
Visualization and Resolution of Coding Conflicts in Asynchronous Circuit Design∗

Agnes Madalinski1, Alex Bystrov1, Victor Khomenko2, and Alex Yakovlev1

1School of Electrical, Electronic and Computer Engineering
2School of Computing Science

University of Newcastle upon Tyne, NE1 7RU, UK

Abstract

Synthesis of asynchronous circuits from Signal Transi-
tion Graphs (STGs) involves resolving state coding con-
flicts. The refinement process is generally done automat-
ically using heuristics and often produces sub-optimal so-
lutions, which have to be corrected manually. This paper
presents a framework for an interactive refinement process
aimed to help the designer. It is based on the visualiza-
tion of conflict cores, i.e., sets of transitions causing cod-
ing conflicts, which are represented at the level of finite and
complete prefixes of STG unfoldings.

1. Introduction

Signal Transition Graphs, or STGs (see, e.g., [1]), are
widely used for specifying the behaviour of asynchronous
control circuits. STGs are interpreted Petri nets in which
transitions are labelled with the rising and falling edges
of circuit signals. Synthesis based on STGs involves the
following steps: (a) checking the necessary and sufficient
conditions for an STG’s implementability as a logic circuit;
(b) modifying, if necessary, the initial STG to make it im-
plementable; and (c) finding appropriate boolean next-state
functions for output and internal signals.

One commonly used tool, PETRIFY [2], performs all
these steps automatically, after first constructing the reach-
ability graph of the initial STG specification. To gain effi-
ciency, it uses symbolic (BDD-based) techniques to repre-
sent the STG’s reachable state space.

While such an approach is convenient for completely au-
tomatic synthesis, it has several flaws: state graphs repre-
sented explicitly or in the form of BDDs are not visual, and
thus prevent efficient interaction with the user. Moreover,
the combinatorial explosion of the state space is a serious is-
sue for highly concurrent STGs (e.g., generated from high-
level hardware descriptions). This makes alternative tech-
niques, and in particular those based on Petri net unfoldings,

∗This research was supported by EPSRC grants GR/M94366 (MOVIE)
and GR/M99293.

very attractive for this task. In [5] the unfolding technique
was applied to the implementability analysis in step (a), viz.
checking the Complete State Coding (CSC) condition [1],
which requires detecting coding conflicts between an STG’s
states. Since STGs usually exhibit a lot of concurrency, but
rather few choice points, their unfolding prefixes are often
exponentially smaller than the corresponding state graphs;
in fact, in most of the experiments conducted in [5] they
are just slightly bigger then the original STGs themselves.
Therefore, unfolding prefixes are well-suited for both vi-
sualization of an STG’s behaviour and alleviating the state
space explosion problem.

In this paper, we concentrate on step (b), in particular on
enforcing the CSC condition (i.e., on resolving CSC con-
flicts), which is a necessary condition of the implementabil-
ity of an STG as a circuit. A CSC conflict arises when se-
mantically different states of an STG have the same binary
encoding. To resolve it, new signals, helping to distinguish
between these states, must be inserted into the specification
in such a way that the behaviour of the transformed spe-
cification remains externally equivalent to the original one.
(Intuitively, insertion of signals introduces additional mem-
ory to the circuit, helping to trace the current state.)

A number of methods for resolving CSC conflicts have
been proposed so far (see, e.g., [4] for a brief review). The
techniques in [9, 10] concentrate on the introduction of con-
straints within an STG, using lock relation and coupledness
relation, respectively, as a guidance. Both relations recog-
nize that if all pairs of signals in the STG are ‘locked’ using
a chain of handshaking pairs then the STG satisfies the CSC
property. The synthesis tool PETRIFY [2] uses the theory of
regions [4] for this purpose.

