certain temporal inaccuracy, however, opera-
tion timing is generally not of concern in this early design
phase.

The second advantage is that very high simulation per-
formances can be achieved with the functional interface.
This is due to the fact that memory simulation only takes
place when an access is performed. That means, the mem-
ory simulator does not have to store a state of progress or
to perform a request queue management due to the fact that
each memory access is self-contained. As a consequence,
this obsoletes the need for synchronous memory simulation
(as required for cycle-accurate memory simulation).

Finally, the simplicity of the interface is extremely valu-
able for the integration of proprietary memory components.
For instance, a C(++)-based bus implementation with a cus-
tomized protocol is easily included by embedding the bus
model into an interface wrapper. Once the model obeys the
functional interface, it can be employed as any of the pre-
defined modules, i.e. instantiated, wired, and accessed.

In summary, the use of the functional memory inter-
face allows a quick iteration cycle, since changes are car-
ried out within minutes, and, due the high simulation per-
formance, profiling results showing latency cycles, cache
hit/miss rates, and bottlenecks in the memory architecture
are quickly obtained.

However, functional memory simulation is not appropri-
ate to exploit parallelism, that is, parallel or pipelined mem-

ory architectures. Therefore, once a processor/memory ar-
chitecture is found that roughly meets the initial design cri-
teria, the model can be refined to a cycle-accurate model,
which is used to collect the desired profiling data of the mi-
croarchitecture.

3.3.2 Cycle-accurate Interface

Compared to the functional interface, cycle-accurate mem-
ory access requires a request-based interface, that means,
each access must be requested first before the actual trans-
action can take place. Therefore, the cycle-accurate inter-
face provides separate methods for sending access requests
to memory and eventually receiving data (in case of a read
operation).

As data might not be available until several clock have
passed after the request, the memory possibly adopts many
internal states of progress while processing the request(s).
Therefore, a synchronous simulation of the memory archi-
tecture is mandatory. A state transition function as part of
the memory interface, which is called for each simulated
clock cycle, serves this purpose.

The application of the cycle-accurate memory interface
has a number of consequences for the processor model. In
contrast to functional memory simulation, it is now neces-
sary that the processor model accounts for unavailability of
memory resources, for instance, by stalling program execu-
tion until data becomes available. On the other hand, cycle-
accurate modeling allows to use different pipeline stages for
initiation and completion of a data transfer, a common prac-
tice for hiding memory latencies. Again, this stresses the
importance of processor/memory co-exploration, since the
choice of the memory affects the design of the pipeline, and
vice versa.

In summary, the migration from function to cycle-
accurate memory access results in a model much closer to
the hardware, and thus allows a further, deeper exploration
of the architecture. On cycle-accurate level, pipelines or
buffers might introduced, or separate buses might be chosen
for instruction and data memory. It would be very difficult
of measure the effects of these modifications on functional
level.

3.4. Memory Simulator

The memory simulator is embedded into an instruction
set simulator, which is automatically constructed from the
LISA architecture description. In order to ease the explo-
ration process, most of the parameters shown in table 1 can
be changed during simulator run-time in our retargetable,
graphical debugger frontend. Besides accumulating profil-
ing data, the frontend visualizes the modeled memory ar-
chitecture graphically as a block diagram.

4. Case Study

In order to illustrate the suggested architecture/memory
co-exploration process, this section shows how the pre-

MEMORY_MAP
{
BUS(stdbus), RANGE(0x00000000,0x000fffff) -> prog[(31..2)];
BUS(stdbus), RANGE(0x00100000,0x001fffff) -> data[(31..2)];
BUS(stdbus), RANGE(0x40000000,0x40800000) -> heap[(31..2)];
BUS(stdbus), RANGE(0x7fff8000,0x7fffffff) -> stack[(31..2)];

}

Figure 2. ARM Model Memory Map

sented approach can be applied to tailor a processor’s mi-
croarchitecture and memory subsystem to match a particu-
lar application. We will demonstrate how the memory ar-
chitecture exploration process benefits from very fast func-
tional simulation, and how the found architectural alter-
natives can be analyzed in detail afterwards using cycle-
accurate models.

