
Dynamic Tool Integration in Heterogeneous Computer Networks

 Wolfgang Mueller, Tim Schattkowsky Heinz-Josef Eikerling Jan Wegner
 Paderborn University Siemens Business Services Zuken - EMC Technology Center
 Paderborn, Germany Paderborn, Germany Paderborn, Germany

Abstract

Tool installation and automation of administrative tasks
in heterogeneous computer networks becomes of in-
creasing importance with the availability of complex
heterogeneous computer networks. This article introduces
a new approach for dynamic network tool management,
i.e., TRMS. A variant of TRMS using SNMP - a well
established standard for network administration – is
outlined and illustrated by the application of the
integration and management of design tools for Printed
Circuit Boards (PCBs).

1. Introduction

Tool management and integration [5] is of utmost
importance when establishing complex collaborative
engineering environments [2,8]. With steadily increasing
complexity of heterogeneous computer networks, the
administration and integration of the huge numbers of
various resources is currently one of the biggest challenges
for system administrators. Resources in this context
include physical devices and hardware, like computers or
peripherals as well as software, like office applications,
design environments or groupware, and human resources,
like programmers or secretaries.

For the provision and management of these resources in
complex and heterogeneous computer networks, radically
new concepts and solutions have to be developed. Key
issues and means for the development of such concepts
can be summarized as follows.

Modularity/Extensibility/Scalability: to provide a high
degree of reusability, the integration has to support
modular and hierarchical tool organizations.

Distribution and Portability: tool administration has to
support the integration of distributed, decentralized
resources running on various platforms.

Internet Integration: most of today's, partly public
available resources, are connected and only reachable via
Internet. Existing widespread Internet exchange and
transmission formats and protocols have to be supported.

Standardization: to provide affordable and simple data
exchange between integrated systems, description
languages and formats have to be driven by a wide
industrial consensus.

This paper presents a new approach for dynamic and
secure resource integration and administration, i.e., TRMS
(Tool Registration and Management Services). TRMS
allows the dynamic discovery of a tool using semantics
descriptions of the desired tool behaviour. A tool is
described by a set of significant properties based on which
it can be discovered in the network. We outline a variant
of that approach based on SNMP (Simple Network
Management Protocol), which is a widely accepted
standard for general network administration. The
implementation gives the context for an illustrating
example in the area of a realistic PCB design flow based
on the Zuken Hot-Stage tool suite.

The remainder of this paper is structured as follows.
The next section introduces related works. Section 3
presents our TRMS concepts for dynamic tool registra-
tion and discovery. Section 4 outlines an implementation
of these concepts using SNMP. Section 5 explains the
application to a PCB design flow. The paper finally closes
with conclusions and an outlook.

2. Related Works

Main related works come from the domain of workflow
automation and tool integration. We briefly outline CFI's
Tool Encapsulation Specification (TES) and then discuss
the application of web services and their related XML-
based technologies in industrial tool integration scenarios
with the indication of current limitations.

2.1 Tool Encapsulation Specification (TES)

CFI (CAD Framework Initiative) started work on tool
integration in the context of the Inter-tool Communication
(ITC) subcommittee in 1989. In ITC, the Tool
Encapsulation Specification (TES) language was
developed [1]. TES provides an integration language,
which defines input/output behaviours of integrated tools.

1530-1591/03 $17.00  2003 IEEE

A TES definition includes a tool identifier and a short
textual tool description, a list of platforms able to run the
tool, a list of names and types of tool parameters, the
classification of tool parameters as optional and manda-
tory, and preprocessor instructions for formatting
parameters, for instance, for the concatenation of para-
meters for invocation of a batch tool.