These techniques work reasonably well. However, they
may produce sub-optimal circuits or fail to solve the prob-
lem. Therefore, manual design is often crucial for finding
good synthesis solutions, particulary in constructing inter-
face controllers, where the quality of the solution is critical
for the system’s performance. According to practicing de-
signers [7], the synthesis tool should offer a way for the
designer to understand the characteristic patterns of a cir-
cuit’s behaviour and the cause of each coding conflict, and

1

1530-1591/03 $17.00  2003 IEEE

let him/her interactively manipulate the model by choosing
where in the specification to insert a new signal. The visu-
alization method presented in this paper is aimed at facili-
tating a manual refinement of an STG with CSC conflicts,
and works on the level of unfolding prefixes. In order to
avoid the explicit enumeration of coding conflicts, they are
visualized by cores, i.e., sets of transitions causing one or
more of them. All such cores must eventually be eliminated
by newly added signals to resolve the coding conflicts. This
eventually results in an STG satisfying the CSC property.

2. Basic notions

In this section, we first present basic definitions concern-
ing Petri nets and STGs, and then recall notions related to
net unfoldings. For the sake of simplicity, we do not con-
sider STGs with ‘dummy’ transitions here, but the theory
can easily be generalized to include them.

2.1. Petri nets and STGs

A net is a triple N
df
= (S,T,F) such that S and T are

disjoint sets of respectively places (circles) and transitions
(boxes), collectively known as nodes, and F ⊆ (S × T)∪

(T × S) is a flow relation. We denote •z
df
= {y | (y,z) ∈ F}

and z•
df
= {y | (z,y) ∈ F}, for all z ∈ S∪T , and assume that

•t 6= /0 6= t•, for every t ∈ T . A marking of N is a multiset M
of places, i.e., M : S → N

df
= {0,1,2, . . .}.

A net system is a pair Σ df
= (N,M0) comprising a finite

net N = (S,T,F) and an (initial) marking M0. A transition
t ∈ T is enabled at a marking M, denoted M[t〉, if for every
s ∈ •t, M(s) ≥ 1. Such a transition can be executed, leading
to a marking M′ defined by M′ df

= M−•t +t•, where ‘−’ and
‘+’ stand for the multiset difference and sum respectively.
We denote this by M[t〉M′ or M[〉M′ if the identity of the
transition is irrelevant. The set of reachable markings of Σ
is the smallest (w.r.t. ⊂) set [M0〉 containing M0 and such
that if M ∈ [M0〉 and M[〉M′ then M′ ∈ [M0〉. For a finite
sequence of transitions, σ = t1 . . . tk, we denote M[σ〉M′ if
there are markings M0, . . . ,Mk such that M0 = M, Mk = M′,
and Mi−1[ti〉Mi, for i = 1, . . . ,k.

A Signal Transition Graph (STG) is a triple Γ df
= (Σ,Z,λ)

such that Σ = (N,M0) is a net system, Z is a finite set of
signals, which generate a finite alphabet Z± df

= Z ×{+,−}
of signal transition labels, and λ : T → Z± is a labelling
function. The signal transition labels are of the form z+ or
z−, and denote the transitions of signals z ∈ Z from 0 to 1
(rising edge), or from 1 to 0 (falling edge), respectively.

We associate with the initial marking of Γ a binary vector
v0 df

= (v0
1, . . . ,v

0
|Z|) ∈ {0,1}|Z|, where v0

i corresponds to the
initial value of signal zi ∈ Z. Moreover, with a sequence of
transitions σ we associate an integer signal change vector

vσ df
= (vσ

1 ,vσ
2 , . . . ,vσ

|Z|)∈Z|Z|, so that each vσ
i is the difference

between the number of the occurrences of z+
i –labelled and

z−i –labelled transitions in σ.
Γ is consistent if, for every reachable marking M, all

firing sequences σ from M0 to M have the same en-
coding Code(M)

df
= v0 + vσ, and this vector is binary,

i.e., Code(M) ∈ {0,1}|Z|. Such a property guarantees that,
for every signal z ∈ Z, the STG satisfies the following two
properties: (i) the first occurrence of z in the labelling of
any firing sequence of Γ starting from M0 has the same sign
(either rising of falling); and (ii) the rising and falling labels
z alternate in any firing sequence of Γ. All STGs considered
in the sequel are assumed to be consistent.