4.1. Overview

For our experiments, we chose a LISA processor model
of an ARM processor core as a basis for the exploration pro-
cess. The model is an instruction-accurate implementation
of the ARMv4 instruction set as found in ARM7 processor
cores, that is, only the functional behavior of the processor’s
instructions is modeled, without any information about in-
struction timing. Furthermore, the model contains five ideal
memories connected to the processor core via a bus stdbus.
The memories are organized in 32 bit blocks with byte-wise
addressing. Figure 2 shows the memory map of the model.
The model has been verified against ARM’s simulator with
several applications from the domains dsp, networking, and
image processing.

Unfortunately, ideal memory is still hard to find in real
life, hence, the model has been modified to account for non-
ideal memories. As a reference for the results of the follow-
ing exploration process, we assumed all five memory blocks
to be off-chip DRAMs supporting page and burst mode ac-
cess, with an access latency of 20 (processor) clock cycles
for normal access, 10 for page mode access, and 7 for burst
mode access. Furthermore, we assumed a page size of 4
blocks. This setup corresponds to the first configuration in
table 2.

As a target application, we chose a JPEG-2000 compres-
sion algorithm encoding a 397x377 sized bitmap. Both the
C source code of the algorithm and the sample bitmap are
freely available from the JPEG group’s web page [3]. The
source code has been compiled and linked using the soft-
ware development tools delivered with the ARM Developer
Studio (ADS) available from ARM. The resulting binary ex-
ecutable has been run on the simulator generated from the
LISA model. All the simulations have been carried out on
a 1.6 GHz (Athlon-based) desktop PC running SuSE Linux
version 8.

The objective of the following case study is to find an
optimum microarchitecture implementation of the ARM in-
struction set for running the JPEG algorithm. Here, opti-
mum refers to the implementation which gives the minimum
number of overall clock cycles for encoding the bitmap.

4.2. Functional Simulation

The use of the functional memory model together with
the abstract, instruction-accurate ARM model allows a very
fast simulation of the complex JPEG-2000 application. Due
to the application of our just-in-time cache-compiled simu-
lation technique [15], the entire JPEG encoder can be sim-
ulated within a few minutes. This enables the simulation of
many design alternatives in a short amount of time.

The different memory architectures we considered are
shown in table 2. As can be seen from the table, we succes-
sively added caches for the different memories, or, in case
of the stack memory, replaced the DRAM by an on-chip
SRAM with single-cycle access. The latter design choice is
self-evident, since the stack memory area is of only 32KB
size, however, most frequently accessed (besides program
memory). Similarly, all other design decisions from mem-
ory configuration one to six are based on profiling results
obtained from instruction set simulation.

The performance of the different memory architectures
is presented in figure 3. For each configuration, the middle
bar shows the number of total latency cycles due to mem-
ory access. The leftmost bar shows the (constant) number
of executed instructions as a comparison. The chart points
out that the number of latency cycles could be reduced dras-
tically by roughly one order in magnitude (configuration 5).

Figure 3 also shows that no further optimization of the
memory architecture can be evaluated on this level of ab-
straction. In configuration 5, we almost achieved the opti-
mum state that the number of memory accesses equals the
number of memory latency cycles, i.e. close to an average
of a single clock cycle per memory access2. If we assume
a non-pipelined ARM implementation with an average CPI
(cycles per instruction) ratio of 1 (without the memory ref-
erences), we can estimate the total number of clock cycles
ncycle from the number of executed instructions ninstr and
the number of overall memory latency cycles nlat as

ncycle = ninstr · CPI + nlat = ninstr + nlat

Applying this to configuration 5 leads to a total execu-
tion time of 665 million clock cycles, which is still about
2.7 cycles per instruction. Further optimization can only be
achieved by introducing parallelism, however, the effects
can only be measured by cycle-accurate simulation.