TES was defined as a LISP-based language in order to
ease implementation, since LISP supports platform
portability and dynamic binding. The focus of TES is
basically on parameter processing and invocation.
Integration of complete tool suites, e.g., combining MS
Project with CAD tools with integrated UI is not explicitly
supported. Hence, additional commodity tools like
Windows Scripting Host have to be integrated. Additional
services can be included similarly like databases or web
servers. TES does not support semantic tool description
and lacks compatibility with current web standards. Only
very few systems are known which have implemented ITC
concepts and TES. One example is the tool management
system ASTAI(R) [4,8] which integrates TES and partly
WSDL.

2.2 Web Services Description Language (WSDL)

We currently face a wide acceptance of approaches
based on the eXtensible Markup Language (XML). The
W3C [9] defines a set of XML-based languages that are
the foundation for the current notion of web services. The
Web Service Description Language (WSDL) is used to
describe the interfaces of a web service. These interfaces
can be accessed using the Simple Object Access Protocol
(SOAP).

Consider the example of a web-based simulation ser-
vice, which can be easily defined for an application server
using WSDL for tool encapsulation. If required, the
simulation service may be easily enhanced by a complex
workflow, which integrates various additional resources,
e.g., a web server.

Similar to TES, the WSDL description can be used to
define name, input, output, and data types via which a
client communicates with that service. A WSDL definition
includes:

• type: hierarchical data type definitions
• message: type definitions of the exchanged data
• operation: description of a supported operation
• port type: set of the supported operations
• binding: concrete protocol and data format of

individual port types
• port: an individual 'end point' with binding and

network address
• service: set of combined ports

WSDL descriptions can be made available via a central
UDDI registration (Universal Description, Discovery, and
Integration) [10], e.g., in order to implement resource
discovery. Currently, there are some serious reservations
using such web services for industrial applications. The
related standards like SOAP are currently evolving fast
with the side effect of introducing compatibility issues and
general uncertainty. Since these technologies are not stable
yet, it is undesirable to apply them today in a true
industrial context.

3. Dynamic Tool Management

The classical approach to tool administration is that a
tool is installed on a central server and made available in
the network via NFS or SAMBA. New versions and
patches typically replace older ones, which results in a
permanently modified working environment to which the
user has to continuously get customized to. Due to
significant upward or downward incompatibilities, system
administrators as well as users are facing real challenges
from time to time. Those challenges are even more
significant in large Intranets where tools can be seen as a
highly dynamic resource. Its availability has to be often
managed over extremely long life cycles. In contrast to the
installation and administration of hardware, the installation
and administration of software is even more complex since
software is made available in different versions under
multiple operating systems and comes in various
configurations, customisations, and service packs.

We present how JINI concepts (leasing, discovery,
lookup) [7] can be meaningfully applied to the
management of design tools. Through these concepts,
tools can be discovered in the network by either their
names and/or their properties. Here, not only one tool may
match the discovery. When more matches are received, the
optimal match with respect to static and runtime criteria is
computed, e.g., a simulator on a machine with smallest
CPU load.

Figure 1: Dynamic Tool Management

Corresponding to JINI principles, we can identify three

phases (see Figure 1) for dynamic tool management and
administration: registration, discovery, and invocation.

A tool has to be registered with a lookup service to be
available within the network. This lookup service is used
by a client to discover a tool that is able to fulfil the
client’s needs. Once the client has discovered the tool, it is
directly invoked to serve the client. Based on these
concepts, we introduce a set of Tool Registration and
Management Services (TRMS) that support dedicated core
functions as given in Figure 2.

The Tool Invocation Service (TIS) is a service local to
each client that is called to transparently invoke
dynamically discovered remote tools. By wrapping TIS
functionality, i.e., as a command line tool, transparent
dynamic tool invocation can be easily integrated into
stand-alone clients or workflow management tools.

The Global Tool Lookup Service (GTLS) is a single
global tool registry that is responsible for assigning tools
to incoming discovery requests from TIS instances.

