
STG Optimisation in the Direct Mapping of Asynchronous Circuits
�

D. Sokolov, A. Bystrov, A. Yakovlev

School of Electrical, Electronic and Computer Engineering,
University of Newcastle upon Tyne, UK

Abstract

Direct mapping from Petri nets (PN) and Signal Transi-
tion Graphs (STG) avoids algorithmic complexity inherent
in logic synthesis methods based on optimal state encoding.
However, it may lead to inefficient implementation, both in
size and performance, due to excessive use of state-holding
elements.This paper presents a set of tools that optimise
logic produced by the direct mapping technique by means
of: exposure of outputs, detection and elimination of redun-
dant places. Output exposure is an approach to explicitly
model output signals as STG places, which can be directly
mapped into output flip-flops. The STG can be simplified af-
ter output exposure. The detection of redundant places is a
computationally hard problem with multiple solutions. The
tool solves this problem by using several heuristics aimed at
speed and size. All operations preserve behavioural equiva-
lence. The efficiency of the overall algorithm and individual
heuristics is analysed using a number of benchmarks.

1. Introduction

There exist two paradigms of logic circuit design: syn-
chronous and asynchronous. Synchronous design is based
on two major assumptions: all signals are binary and the
time is discrete. In the asynchronous methodology the sig-
nals are binary and the time is continuous. While the major-
ity of modern circuits are synchronous, such properties as
robustness to variations in operation conditions (e.g. power
supply voltage, environment temperature) and lower power
consumption attract interest to asynchronous circuit design.

Two main approaches to asynchronous design are logic
synthesis [2] and direct mapping [4, 5]. Whilst the for-
mer is well developed and supported by tools, the latter is
insufficiently studied. Existing techniques for direct map-
ping often produce large circuits with an inefficient inter-
face to the environment. A two-level approach for design
of low-latency speed-independent circuits [8] has been pro-
posed [1]. The subject of this paper is a description of
the tools implementing the above approach and several new
heuristics for the optimisation of the STG used for direct
mapping.

�
EPSRC: grant GR/R16754 (BESST), grant GR/M94366 (MOVIE)

2. Background

2.1. Model

In this paper 1-safe Petri Nets (PN) are used to capture
concurrent behaviour of an asynchronous system and Signal
Transition Graphs (STG) as a circuit specification.

Traditionally, a PN is defined as a tuple Σ � � P� T � F � M0 �
comprising finite disjoint sets of places P and transitions T ,
flow relation F ��� P 	 T
��� T 	 P
 and initial marking M0.
There is an arc between x and y iff � x � y
�� F. The preset of a
node x is defined as � x ��� y ��� y � x
�� F � , and the postset as
x ����� y ��� x � y
�� F � . A marking is a mapping M : P � N
denoting the number of tokens in each place (N ��� 0 � 1 �
for 1-safe PNs). It is assumed that � t �� /0 �� t ����� t � T .
The evolution of a PN from the initial marking M0 to a
marking Mn by executing transitions results in a firing se-
quence σ � t1t2 ! " tn, where ti are such that Mi # ti $ 1 � Mi $ 1,
for i � 0 � ! " � n % 1. Mn is called a reachable marking.

An extension of a PN model is a contextual net [7].
It uses additional elements such as non-consuming arcs,
which only control the enabling of a transition and do
not consume tokens. In this paper only one type of non-
consuming arcs is used, namely read-arcs. A set of read-
arcs R can be defined as follows: R �&� P 	 T
'� R (F � /0.
There is an arc between p and t iff � p � t
)� R.

An STG is a PN whose transitions are labelled by sig-
nal events, i.e.STG � �

P� T � F � R � M0 � λ � , where λ : T �
A 	*��+,�!%-� is a labelling function and A is a set of sig-
nals. A set of signals A can be divided into a set of in-
put signals I and a set of output and internal signals O,
I � O � A � I (O � /0. Note, that a set of read-arcs R has
been included into the model of STG, which is an enhance-
ment w.r.t. [9].