The state graph of Γ is a tuple SGΓ
df
= (S,A,s0,Code)

such that: S
df
= [M0〉 is the set of states; A

df
= {M

t
→ M′ |

M ∈ [M0〉∧M[t〉M′} is the set of transitions; s0
df
= M0 is the

initial state; and Code : S →{0,1}|Z| is the state assignment
function, as defined above for markings.

Signals in Z are partitioned into input signals, ZI , and
output signals, ZO (the latter may also include internal sig-
nals). Input signals are assumed to be generated by the en-
vironment, while output signals are produced by the logical
gates of the circuit. Logic synthesis derives a boolean func-
tion Fz(z1, . . . ,z|Z|) for each output signal z ∈ ZO, which re-
quires the conditions for enabling of each output signal tran-
sition to be determined without ambiguity by the encoding
of each reachable state. To capture this, let Out(M)

df
= {z ∈

ZO | ∃t ∈ T : M[t〉∧λ(t) = z±} be the set of enabled output
signals, for every reachable state M. Two states of SGΓ are
in CSC conflict if they have the same encoding but differ-
ent sets of enabled output signals. Γ satisfies the Complete
State Coding (CSC) property if no two states of SGΓ are in
CSC conflict.

An example of an STG for a data read operation in a
simple VME bus controller (a standard STG benchmark)
is shown in Figure 1(a). Part (b) of this figure illus-
trates a CSC conflict between two different markings, M1

and M2, that have the same code, 10110, but Out(M1) =
{lds} 6= Out(M2) = {d}. This means that, e.g., the value
of Flds(1,0,1,1,0) is ill-defined (it should be 1 according to
the state M1 and 0 according to the state M2), and thus lds
is not implementable as a logic gate. To cope with this, an
additional signal helping to resolve this CSC conflict should
be added to the STG.

2.2. Branching processes and configurations

Two nodes of a net N = (S,T,F), y and y′, are in struc-
tural conflict, denoted by y#y′, if there are distinct transi-
tions t, t ′ ∈ T such that •t ∩ •t ′ 6= /0 and (t,y) and (t ′,y′) are
in the reflexive transitive closure of the flow relation F , de-
noted by �. A node y is in structural self-conflict if y#y.

An occurrence net is a net ON
df
= (B,E,G) where B is the

2

ldtack−lds−

dsr− dtack+ d+

dsr+dtack−
lds+

ldtack+
d−

(a)

1011010110

M2M1
dsr+

lds+

dtack+dsr−d−

ldtack+

d+

dsr+

ldtack−

dtack−

lds−

ldtack− ldtack−

lds−lds−

00000
10000

01010

01000

00010 10010

dtack−

dtack− dsr+

0011001110

1011101111 11111

10100

(b)

1e 2e 4e 5e 6e 7e3e

8e 10e

9e 11e

e12

1C C2

lds+ d+ dtack+ dsr− d−dsr+ ldtack+

core

lds− ldtack−

dtack− dsr+

lds+

(c)

Figure 1. STG model of a simplified VME
bus controller (a), its state graph with a
CSC conflict between two states (b), and
its unfolding prefix, with the correspond-
ing conflict pair of configurations 〈C1,C2〉 (c).
The order of signals in the binary codes is:
dsr,dtack, lds, ldtack,d. The core correspond-
ing to the conflict pair is highlighted. Inputs:
dsr, ldtack; outputs: lds,d,dtack.

set of conditions (places) and E is the set of events (transi-
tions). It is assumed that: ON is acyclic (i.e., � is a partial
order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ de-
notes the irreflexive transitive closure of G. Min(ON) will
denote the minimal elements of B∪ E with respect to �.
The relation ≺ is the causality relation. Two nodes are con-
current, denoted y co y′, if neither y#y′ nor y � y′ nor y′ � y.