Figure 2: TRMS Core Services

Once a TIS has successfully discovered the required tool

for a specific task it directly invokes the tool by calling a
local resource. This is managed by the Local Tool Control
Service (LTCS). The LTCS has to be deployed locally on
the computers hosting the tools and is responsible for
activating the tool for remote clients and passing
parameters and output data between the tool and the
calling TIS. Furthermore, the LTCS periodically updates
the GTLS based on specified conditions and availability of
tools. It is also responsible for registering the local tools at
the GTLS. Additionally, the LTCS supplies the GTLS
with current runtime properties of the tool and the host,
e.g., the current CPU load or memory allocation.

To enable dynamic tool management in heterogeneous
networks, a high level transport mechanism that
transparently transports service activations and the
corresponding data, i.e., tool input and output data, is
needed. The Advanced Network Transport Services
(ANTS) are a set of services that provides secure end-to-
end transport of data using existing network infrastructure,
i.e., the Internet or a local area network (LAN). ANTS
transparently choose the actual transport mechanism used.
ANTS is used by TRMS to perform secure encrypted
transmission wherever needed and to overcome
networking problems, e.g., to tunnel through firewalls

The general TRMS approach does not depend on a
particular implementation platform. Individual services

can be implemented as a component framework as well as
using SNMP as we outline in the next section.

4. SNMP-Based Management

This section outlines an SNMP-based variant of the
previously introduced TRMS concepts. With SNMP we
mainly address Intranet solutions. However, the presented
concepts can also be easily applied for other environ-
ments, i.e., as a SOAP and UDDI based implementation.

4.1 Background
The Simple Network Management Protocol (SNMP)

[6] was introduced as an IETF standard for the
management of telecommunication networks in 1989.
Today, SNMP is supported by vast majority of hardware
and software manufacturers. SNMP provides the
monitoring and control of arbitrary hardware and software
components in a network by means of message exchange.
For that, SNMP provides means for network integration
through the data specification language ASN.1 and for
message exchange.

Figure 3: NMS and NE in a Network

Based on the UDP protocol, communication is

established between at least one network management
station (NMS) and one or more network resources, so-
called network entities (NEs) as given in Figure 3.
Entities can be simple devices, like a hub or a repeater, or
complex hardware, like switches, gateways, or
workstations. In SNMP, a manager of a management
station communicates with the agent of an entity through
the exchange of data from the local management
information base (MIB)

SNMP messages are composed of two parts. The first
part gives the SNMP version and a unique identifier, the
so-called community or party. The second part contains
the user data (PDU - Protocol Data Unit) composed of an
operation and an object instance. SNMP defines five
different base message types:

• GET: NMS orders an object instance from an NE
• GET-NEXT: NMS orders the next object instance

from the list or table of NEs

• GET-RESPONSE: NE sends an object instance in
response to a GET or GET-NEXT message

• SET: NMS sets a value of an NE attribute
• TRAP: is sent by an NE as a synchronous message

to an NMS

The structure of an object instance is defined by means of
the data specification language ASN.1 (Abstract Syntax
Notation 1), which is typically provided by the
manufacturer of the device. For interpretation of the object
instance, the object definition has to be available in the
MIB (Management Information Base) of the NMS and the
MIB of the NE. For SNMP, only a subset of the ASN.1 is
used, which only includes simple base types like Boolean,
Integer, Real, and simple composed types such as
sequence and set. An ASN.1 definition is composed of the
definition of an object identifier, attributes (data types,
annotations, and status information), and allowable
operations. The object identifier uniquely identifies the
object in the MIB and the entire network. The identifier is
hierarchically defined along a tree structure. It is given as
a combination of strings or integers. The object identifier
"iso.org.dod.internet.mgmt", for instance, has "1.3.6.1.2"
as integer representation.