2.2. Direct mapping

The tools presented in this paper rely on the method of
direct mapping described in [5]. In this method every place
of an STG is associated with a David cell (DC) [3], whose
circuit diagram is shown in Figure 1(a). DCs can be coupled
using four-phase handshake interfaces, so that the interface�
r� a1 � of the previous stage DC is connected to the inter-

face
�
r1 � a � of the next stage. The operation of a single DC

is illustrated in Figure 1(b). Places p1 and p2 correspond
to active levels of signals r1 and r respectively. They can

1530-1591/03 $17.00 2003 IEEE

be used to model places of a PN as shown in Figure 1(c).
The dotted rectangle depicts the transition between p1 and
p2. This transition contains an internal place, where a token
‘disappears’ for the time tr1 �

� r $. In most cases this time
can be considered as negligible, because it corresponds to a
single gate delay. The limitation of the method using DCs
is that any loop in the specification PN must contain at least
three places [5].

(c) Model

0

00

0

1 0
s

a
r

s−

s+p1 p2
<r1−,r+>p1 p2

r+ a−

a+a1

r1

r1− a1+

a1−r1+ r−

(b) STG(a) Circuit

Figure 1. David cell

Faster and more compact solutions for a DC implemen-
tation were developed in [1] by introducing timing assump-
tions. In DC implementations shown in Figure 2 the reset
phase of state holding element happens concurrently with
the token move into the next stage DC. An interesting fea-
ture of the implementation in Figure 2(b) is that it internally
contains GasP interface [11], which uses a single wire to
transmit a request in one direction and an acknowledgement
in the other.

(b) Transistor−level(a) Gate−level

1

0

0

0

0

0

1

0

1

0

GasP
section

gnd

vdd

r1

a1

r1

a1

a

r

a r

Figure 2. Fast David cell implementation

2.3. Device-environment interface

As proposed in [1], in order to transform the initially
closed (with both input and output transitions) system spec-
ification into the open system specification, the concepts
of environment tracking and output exposure should be ap-
plied. This concept can be applied to STG that is consistent,
output persistent and delay insensitive to inputs.

An STG is consistent if in any transition sequence from
the initial marking, rising and falling transitions of each sig-
nal alternate.

A signal x is persistent if there is no event x � of signal x
disabled by another event y � . An STG is output persistent
if all output signals are persistent and input signals cannot
be disabled by outputs.

An STG is delay insensitive (DI) to inputs if no event
x � of input signal x is switched by another event y � of input
signal y. If this condition is not satisfied, then the method of
order relaxation described in [10] can be used. This condi-
tion seems to be too strong because an input sequence may
exist which, for example, contains multiple transitions of
the same signal, but still uniquely identifies the end of the
sequence. However, for simplicity in this paper only the
case of DI inputs is considered.

The first step in constructing our model is splitting the
system into device and environment. For this the original
STG is duplicated as shown in Figures 3(a,b). Then, in the
first copy, corresponding to the device, input events are re-
placed by dummies and in the second copy, corresponding
to the environment, output events are replaced by dummies.
Behaviour of the device and environment is synchronised
by means of read-arcs between dummy transitions and suc-
cessor places of their prototypes in the counterpart as shown
in Figure 3(b).

At the second step the outputs of both device and en-
vironment are exposed by the following technique. Every
interface signal is associated with a pair of complementary
places representing the low and high levels of the signal.
These places are inserted as transitive places between the
positive and negative transitions of the signal, expressing
the property of signal consistency. Trackers of device and
environment use these exposed outputs to follow (or track)
the behaviour of the counterparts as shown in Figure 3(c).

After that, elementary cycles are formed and read-arcs
are introduced to represent the signals as shown in Fig-
ure 3(d). Read-arcs from the predecessor places of dum-
mies to signal transitions and from the successor places of
signal transitions to dummies preserve the behaviour of the
system. The resultant system specification is weakly bisim-
ular [6] to the original. The elementary cycles are subse-
quently implemented as set-reset Flip-Flops (FF) and the
places of the tracker as DCs.