A homomorphism from an occurrence net ON to a net
system Σ is a mapping h : B∪E → S∪T such that: h(B)⊆ S
and h(E) ⊆ T ; for all e ∈ E, the restriction of h to •e is a
bijection between •e and •h(e); the restriction of h to e•

is a bijection between e• and h(e)•; the restriction of h to
Min(ON) is a bijection between Min(ON) and M0; and for
all e, f ∈ E, if •e = • f and h(e) = h(f) then e = f .

A branching process of Σ is a quadruple π df
= (B,E,G,h)

such that (B,E,G) is an occurrence net and h is a ho-
momorphism from ON to Σ. A branching process π′ =
(B′

,E ′
,G′

,h′) of Σ is a prefix of a branching process π =
(B,E,G,h), denoted π′ v π, if (B′

,E ′
,G′) is a subnet of

(B,E,G) such that: if e ∈ E ′ and (b,e) ∈ G or (e,b) ∈ G
then b ∈ B′; if b ∈ B′ and (e,b) ∈ G then e ∈ E ′; and h′

is the restriction of h to B′ ∪E ′. For each Σ there exists a
unique (up to isomorphism) maximal (w.r.t. v) branching
process, called the unfolding of Σ.

A configuration of an occurrence net ON is a set of
events C such that for all e, f ∈ C , ¬(e# f) and, for every
e ∈ C , f ≺ e implies f ∈ C . A cut is a maximal (w.r.t. ⊂) set
of conditions B′ such that b co b′, for all distinct b,b′ ∈ B′.
Every marking reachable from Min(ON) is a cut.

Let C be a finite configuration of a branching process

π. Then Cut(C)
df
= (Min(ON)∪ C •) \ •C is a cut; more-

over, the multiset h(Cut(C)) of places is a reachable mark-
ing of Σ, denoted Mark(C). A marking M of Σ is repre-
sented in π if the latter contains a finite configuration C
such that M = Mark(C). Every marking represented in π
is reachable, and every reachable marking is represented in
the unfolding of Σ.

A branching process π = (B,E,G,h) of Σ is complete if
there is a set Ecut ⊆ E of cut-off events such that, for every
reachable marking M of Σ, there exist a finite configuration
C of π such that C ∩Ecut = /0 and M = Mark(C), and for
each such C and every transition t enabled by M, there is
an event e 6∈ C in π such that h(e) = t and C ∪ {e} is a
configuration (e may be in Ecut).

Although, in general, an unfolding can be infinite, for
every bounded net system Σ one can construct a finite com-
plete prefix PrefΣ of the unfolding of Σ, by choosing an
appropriate set Ecut of cut-off events, beyond which the un-
folding is not generated.

A branching process of an STG Γ = (Σ,Z,λ) is a branch-
ing process of Σ augmented with an additional labelling of
its events, λ ◦ h : E → Z± ∪{τ}. One can easily check the
consistency of Γ, once its finite and complete prefix has
been built (see, e.g., [8]).

3. Coding conflicts in a prefix

In [5] an integer programming technique for detecting
coding conflicts, employing STG unfolding prefixes, has
been proposed. A CSC conflict can be represented as an
unordered conflict pair of configurations 〈C1,C2〉 whose fi-
nal states are in CSC conflict, as shown if Figure 1(c). [5]
builds a system of constraints whose set of solutions com-
prises such conflict pairs.