The exchange of messages is defines along simple
rules. An NMS usually periodically polls the NEs and ask
them for values of previously defined types. NEs simply
send these values without any further actions. Only in the
case of an exception, the NE actively sends a TRAP
message. The NMS decides itself if and how it should
reply to that message. A typical communication pattern is,
that a NMS (e.g., a PC) asks an NE (e.g., a printer) for the
number of printed pages. For this, the NMS sends a GET
message to the printer and asks for the value of the page
counter. When the SNMP agent of the printer receives the
request, it replies with a GET-RESPONSE message
containing the counter value. If the NMS wants to change
that value, it sends a new value using a SET message.

Based on SNMP, we now outline how TRMS concepts
of registration, discovery, and invocation can be
instantiated

4.2 Registration
In order to be discovered in the network, a tool first has

to be registered at the Global Tool Lookup Service
(GTLS). Here, the GTLS manages a global SNMP MIB
database. This basically means that for SNMP integration,
tools and their properties have to be specified in ASN.1.

For registration, main properties and functions have to
be given. The publication of that data is taken over by the
Local Tool Control Service (LTCS). Parameters which are
available in the local MIB are send as SNMP variables via
SNMP-SET to the GTLS. The GTLS registers the tool
with the received data in its repository, which is organized

as a MIB. Tool registration data include tool properties as
well as host and operating system properties such as:

• name
• version number
• installation path
• list of accepted input and output formats with their

version list of possible parameters
• tool classification: edit, display, convert,...
• interaction mode: batch, shell, X11, win

In addition to standard tool properties like name, version,
installation path, and parameters, additional
characterizations are required for remote access like the
interaction mode. The tool classification is required for
general tool queries when tools of specific categories are
searched for. In our current environment, we have
classification into: display, editor, converter. Neverthe-
less, the classification has to be generic and adapted to the
individual needs in order to be extended on demand. The
interaction mode defines the environment under which the
tool can be executed. We distinguish basic batch tools
with no display output (batch), tools where ASCII output
is required (shell), output under X11 (x11), and output
under windows (win). Based on this classification and on
the available operating system, it can be decided if a
remote invocation makes sense. For instance, in specific
contexts (unavailability of Windows emulation on local
host) it makes no sense to access a Windows interaction
from a Sun workstation and it may only make sense to
access X11 interaction from a PC when an X terminal
emulation is locally available. For efficient resource
management and increased performance, the following
properties of the host IP address and the operating system
and version have to be specified.

NAME acroread acroread notepad
VERSION 3.0 3.0 4.0
TYPE display convert edit
PATH /usr/local/

Acrobat3/bin
/usr/local/
Acrobat3/bin

C:\winnt\
notepad.exe

INPUT pdf ?1.1?1.2?
1.3?1.4

pdf ?1.1?1.2?
1.3?1.4

txt

OUTPUT ps ?Level1
?Level2

ps ?Level1
?Level2

txt

FLAGS "default" %s,
"help"-h

"default"
-toPostScript %s,
help"-h

"default" %s

MODE x11 Batch win
HOST 131.234.80.6

1
131.234.80.61 131.234.80.66

OS_TYPE sunos sunos winnt
OS_VERSION 5.6 5.6 4.0?3

Table 1: Selected Tool Properties

Table 1 gives examples for selected properties of 3
installed tools: acroread 3.0 in two flavours (display,

converter) and notepad 4.0. The table shows that acroread
can be classified as a display for pdf and as a converter
from pdf to PostScript. In both cases different input and
output formats are accepted. They are enumerated with
their version, which is separated by a '?', e.g., PostScript?
Level1?Level2. In addition, tool parameters (flags) can be
optionally specified where the default parameter (default)
is mandatory and help parameter is recommended. Note
here, that acroread has a different default parameter when
being used as a PostScript converter. After registration,
SNMP manages discovery and invocation of tools.