4.3. Cycle-accurate Simulation

For further performance evaluation, we refined the in-
struction set model of the ARM to a cycle-accurate, mi-
croarchitecture model with a three-stage pipeline. The
pipeline consists of fetch, decode, and execute stage, which
allows the parallelize program memory read and execution
of an ALU, control, or load/store operation. The imple-

2Memory architectures like this are often found in application domains
where performance is far more important than power consumption or chip
size, e.g. gigabit networking.

Config. 1
program DRAM ltcy=20, page ltcy=10, burst latency=7
data DRAM ltcy=20, page ltcy=10, burst latency=7
heap DRAM ltcy=20, page ltcy=10, burst latency=7
stack DRAM ltcy=20, page ltcy=10, burst latency=7
Config. 2
program cache assoc=1, size=256KB, linesize=4, ltcy=1
data DRAM ltcy=20, page ltcy=10, burst latency=7
heap DRAM ltcy=20, page ltcy=10, burst latency=7
stack DRAM ltcy=20, page ltcy=10, burst latency=7
Config. 3
program cache assoc=1, size=256KB, linesize=4, latency=1
data DRAM ltcy=20, page ltcy=10, burst ltcy=7
heap DRAM ltcy=20, page ltcy=10, burst ltcy=7
stack SRAM size=32KB, latency=1
Config. 4
program cache assoc=1, size=256KB, linesize=4 bytes, ltcy=1
data DRAM ltcy=20, page ltcy=10, burst latency=7
heap cache assoc=4, size=256KB, linesize=4, ltcy=1, write back
stack SRAM size=32KB, ltcy=1
Config. 5
program cache assoc=1, size=256KB, linesize=4, ltcy=1
data cache assoc=1, size=256KB, linesize=4, ltcy=1, write back
heap cache assoc=4, size=256KB, linesize=4, ltcy=1, write back
stack SRAM size=32KB, latency=1
Config. 6 (only for cycle-accurate simulation)
program cache assoc=1, size=256KB, linesize=4, ltcy=1
data cache assoc=1, size=256KB, linesize=4, ltcy=1, wr thrgh.

writebuf. size=64B, linesize=4, ltcy=1, victim, flush-on-valid
heap cache assoc=4, size=256KB, linesize=4, ltcy=1, write back
stack SRAM size=32KB, latency=1

Table 2. Memory Configurations

Figure 3. ARM JPEG Performance

mentation of the necessary modifications for cycle-accurate
memory access took about one week.

From figure 3, it can be observed that the introduction
of the pipeline gives a CPI ratio of 1.38 (including memory
references) for configuration 5. The total cycle count now
also considers latencies caused by control hazards, hence,
is no longer an estimate of the architecture performance.
This cycle-accurate model allows the exploration of further
techniques for increasing performance, e.g. latency hiding.

In configuration 6, we added an application-specific
write buffer between data cache and DRAM. The buffer has
been taken from a VLIW multimedia processor, where it
serves two purposes, the buffering of entire cache lines and
of single blocks or subblocks. This has two major advan-
tages. First, the cache can quickly write victim lines, i.e.
cache lines that have been evicted from the cache, and sec-

Figure 4. Simulation Time

ond, in case of a cache miss, the cache does not have to
wait for the underlying DRAM to become available. Fur-
thermore, the buffer tries to write entire lines to the RAM,
and thus performs a write combining of consecutive cache
misses. The write buffer has a customized flush policy pre-
venting itself from getting full.

Figure 3 shows that the write buffer (configuration 6)
gives an additional performance increase of 15%. Since the
buffer increases the parallelism of the memory architecture,
the cycle count reduction cannot be observed on functional
level.

4.4. Comparison

Although cycle-accurate simulation has the major advan-
tage of revealing the exact performance of the JPEG-2000
on the ARM, there are a number of drawbacks concerning
the exploration process.