Note that the set of all such pairs may be quite large,
e.g., due to the following ‘propagation’ effect: if C1 and C2

can be expanded by the same event e then 〈C1 ∪{e},C2 ∪
{e}〉 is also a conflict pair (unless these two configurations
enable the same set of output signals). Therefore, it is desir-
able to reduce the number of such pairs to consider, e.g., as
follows. A conflict pair 〈C1,C2〉 is called concurrent if
C1 * C2, C2 * C1, and C1 ∪C2 is a configuration. Below
is a slightly modified version of a proposition proven in [5]:

Proposition 1. Let 〈C1,C2〉 be a concurrent CSC conflict
pair. Then C df

= C1∩C2 is such that either 〈C ,C1〉 or 〈C ,C2〉
is a CSC conflict pair.

Thus the concurrent conflict pairs are ‘redundant’ and
should not be considered. The remaining conflict pairs can
be classified as follows:

Conflicts of type I are such that C1 ⊂ C2.

Conflicts of type II are such that C1\C2 6= /0 6= C2\C1, and
there exist e1 ∈ C1\C2 and e2 ∈ C2\C1 such that e1#e2.

3

The following notion is crucial for the approach pro-
posed in this paper:

Definition 1. Let 〈C1,C2〉 be a conflict pair. The corre-
sponding complementary set is defined as C S df

= C1 4 C2,
where 4 is the symmetric set difference. C S is core if it
cannot be represented as the union of several disjoint com-
plementary sets. A complementary set is of type I/II if the
corresponding conflict pair is of type I/II respectively.

Note that for a conflict pair 〈C1,C2〉 of type I, such that C1 ⊂
C2, the corresponding core is simply C2 \C1.

One can show that every complementary set C S can be
partitioned into C1 \C2 and C2 \C1, where 〈C1,C2〉 is a con-
flict pair corresponding to C S . Moreover, if C S is of type
I then one of these parts is empty, while the other is C S it-
self. An important property of complementary sets is that
for each signal z ∈ Z, the difference between the numbers of
z+– and z−–labelled events in C S is the same in these two
parts, and is 0 if C S is of type I. This suggests that a com-
plementary set can be eliminated by inserting a new signal
into it, which would violate this property.

As an example, consider the conflict pair shown in Fig-
ure 1(c). The corresponding core is {e4 − e8,e10}.

It is often the case that the same complementary set cor-
responds to different conflict pairs. For example, the STG
shown in Figure 3(a) has four concurrent branches with a
CSC conflict in each of them. Due to the mentioned ‘prop-
agation’ effect, there are altogether 888 conflict pairs, a full
list of which is probably too long for the designer to cope
with. Despite of this, there are only 4 cores, as shown in
Figure 3(b). (Note that there are 15 complementary sets,
which can be obtained by uniting these cores.)

4. Framework for visualization and resolution
of coding conflicts

The visualization is based on showing the user the
cores in an STG unfolding prefix. Since every element
of a core is an instance of the STG’s transition, the
cores can easily be mapped from the prefix to the STG
and vice versa. For example, the core {e4 − e8,e10}
in Figure 1(c) can be mapped to the set of transitions
{d+

,dtack+
,dsr−,d−

,dtack−,dsr+} of the original STG
shown in Figure 1(a).

Cores are important for resolving coding conflicts. By
introducing an additional internal signal, say csc+, one can
split a core thus eliminating the corresponding coding con-
flicts. To preserve the consistency of the STG, the signal’s
counterpart csc− must also be added to the specification
outside the core, in such a way that it is neither concurrent
to nor in structural conflict with csc+ (it is sometimes possi-
ble to insert csc− into another core thus eliminating it also).
Another restriction is that an inserted signal cannot trigger

STG

unfold and
compute
the cores

stop

height map
show the

select
a peak

show cores
composing
the peak

new signal
insert a

transfer
signals to
the STG

insert the
signal’s
complement

show cores
composing
the peak

a peak
select

show the
height map
update

no

yes
CSC?

phase 1 phase 2

Figure 2. The process of coding conflict re-
solving by cores.

an input signal (this would impose constraints on the envi-
ronment which were not present in the original STG, mak-
ing it wait for the newly inserted signal). More about the
formal requirements for the correctness of inserting a new
transition can be found in [2].