It is often possible to control outputs by the directly pre-
ceding interface signals without using intermediate states.
Many places and preceding dummies can thus be removed,
provided that the system behaviour is preserved w.r.t. input-
output interface (weak bisimulation). Such places are called
redundant. Their elimination is restricted, however, by po-
tential coding conflicts.

Coding conflicts may cause tracking errors. For exam-
ple, the STG in Figure 4(a) can be transformed as shown in
Figure 4(b) by output exposure and removal of redundant
places p2 and p4. However, if the place p3 is eliminated
as shown in Figure 4(c), then the tracker cannot distinguish
between the output being not yet set and the output being
already reset. Note the specifics of our direct mapping ap-
proach: only those signals whose switching directly pre-
cedes the given output or tracker transition are used in its
support.

p1

p3

p5

(out+)

(out−)

out+

out=1

out−

out=0

in1=1

in2=1

p1

p5

(out−)

out+

out=1

out−

out=0

in2=1

in1=1

out−

out+

in1+

in2+

p1

p2

p3

p4

p5

and optimisation
(b) Output exposure(a) STG (c) Coding conflict

Figure 4. Preventing coding conflicts

out+

in+

SYSTEM

(a) STG

DEVICE

(in+)

out+

(in+)

out+ (out+)

in+

(b) Device−environment

ENVIRONMENT

(out+)

in+

out=0

out=1

in=1

in=0

(c) Complementary places

out=1

out=0

DEVICE

out+(out+)

(in+)

ENVIRONMENT

in=1

in=0

in+ (in+)

(out+)

(e) Optimisation

out=1

out=0

DEVICE

out+(out+)

ENVIRONMENT

in=1

in=0

in+ (in+)

(out+)

TRACKEREXPOSED
OUTPUTS

EXPOSED
OUTPUTS

TRACKEREXPOSED
OUTPUTS

EXPOSED
OUTPUTS

ENVIRONMENTDEVICE

into DC

into FF
mapped

mapped

TRACKER EXPOSED
OUTPUTS OUTPUTS

EXPOSED TRACKER

(d) Output exposure

Figure 3. Device-environment interface

3. Tools

This section describes the set of tools implementing the
above method. The package contains programs for:
� detection of redundant places;
� exposure of the outputs;
� elimination of redundant places;
� mapping of optimised specification into circuit.
The following subsections describe these tools in detail.

The example STG used throughout the following subsec-
tions is shown in Figure 5.

in2+ p02 out2− p05 out3+ p08 out2+ p10 in2−

p12

out3−

out2+p11out1+p09in1−p06
p07out3+

out2−p03
p04

out1−p01in1+

p00

Figure 5. Example STG

3.1. Detection of redundant places

After the exposure of outputs some of the places in the
tracker part together with preceding dummy transitions can
be removed. It is easier, however, to detect redundant places
by processing the original specification. For this each place
is given a tag having one of three values: UNDEFINED
(the place has not been tested yet), REDUNDANT (the place
can be safely removed after output exposure) or MANDA-
TORY (the place should be preserved). The sets of UNDE-
FINED, REDUNDANT and MANDATORY places are denoted
as PU , PR and PM respectively. First, all places are tagged
as UNDEFINED. Then, if place p satisfies the Condition 1
and Condition 2, it is tagged as REDUNDANT, otherwise as
MANDATORY. The order in which the places are processed
affects the result and follows the heuristics presented in Al-
gorithm 1.

Condition 1. There must be more than three UNDEFINED
or MANDATORY places in every loop containing place p.

This restriction on place redundancy is imposed by the
minimal number of DCs in a loop, which is three [5].

Condition 2. Removal of place p must not cause a coding
conflict.

A coding conflict is detected by intersecting two sets of
signals. The first set contains the signals whose transitions
are fired in the forward neighbourhood ε f � p
 of place p is
defined as the minimal (w.r.t. �) set such that:

ε f � p
 : p � ε f � p
 ;� x � T � PR i f
�

y � ε f � p
 � x � y ���
then x � ε f � p

(1)

The set of signals in question can now be defined using
labelling function λ:

A f � p
 � λ � ε f � p
'(T
 (2)

The second set is defined similarly to (1), 2 and con-
tains the signals whose transitions are fired in the backward
neighbourhood εb � p
 of place p:

εb � p
 : p � εb � p
 ;� x � T � PR i f
�

y � εb � p
 � x � � y �
then x � εb � p

(3)

Ab � p
 � λ � εb � p
'(T
 (4)

If A f (Ab � /0 then removal of the place p does not cause
coding conflicts. Note that the above argument is based on
the fact that the neighbourhoods are acyclic due to the en-
forcement of Condition 1.