4.3 Discovery
TIS executes the discovery of a specific tool. In the

following, we outline how discovery can take place based
on SNMP message exchange. The general scenario starts
with the specification of the query for the tool to be
discovered. This query contains a description of the tool
and is used by the GTLS to find an appropriate registered
tool. In our environment, we can specify concrete tool
names like "acroread" with optional version identifier like
"3.0". Moreover, our concepts also support declarative
queries by only specifying input and/or output format like
"word6.0". Then, the GTLS checks for all available
matches. It is possible to combine properties for queries
like a tool of classification "converter" with input
"PostScript" and output "pdf".

The query is sent by the client TIS to the GTLS by
means of a GET message. The message includes the query
request as well as additional static and runtime
information of the client host like the operating system.
The latter is required for later advanced tool selection.
Based on the received data, the GTLS consults its MIB
database. In general there can be several matches in the
MIB, e.g., a simulator can be available on several servers.
Then, an advanced selection process can be performed
based on various optimisation criteria. For an optimised
selection, TIS may consider actual runtime information as
provided by the LTCS. Afterwards, the GTLS sends the
tool reference to the client via a GET-RESPONSE, which
forwards the result to the client.

4.4 Invocation
After discovery, the tool can be invoked. First, the

input data, i.e., design data, are transferred to the tool by
the means of ANTS. The ANTS implementation for the
SNMP variant of TRMS is using the FTP [3] protocol for
the actual data transfer. Once the input data has been
transmitted to the tool machine, the client sends a GET
message to the LTCS responsible for the selected tool.
The LTCS invokes the tool using the input data from the
ANTS transfer. After finishing the tool (successful or
unsuccessful computation), the LTCS replies to the client

by a GET-RESPONSE. Thereafter, the client starts the
transmission of the output data via ANTS, which
completes the discovery/invocation cycle.

5. Application

We present the application of the previously presented
integration and management by the example of a
distributed environment for PCB design. Due to steadily
decreasing time budget allocated to the development cycle
and due to the worldwide distribution of development
teams, our environment demonstrates that we can achieve
a high degree of efficiency when applying the presented
concepts.

Figure 4: PCB Design Flow

Figure 4 sketches a typical workflow for a PCB design
process utilising Zuken tools. The complexity here not lies
in the number of different tools and their distribution over
different servers rather than in the large number of
versions and versions of their supported input and output
formats considering the complete tool life cycle. Thus, the
real challenge is the discovery of tools over the life cycle
rather than the workflow definition and organisation.

The presented workflow depicts the processing steps
from schematic entry over layout generation to final
verification and simulation of analog properties. In our
example, we apply tools from the Zuken Hot-Stage tool
suite: CADSTAR-SI, EMC-Engineer, and the integrated
simulators FREACS, Sigma, and ComoRan. Based on this
tool suite, we focus on the CADSTAR integration and
invocation where the application context is given by the
design flow in Figure 4.

Our design flow starts with the CADSTAR design
entry. In the Zuken tool suite it is denoted as a low level
entry and available as a standalone version on PC.
CADSTAR is a graphical capture for the complete design
of PCBs. It exports its data in proprietary format as well in
the widely known CADIF file format. The

CADIF2SULTAN converter transforms the output file
into SULTAN format, which is required for EMC-
Engineer input. The EMC-Engineer provides input data
through manual interaction, e.g., assignment of component
properties, for later simulation. The EMC-Engineer is
executed on a UNIX-Workstation. After simulation, the
simulation results are displayed by ANARES.

5.1 Tool Integration
For the integration of these tools, their properties have

to be given as previously introduced in order to register
them at the GTLS. We only outline the integration for
CADSTAR. The other tools are specified correspondingly.
As already given in Table 1, we have to specify the name,
version, classification, installation path, input and output
formats, host IP, interaction mode as well as the operating
system with version (and service pack or patch level):

cadstar;edit;c:\Programms\CADSTAR\cadstar.exe;
4.5.1;.pcb,.scm,.paf;.pcb,.scm,.paf?3,.paf?4;
win;196.22.22.22;winnt;4(3),

Here, we use a shorthand format with no type information.
The different fields are separated by semicolon. Versions
are separated by a question mark. The example shows that
CADSTAR exports files with ".pcb", ".scm" and ".paf"
extension, where CADIF files (with extension ".paf") of
version 3 and 4 are supported. We also see here that
CADSTAR requires a Windows display (win).