It is often the case that cores overlap. In order to mini-
mize the number of inserted signals, and thus the area and
latency of the circuit, it is advantageous to insert a signal in
such a way that as many cores as possible are eliminated by
it. That is, a signal should be inserted into the intersection of
several cores. As an example, consider the cores shown in
Figure 4(b). There are five cores altogether, but exploiting
the fact that four of them overlap, it is possible to eliminate
them all adding just one new signal: it should be inserted
into the intersection of the four cores, and its counterpart —
into the remaining core.

A key feature in the visualization process is the height
map, showing the quantitative distribution of the cores. The
events located in conflict cores are highlighted by shades
of colours. The shade depends on the altitude of an event,
i.e., on the number of cores it belongs to. The greater the
altitude, the darker the shade. (The analogy is with a ge-
ographical map showing the altitudes.) ‘Peaks’ with the
highest altitude are good candidates for insertion of a new
signal, since they correspond to the intersection of maxi-
mum number of cores.

4

From this representation, the designer can select an area
for inserting a new signal and obtain a local, more de-
tailed description of the cores overlapping with the selec-
tion. When an appropriate core cluster is found, the de-
signer can decide how to insert a new signal transition op-
timally, taking into account the design constraints and his
knowledge of the system being developed.

The overview of the process is shown in Figure 2. Given
an STG, a finite complete prefix of its unfolding is con-
structed, and the cores are computed. If there are none, the
process stops. Otherwise, the ‘height map’ is shown to the
designer. In phases one and two, a signal splitting some
set of overlapping cores and its counterpart, respectively,
are inserted (the designer can either accept an automatically
proposed solution or check out his/her own). The inserted
signals are then transferred to the STG, and the process is
repeated. Depending on the number of CSC conflicts, the
resolving process can consist of several cycles.

After the insertion of a signal in phase one, the height
map is updated in the beginning of phase two in the fol-
lowing way. The altitudes of the events in the core cluster
where the new signal has been inserted become negative,
to prompt the designer that if the signal’s counterpart is in-
serted there, some of the cores in the cluster will not be
eliminated. Moreover, in order to ensure that the insertion
of the signal’s counterpart preserves consistency, the areas
where the signal’s counterpart cannot be inserted (in partic-
ular, the events concurrent to or in structural conflict with
this signal) are faded out.

5. Case studies

In this section, two examples are discussed to demon-
strate the proposed framework for resolving coding con-
flicts, and the resulting STGs are compared against those
derived by PETRIFY. The first example is a handshake de-
coupling element shown in Figure 3(a). It has four mutually
concurrent handshakes, which result in 888 CSC conflict
pairs. Despite the huge number of these coding conflicts,
there are only 4 cores shown in Figure 3(b).

In this case the height map is quite ‘plain’ since the cores
do not overlap and thus no event has altitude greater than
one. These cores are concurrent to each other and can be
eliminated independently by adding four new signals. Let
us start with the elimination of the first core. This process
is illustrated in Figure 3(b). The internal transition csc+

0 is
inserted concurrently to b+

1 , between b+
0 and b−0 . Since its

counterpart csc−0 cannot be inserted concurrently to csc+
0 ,

parts of the prefix are faded out. In order to reduce the la-
tency of the circuit, csc−0 is inserted concurrently to a−0 .