Let us consider the example shown in Figure 5. First, all
the places p00-p12 are tagged as UNDEFINED. At Heuris-
tic A stage the places p01, p02, p09 are tagged as REDUN-
DANT, because all their predecessors are transitions of input
signals and all their successors are transitions of output sig-
nals (those places are shown as small circles). The result of
this tagging is shown in Figure 6(a).

Places p05, p11, p12 are tagged as REDUNDANT and
p03, p04, p08 as MANDATORY at Heuristic B stage. It
works as follows. There are four chains of UNDEFINED
places: � p11 � p12 � p00 � ; � p05 � p08 � p10 � p12 � p00 � ;
� p03 � p06 � ; � p04 � p07 � . According to our heuristics the
chains should be processed in the order shown in roman
numerals in Figure 6(b). First, the places in the chain
� p11 � p12 � p00 � are tested for being redundant and places
p11, p12 are tagged as REDUNDANT because they satisfy
Condition 1 and Condition 2. The place p00 remains UN-
DEFINED because it is the last place in the chain. Next,

Algorithm 1 Detection of redundant places
input: STG, tagging of places
output: new tagging of places
{ Heuristic A: output latency reduction }
for each p � PU

� �
p � I and p

� � O do
if p satisfies Condition 1 and Condition 2 then

tag p as REDUNDANT;
else

tag p as MANDATORY;
end if

end for
{ Heuristic B: size reduction }
generate a set G of chains containing more then one place p � PU in
sequence;
use heuristics to select the order of chains processing;
for each chain g � G do

associate p with the first place of g;
while p is not the last place in g do

if p satisfies Condition 2 within chain g and Condition 1 then
tag p as REDUNDANT;

else
tag p as MANDATORY;

end if
associate p with the next place in g;

end while
end for
{ Heuristic C: size reduction }
for each p � PU do

if p satisfies Condition 1 and Condition 2 then
tag p as MANDATORY;

else
tag p as REDUNDANT;

end if
end for

the chain � p05 � p08 � p10 � (places p12 and p00 are cut, as
they have already been processed) is considered. Place p05
is tagged as REDUNDANT. Place p08 separates transitions
of signal out2 and is tagged as MANDATORY. The place
p10 remains UNDEFINED as the last in the chain. Finally,
in the chains � p03 � p06 � and � p04 � p07 � places p03 and
p04 are tagged as MANDATORY because there are only three
non-REDUNDANT places left in the loops containing them.
Places p06 and p07 remain UNDEFINED as the last in the
chains. The result is shown in Figure 6(c).

At Heuristic C stage the places p00, p06, p07, p10 are
tagged as MANDATORY because p00 separates out1 transi-
tions, p06 separates transitions of out2, p07 separates out3
transitions. Place p10 should be preserved to maintain three
places in the loop. The resultant STG is shown in Fig-
ure 6(d).

3.2. Exposure of outputs

The procedure of output exposure is defined in Algo-
rithm 2. It converts the closed system specification (envi-
ronment behaviour is included in the model) into the open
system specification (environment is excluded and assumed
to work correctly). This transformation should be applied
to the specification after the detection of redundant places.