Cycle-accurate models are much more complex than
instruction-accurate models. This holds true for both, the
design of the processor core as well as the memory subsys-
tem. The design effort for a cycle-accurate model is eas-
ily three times more than for an instruction-accurate model.
The complexity is also reflected in simulation performance,
as shown in figure 4. When migrating to cycle-accurate
models, simulation performance is reduced by about one
order in magnitude in average. As a conclusion, starting the
exploration process on functional level allows the consider-
ation and evaluation of many more architectural alternatives
than it would on cycle-accurate level.

5. Summary

In this paper, we illustrated the need for architec-
ture/memory co-exploration on multiple abstraction levels.
We presented an extension of the architecture description
language LISA, which allows for flexible modeling and
simulation of heterogeneous memory architectures on in-
struction and clock cycle basis. Finally, we demonstrated
the advantages of our approach with a real-world case study.

Future work will concentrate on the integration of more
complex bus architectures (e.g. AMBA) and the utilization
of the memory architecture description for compiler gener-
ation and HDL code synthesis.

References

[1] ARC Cores. http://www.arccores.com.
[2] Denali Software. http://www.denali.com.
[3] Official JPEG homepage. http://www.jpeg.org.
[4] Poseidon Technologies. http://www.poseidontech.com.
[5] International Technology Roadmap for Semiconductors.

2001 edition., 2001. Semiconductor Industry Association.
[6] A. Fauth and J. Van Praet and M. Freericks. Describing In-

struction Set Processors Using nML. In Proc. of the Euro-
pean Design and Test Conference (ED&TC), Mar. 1995.

[7] A. Hoffmann and T. Kogel and A. Nohl and G. Braun and
O. Schliebusch and A. Wieferink and H. Meyr. A Novel
Methodology for the Design of Application Specific Instruc-
tion Set Processors (ASIP) Using a Machine Description
Language. IEEE Transactions on Computer-Aided Design,
20(11):1338–1354, Nov. 2001.

[8] R. Beckmann and J. Herrmann. Using Constraint Logic Pro-
gramming in Memory Synthesis for General Purpose Com-
puters. In Proc. of the Conference on Design, Automation &
Test in Europe (DATE), 1997.

[9] J. Edler and M. D. Hill. Dinero IV Trace-Driven Unipro-
cessor Cache Simulator. http://www.neci.nj.nec.com /home-
pages/edler/d4/.

[10] G. Hadjiyiannis and S. Hanono and S. Devadas. ISDL:
An Instruction Set Description Language for Retargetabil-
ity. In Proc. of the Design Automation Conference (DAC),
Jun. 1997.

[11] T. Gloekler and S. Bitterlich. Power Efficient Semi-
Automatic Instruction Encoding for Application Specific In-
struction Set Processors. In Proc. of the Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), May 2001.

[12] M. D. Hill. Aspects of cache memory and instruction buffer
performance. PhD thesis, University of California at Berke-
ley, 1987.

[13] A. R. Lebeck and D. A. Wood. Active Memory: A New Ab-
straction for Memory-System Simulation. In Measurement
and Modeling of Computer Systems, pages 220–231, 1995.

[14] M. Martonosi, A. Gupta, and T. E. Anderson. Memspy: An-
alyzing Memory System Bottlenecks in Programs. In Mea-
surement and Modeling of Computer Systems, pages 1–12,
1992.

[15] A. Nohl, G. Braun, O. Schliebusch, A. Hoffmann, R. Le-
upers, and H. Meyr. A Universal Technique for Fast and
Flexible Instruction-Set Architecture Simulation. In Proc.
of the Design Automation Conference (DAC), 2002.

[16] P. Mishra and P. Grun and N. Dutt and A. Nicolau.
Processor-Memory Co-Exploration driven by a Memory-
Aware Architecture Description Language. In Int. Conf. on
VLSI Design, Jan. 2001.

[17] R. Leupers. HDL-based Modeling of Embedded Processor
Behavior for Retargetable Compilation. In Proc. of the Int.
Symposium on System Synthesis (ISSS), Sep. 1998.

[18] Target Compiler Technologies. http://www.retarget.com.
[19] Tensilica. http://www.tensilica.com.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