5.2 Queries
As a short example, we outline a short sequence with

four queries for tool discovery based on the previously
integrated tools:

1. CLASS=edit;INPUT=.pcb;OUTPUT=.paf?3;
OS_TYPE=winnt

2. CLASS=convert,INPUT=.paf;OUTPUT=.sultan

3. NAME=emc-engineer;INPUT=.sultan;
OUTPUT=.dia;MODE=X11;OS_TYPE=SunOS

4. CLASS=display;INPUT=.dia

The queries are given as an ASCII specification where the
preceding type identifiers correspond to those in Table 1.
The first query specifies an editor under Windows NT,
which imports .pcb files and exports CADIF version 3.0
files (files with extension .paf). The second query asks for
a converter from CADIF to SULTAN. Thereafter, the
EMC-Engineer under SunOS is searched for. The final
query checks for a program displaying .dia-files. Note
here, that it is sufficient only to specify input and output
without specifying the program's name. When specifying
such a sequence, our current system takes the output data
from the previous call as input so that simple design flows
can be easily implemented. Implementation of more
complex design flows requires the integration of an
advanced workflow management tool.

6. Conclusions

In this paper, we have presented an approach for
dynamic tool management, namely TRMS, and applied its
concepts to an SNMP based variant. The introduced
variant was outlined by the example of tools of the Zuken
Hot-Stage tool suite for PCB design.

We have applied SNMP to tool integration and mainly
addressed tool administration in complex intranets. For
site-spanning tool integration, one has to consider open
and known security problems in order to highly protect the
exchanged IPs. Due to those problems, SNMP-based
solutions seem to be less applicable for open networks.
Nevertheless, also XML-based alternatives with SOAP
servers currently have significant unsolved security
problems. We see that network-based solutions for non-
secure environments still require significant investigations
in authentication and encryption when exchanging control
and highly sensitive (i.e., IP-protected) design data.

We have resolved the security issues by means of an
adaptable transport layer, i.e., ANTS. Here, we have also
developed a solution for bridging firewalls via additional
proxy servers and encryption in order to provide site-
spanning solutions with an emphasis on security issues.

Acknowledgements
The work described herein is funded by the IST project

E-Colleg (IST-1999-11746). We gratefully acknowledge
the fruitful discussions and valuable remarks of our E-
Colleg partners.

References
[1] CFI: Tool Encapsulation Specification; Version 1.0.0.

CAD Framework Initiative Inc., Austin, USA, 1992.
[2] Lavana, H. et al.:. OpenDesign: An Open User-

Configurable Project Environment for Collaborative
Design and Execution on the Internet. ICCD 2000.

[3] Postel, J., Reynolds, J: File Transfer Protocol (FTP).
RFC 959. 19985.

[4] Rammig, F.J.: Web-based System Design with
Components Off The Shelf (COTS). Forum on Design
Languages, Tübingen, Sept. 2000.

[5] Schefstroem, D.; van den Broek, G.: Tool Integration.
Wiley Series in Software Based Systems, John Wiley &
Sons, 1993.

[6] Stallings, W. B.: SNMP, SNMPv2, SNMPv3 and
RMON 1 and 2. Addison Wesley Longman Inc.,
Reading, Massachusetts, 1999.

[7] Sun Microsystems: Jini™ Specifications v1.2,
http://wwws.sun.com/software/jini/specs/, 2002..

[8] Thronicke, W.; Fox, W.; et al.: From Tool Integration to
Workflow Management - A Lean Integration Solution.
In Proc. 2nd World Conference on Integrated Design
and Process Technology, Austin, TX, Dec. 1996.

[9] W3C, http://www.w3.org, 2002.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