After transferring these signals to the STG and unfolding
the result, we are left with the remaining three cores, which
can be eliminated in a similar way. The final STG is pre-
sented in Figure 3(c). Note that in order to reduce the fan-in

(a) (b)

(c) (d)

faded out
on phase 2+

1
a

−
0

a
−
1

a

+
0

b

+
1

b
0

b−

−
1

b

+
0

c

+
1

c
−
0

c

−
1

c

+
0

d

+
1

d
−
0

d

−
1

d

+
0

a

+
0

e

+
1

e
0

e −

−
1

e

+
1

a

−
0

a

+
0

a

−
1

a
0
−csc

−
0

a

+
0

a

+
1

c

−
1

c
−
0

c

+
0

c

−
1

a

+
0

a

+
0

b +
0

c +
0

d

+
1

a
−
0

a

−
1

a

+
1

c

−
1

b −
1

c −
1

d −
1

e

−
0

d−
0

c
0

b−
0

e −

+
1

e+
1

d+
1

b
+
0

e

0
−csc1

−csc3
−csc+csc 2

+csc 3

+csc 0 2
−csc

+
1

a
2
−csc

1
−csc

0
−csc

3
−csc

+csc 1
+csc 2

−
1

e

+
1

e

+
0

e

0
e −

+csc 3

−
0

d

+
1

d

+
0

d

−
1

d

+csc 0
+
1

b

−
1

b0
b−

+
0

b

+csc 1

+
0

c

+
1

c
−
0

c

−
1

c

+
0

d

+
1

d
−
0

d

−
1

d

+
0

e

+
1

e
0

e −

−
1

e

+
1

b

−
1

b

+
0

b

0
b−

+csc 0

Figure 3. STG transformation: initial STG (a),
the process of removal of the first core (b),
the final STG (c), and the STG derived by
PETRIFY (d). Inputs: a0,b1,c1,d1,e1; outputs:
a1,b0,c0,d0,e0; internal: csc0,csc1,csc2,csc3.

at a−1 and the fan-out at a+
1 , some of the signals’ counter-

parts were inserted in series. Figure 3(d) shows the STG
derived by the tool PETRIFY for this example. It also uses
four signals to resolve the CSC conflicts, but its quality is
not as good: almost all new signals and their counterparts
are inserted sequentially, delaying output signals and thus
significantly increasing the latency of the circuit.

The second example, shown in Figure 4(a), comes from
real design practice. It is a part of the A-D converter pro-
posed in [6]. It contains five type I and three type II CSC
conflict pairs. They correspond to two type I and three type
II cores, shown in Figure 4(b). The events e3, e6, e9, and e13

comprise the highest peak, as each of them belong to four
cores. This suggests that one can eliminate these cores by
inserting a new signal, say csc−, somewhere into this peak.
In order to reduce the latency, it should be inserted concur-
rently to other signals. The only possibility to do so is to
insert it concurrently to e6, between e3 and e9, as shown in
Figure 4(b). (Note that e13 corresponds to an input signal
and thus cannot be delayed by a newly inserted event.)

In phase two, the signal’s counterpart, csc+, should be
inserted in such a way that the consistency of the STG is
preserved. (The events which are concurrent to or in struc-

5

e
3

e
6

e
13

e
2

e
4

e
7

e
14

e
20

e
1

e
9

e
10

e
11

e
12

e
16

e
17

e
19

e
18

e
15

e
21

e
8

e
5

start+

ready−

ready+

Laf+

start−

Ar−

Lr−

Laf−

Ar+
Ad+

Ad−

Ar−

Lam+

Ad−

Ad+

Lr−

Lam−

Ar+

Lr+

Laf+

Ar−

Laf−

Ar+

Ad−

Ad+

Lr+

Ar−

Lam+

Lr−

Lam−

Ad−

Ar+

Ad+

start+

Lr−

csc−ready+

start−

csc+

ready−
start+

Lr+

split

(a) (b)

Figure 4. STG transformation: initial STG (a)
and its unfolding prefix (b), with the cores
and newly inserted signal highlighted. In-
puts: start,Lam,Laf ,Ad; outputs: ready,Lr,Ar;
internal: csc.

tural conflict with csc− are now faded out, as the consis-
tency would be violated if the signal’s counterpart is in-
serted there.) At the same time, one can try to eliminate
the remaining core {e5,e8,e15,e18}. Since e5 and e8 are
concurrent to csc− and thus faded out, there is no way to
insert csc+ concurrently and one has to split e15, as shown
in Figure 4(b). After the inserted transitions are transferred
into the STG, it has the CSC property.