The result of output exposure applied to the STG of Fig-
ure 6 is depicted in Figure 7. First, the initial levels of sig-
nals in1 � 0, in2 � 0, out1 � 1, out2 � 1, out3 � 0 are
calculated from the initial marking. Next, pairs of places
representing low and high levels of input signals (in1 � 0,
in1 � 1; in2 � 0, in2 � 1) and output signals (out1 � 0,
out1 � 1; out2 � 0, out2 � 1; out3 � 0, out3 � 1) are

− undefined places
− redundant places − places to be preserved to maintain 3 DCs in a loop

− state separation places

(a) Heuristic A result

(d) Heuristic C result

(e) Legend of place tagging

(b) Heuristic B chains detection

p00

in1+ out1− p03 out2−
out3+p04

p06
p07

in1− out1+ p11 out2+

out3−

p12

in2−p10out2+p08out3+p05out2−in2+

p00

in1+ out1− p03 out2− p06
out3+p04 p07

in1− out1+ p11 out2+

out3−

p12

in2−p10out2+p08out3+p05out2−in2+

II

III

IV

I

p00

in2+ out2− out3+ p08 out2+ p10 in2−

out3−

out2+out1+in1−p06
p07out3+

out2−p03
p04

out1−in1+

p00

in1+ out1− p03 out2−
out3+p04

p06
p07

in1− out1+ out2+

in2+ out2− out3+ p08 out2+ p10 in2−

out3−

p01

p02

p09

p09p01

p02

p01 p09 p11

p12

p05p02

p01

p02 p05

p09 p11

p12

(c) Heuristic B result

Figure 6. Detection of redundant places

Algorithm 2 Exposure of outputs
input: STG
output: new STG with exposed outputs
for each x � A do

create places ‘x � 0’ and ‘x � 1’;
if initial level of x is low then

mark ‘x � 0’ with a token;
else

mark ‘x � 1’ with a token;
end if

end for
for each x ��� T do

replaces x � with dummy ‘ � x �	� ’;
create transition x � ;
create consuming arc ‘x � 0’
 x � ;
create consuming arc x ��
 ‘x � 1’;
create read-arcs

�
‘ � x ��� ’ x � ;

create read-arc ‘x � 1’ ‘ � x ��� ’;
end for
for each x ��� T do

replaces x � with dummy ‘ � x ��� ’;
create transition x � ;
create consuming arc ‘x � 1’
 x � ;
create consuming arc x ��
 ‘x � 0’;
create read-arcs

�
‘ � x �	� ’ x � ;

create read-arc ‘x � 0’ ‘ � x �	� ’;
end for

created. They are marked according to the initial levels of
the signals. Finally, transitions of these signals are moved
from the tracker to the interface and are replaced by dum-
mies in the tracker. Corresponding read-arcs preserving be-
havioural equivalence are created between tracker and ex-
posed outputs.

(in2+)

(in1−)
p06

(in1+) (out1−)

p00

p08

p06
p07

p00

p03

p04

p10

p03

p04

INPUTS

OUTPUTS

in2=0 in1=0

out1+

in1+

out2+

out2+

out2−

out2−

out3−

out3+

out3=0

(out3−)out2=1out1=1

(out1+)

in1=0

in2=1 out2=0 out3=1 out2=1 in2=0

(out2−) (out3+) (out2+)
(out3+)

out3=1

out2=0

(out2−)

out1=0in1=1

(out2+)

(in2−)

out3+

p07p00

p08 p10

p01

p02 p05

p09 p11

p12

p02

p12

p05

p01

p11

in1=0
in1=1

in2=0
in2=1

out1=0
out1=1

out2=0
out2=1

out3=0
out3=1

out1−

in1− in2−

in2+

TRACKER

p09

Figure 7. Exposure of outputs

3.3. Elimination of redundant places

Algorithm 3 describes the process of eliminating the re-
dundant places. This procedure should be used after detec-
tion of redundant places and exposure of outputs.

Algorithm 3 Elimination of redundant places
input: STG with exposed outputs, tagging of places
output: new STG with redundant places removed
for each p � PR

�
p is marked do

roll back the token to the nearest MANDATORY place or places;
end for
for each p � PR do

for each a � F
�

a is a read-arc from p do
create a set of read-arcs from the MANDATORY places preceding p;
delete a;

end for
end for
for each p � PR do

delete
�

p and p;
locally change the structure;

end for
simplify the spec removing duplicated arcs, places and transitions;

Figure 8 shows the optimised specification of the STG
given in Figure 6. Redundant places p01, p09, p11, p02,
p05 are removed, together with preceding dummies, and
read-arc origins are moved to the preceding MANDATORY
places. The removal of place p12 causes the splitting of
transition ‘ � out3 %
 ’.