The obtained solution is better than that produced au-
tomatically by PETRIFY: it inserts both the signal and its
counterpart sequentially, by splitting e9 and e15, increasing
the latency of the output Lr− to three gate delays.

6. Conclusions and future work

In this paper, a framework for interactive refinement
aimed at resolving coding conflicts in STGs has been pre-
sented. It is based on the visualization of conflict cores,
which are sets of transitions involved in state coding con-
flicts. Cores are represented at the level of the STG un-
folding prefix, which is a convenient model for understand-
ing the behaviour of the system due to its simple branching
structure and acyclicity.

The advantage of using cores is that only those parts of
STGs which cause coding conflicts, rather than the com-
plete list of CSC conflicts, are considered. Since the number
of cores is usually much smaller than the number of coding
conflicts, this approach saves the designer from analyzing
large amounts of information.

The refinement contains several interactive steps aimed
to help the designer in obtaining a customized solution. Re-
solving coding conflicts requires the elimination of cores
by introducing additional signals into the STG. The case

studies demonstrate the positive features of the interactive
refinement process.

Heuristics for signal insertion based on the height map
and exploiting the intersections of cores use the most es-
sential information about coding conflicts, and thus should
be quite efficient. The conflict resolving procedure can be
automated either partially or completely, but in order to ob-
tain an optimal solution, a semi-automated resolving pro-
cess should be employed. Heuristics would suggest the ar-
eas for insertion of new signals, which could be used as
guidelines. However, the designer is free to intervene at any
stage and choose an alternative location, in order to take into
account the design constraints.

We plan to incorporate also the concurrency reduction
method of resolving coding conflicts [3] into the proposed
framework. Furthermore, a tool is being developed to im-
plement the described technique.

References

[1] T. -A. Chu: Synthesis of Self-Timed VLSI Circuits
from Graph-Theoretic Specifications. PhD Thesis,
MIT/LCS/TR-393 (1987).

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lava-
gno, and A. Yakovlev: Synthesis of Asynchronous Con-
trollers and Interfaces. Springer Verlag (2002).

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lava-
gno, and A. Yakovlev: Automatic Handshake Expan-
sion and Reshuffling Using Concurrency Reduction.
Proc. of HWPN’98, (1998) 86–110.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lava-
gno, and A. Yakovlev: A Region-Based Theory for
State Assignment in Speed-Independent Circuits. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 16(8) (1997) 793–812.

[5] V. Khomenko, M. Koutny, and A. Yakovlev: Detect-
ing State Coding Conflicts in STGs Using Integer Pro-
gramming. Proc. of DATE’02, IEEE Comp. Soc. Press
(2002) 338–345.

[6] D. J. Kinniment, B. Gao, A. Yakovlev, and F. Xia:
Towards asynchronous A-D conversion. Proc. of
ASYNC’00, IEEE Comp. Soc. Press (2000) 206–215.

[7] P. Riocreux: Private communication. UK Asynchrono-
us Forum (2002).

[8] A. Semenov: Verification and Synthesis of Asynchrono-
us Control Circuits Using Petri Net Unfoldings. PhD
Thesis, University of Newcastle upon Tyne (1997).

[9] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De
Man: Optimized Synthesis of Asynchronous Control
Circuits form Graph-Theoretic Specifications. Proc. of
ICCAD’90, IEEE Comp. Soc. Press (1990) 184–187.

[10] A. Yakovlev and A. Petrov: Petri Nets and Asyn-
chronous Bus Controller Design. Proc. of ICATPN’90,
(1990) 244–262.

6

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