It should be noted that splitting MANDATORY places
increases the fanin of all the following elements and the
fanout of the preceding elements, as all arcs from such
places are duplicated. Similarly, transition splitting in-
creases the fanout of the preceding elements and the fanin
of the following elements, because arcs to such transitions
are also duplicated.

4. Benchmarks

The benchmarks shown in Table 1 are studied with four
levels of optimisation (corresponding to levels of redundant

p07

p06p03

(out3+)

(out3−)

(out3−)

p06
p07

p00

p08 p06
p07

p03

p04 p00

p00

p10
p07
p06

p00

p06
p07

p00

p10

TRACKER

OUTPUTS

INPUTS

in1=0

in2=0 in1=0

in2=1in1=1

out2=0

out2=1

out1=1

in2=0

out1+ out2+

out2−

out2−

out2+ out3+

out3+

out3−

out3−

in2+in1+

out3=1 out2=1
p08 p10

out3=0

out3=0

out2=0

out3=1

(out3+)
(out2+)

p04

out1=0

(out2−)

(out1−)

p00 in1−

out1−

in2−

out1=0
out1=1

out2=0
out2=1

out3=0
out3=1

in2=0
in2=1in1=1

in1=0

Figure 8. Elimination of redundant places

places detection):
LEVEL 0 - specification is not optimised;
LEVEL 1 - heuristic A is applied (decreases output latency,
further size optimisation is possible);
LEVEL 2 - heuristics A and B are used;
LEVEL 3 - heuristics A, B and C are applied.

The number of transistors is counted for the case of
places being implemented as fast DCs shown in Figure 2(b),
request-acknowledgement logic of DCs and set-reset logic
of FFs being implemented at transistor level. The condition
of having at least three DCs in a loop is met. Latency is
counted as the number of transistors in the longest chain of
switching transistors.

Tests of toggle and imec-alloc-outbound show that half
of DCs can be eliminated in the first level of optimisation,
which is most important in terms of latency. The number of
transistors for device implementation decreases up to 30%.
The fanins and fanouts of DCs do not grow. Further optimi-
sation of toggle does not decrease the number of DCs and
transistors, because the alternation of input and output sig-
nals makes it possible to detect all redundant places in the
first level.

The case of pe-rcv-ifc should be analysed separately.
Even the first level of optimisation increases the number of
switching transistors in a chain to 7 and the next levels make
it even worse - 14. This can be explained by the splitting of
a MANDATORY place before the deep hierarchy of forks and
the recalculation of read-arcs from redundant places to the
split places. The solution to this problem is to evaluate the
complexity of elements by calculating the maximum num-
ber of incoming arcs into a transition (which corresponds to
maximum fanin of DCs or FFs) before and after removal of
every place. If this number is increasing (or at least is in-
creasing beyond the maximum implementable value), then
the place should be kept in the specification. This optimisa-
tion reduces the size of the circuit by preventing complica-
tion of logic rather than reducing the number of DCs. This
is the element complexity optimisation technique, whose re-
sults are shown in Table 1 in parentheses.

Direct mapping of par5 and count (with element com-
plexity optimisation) generates circuits with lower output

optim DC trans max comp

level num fin fout count latency time

toggle

0 8 2 2 70 2 0.064s

1-3 4 2 2 46 2 0.075s

petrify 24 2 0.114s

imec-alloc-outbound

0 17 2 2 151 1 0.089s

1, 2 8 2 4 97 2 0.126s

3 7 2 4 90 2 0.116s

petrify 32 3 2.023s

pe-rcv-ifc

0 58 4 4 537 4 0.192s

1 45 (51) 6 (4) 7 (4) 521 (495) 7 (3) 0.350s

2 36 (38) 6 (4) 12 (4) 524 (412) 14 (2) 1.713s

3 30 (36) 6 (4) 13 (4) 478 (400) 14 (2) 1.928s

petrify 114 4 6.592s

par5

0 28 6 5 256 6 0.128s

1-3 16 (17) 6 (6) 6 (5) 208 (180) 10 (5) 0.184s

petrify 108 10 7m52s

count

0 21 3 4 168 1 0.092s

1 18 (19) 4 (3) 6 (4) 192 (156) 5 (2) 0.074s

2 15 (14) 4 (3) 5 (4) 167 (132) 5 (2) 0.088s

3 13 (14) 4 (3) 5 (4) 153 (132) 5 (2) 0.108s

petrify (manual CSC solution) 80 5 1.412s

() - results of element complexity optimisation

Table 1. Benchmark results

latency than logic synthesis. Scaling of par5 example to
have 4, 5 and 6 concurrent branches has shown exponen-
tial growth of petrify computation time (1m15s, 7m52s and
33m12s respectively), whilst our algorithm produced the re-
sult in 0.165s, 0.184s and 0.206s respectively. In some cases
(e.g count) petrify failed to resolve a CSC conflict (even if
it was reducible) and our algorithm has completed the job.

In general, these benchmarks show the high efficiency
of the optimisation method. Circuits produced by the pro-
posed technique are usually larger than petrify solutions, but
they often have lower output latency. Our method can also
process large specifications, which are not computable by
petrify in acceptable time.

5. Summary

The main part of the toolkit for the low-latency asyn-
chronous circuit design by direct mapping is developed.
The adopted architecture allows the minimisation of state-
holding elements and reduction of latency. The charac-
teristic feature of the method is that the optimisation is
achieved at the specification level (as opposed to optimi-
sation of logic circuits after the stage of synthesis). The

approach exploits the two-level architecture where a circuit
consists of two blocks: the tracker and the block of output
flip-flops. The tracker computes context signals for outputs
concurrently with the environment operation, thus achiev-
ing the latency reduction effect. The output flip-flops gener-
ate outputs from context and trigger signals. The tools work
in three stages: first, redundant places are detected; then,
the output signals are exposed; finally, redundant places to-
gether with preceding dummies are deleted. The benchmark
study indicates the high efficiency of optimisation heuris-
tics. Significant size reduction can be achieved at the first
level alongside with latency reduction. Further optimisation
still decreases the number of circuit elements but sometimes
increases their fanin. In such cases the element complexity
should be optimised.

References

[1] A. Bystrov and A. Yakovlev. Asynchronous circuit synthe-
sis by direct mapping: Interfacing to environment. In Proc.
International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 127–136, Manchester,
UK, Apr. 2002. IEEE Computer Society Press.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. In
XI Conference on Design of Integrated Circuits and Systems,
Barcelona, Spain, Nov. 1996.

[3] R. David. Modular design of asynchronous circuits defined
by graphs. IEEE Transactions on Computers, 26(8):727–
737, Aug. 1977.

[4] L. A. Hollaar. Direct implementation of asynchronous
control units. IEEE Transactions on Computers, C-
31(12):1133–1141, Dec. 1982.

[5] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Var-
shavsky. Concurrent hardware: the theory and practice
of self-timed design. Series in Parallel Computing. Wiley-
Interscience, John Wiley & Sons, Inc., 1994.

[6] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[7] U. Montanari and F. Rossi. Acta informacia. Technical re-
port, 1995.

[8] D. E. Muller and W. S. Bartky. A theory of asynchronous
circuits. In Proceedings of an International Symposium on
the Theory of Switching, pages 204–243. Harvard University
Press, Apr. 1959.

[9] L. Rosenblum and A. Yakovlev. Signal graphs: from self-
timed to timed ones. In Proceedings of International Work-
shop on Timed Petri Nets, pages 199–207, Torino, Italy, July
1985. IEEE Computer Society Press.

[10] H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, and
A. Yakovlev. What is the cost of delay insensitivity?
In Proc. International Conf. Computer-Aided Design (IC-
CAD), pages 316–323, Nov. 1999.

[11] I. Sutherland and S. Fairbanks. GasP: a minimal FIFO con-
trol. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 46–53.
IEEE Computer Society Press, Mar. 2001.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

