
Generalized Data Transformations for Enhancing Cache Behavior�

V. De La Luz, M. Kandemir, I. Kadayif
CSE Department

Penn State University
University Park, PA, 16802

U. Sezer
ECE Department

University of Wisconsin
Madison, WI 53706

Abstract

The performance gap between processors and off-chip
memories has widened in the last years and is expected to
widen even more. Today, it is widely accepted that caches im-
prove significantly the performance of programs, since most
of the programs exhibit temporal and/or spatial locality in
their memory reference patterns. However, conflict misses
can be a major obstacle preventing an application from uti-
lizing the data cache effectively. While array padding can
reduce conflict misses it can also increase the data space re-
quirements significantly. In this paper, we present a compiler-
based data transformation strategy, called the “general-
ized data transformations,” for reducing inter-array conflict
misses in embedded applications. We present the theory be-
hind the generalized data transformations and discuss how
they can be integrated with compiler-based loop transforma-
tions. Our experimental results demonstrate that the general-
ized data transformations are very effective in improving data
cache behavior of embedded applications.

1. Introduction

In many array-intensive embedded applications, conflict
misses can constitute a significant portion of total data cache
misses. To illustrate this, we give in Figure 1, for an 8KB
direct-mapped data cache, the breakdown of cache misses
into conflict misses and other (capacity plus cold) misses for
seven embedded applications from image and video process-
ing.1 We see that, on the average, conflict misses consist
of 42.2% of total cache misses. In fact, in two applications
(Vcap andFace), conflict misses constitute more than 50%
of all misses. The reason for this behavior is the repetitive
characteristic of conflict misses; that is, they tend to repeat
themselves at regular (typically short) intervals as we execute
loop iterations. The small associativities of the data caches
employed in embedded systems also contribute to large num-
ber of conflict misses.

A well-known technique for reducing conflict misses is ar-
ray padding [11]. This technique reduces conflict misses by
affecting the memory addresses of the arrays declared in the
application. It has two major forms: intra-array padding and

�This work was supported in part by NSF CAREER Award #0093082.
1The important characteristics of our benchmarks as well as de-

tailed experimental results will be given later in the paper.

inter-array padding. In intra-array padding, the array space is
augmented with a few extra columns and/or rows to prevent
the different columns/rows of the array from conflicting with
each other in the data cache. For example, an array decla-
ration such asA(N;M) is modified toA(N;M + k) where
k is a small constant. This can help to prevent conflicts be-
tween two elements on different rows. Inter-array padding,
on the other hand, inserts dummy array declarations between
two original consecutive array declarations to prevent the
potential conflict misses between these two arrays. For in-
stance, a declaration sequence such asA(N;M), B(N;M)
is transformed toA(N;M), D(k), B(N;M), whereD is a
dummy array withk elements. This affects the array base
addresses and can be used for reducing inter-array conflicts.
While array-padding has been shown to be effective in re-
ducing conflict misses in scientific applications [11], there is
an important factor that needs to be accounted for when ap-
plying it in embedded environments:increase in data space
size. Since data space demand of applications is the main
factor that determines the capacity and cost of data memory
configuration in embedded designs, an increase in data space
may not be tolerable. To evaluate the impact of array padding
quantitatively, we performed a set of experiments with our
benchmark codes. Figure 2 gives the percentage reduction in
(simulated) execution time (for an embedded MIPS processor
with an 8KB data cache) and the percentage increase in data
space when array padding is applied to our benchmarks. The
specific array padding algorithm used to obtain these results
is similar to that proposed by Rivera and Tseng [11] and rep-
resents the state-of-the-art. The values given in this graph are
with respect to the original versions of codes. One can ob-
serve from these results that while array padding reduces the
execution time by 10.3% on the average, it also increases the
data space requirements significantly (15.1% on the average).
These results motivate us for considering other techniques for
eliminating conflict misses in embedded applications.

To see whether most of conflict misses come from intra-
array conflicts (i.e., the different portions of the same array
are conflicting in the data cache) or from inter-array con-
flicts (i.e., the portions of different arrays are conflicting),
we also measured the contribution of each type of conflict
misses. The results presented in Figure 3 indicate that the
overwhelming majority of conflict misses occur between the
different arrays (92.1% on the average). We believe that this
is due to two main reasons. First, in many loop bodies in
our benchmarks, there are only a small number of references
to each array. Second, in many cases, the lengths of rows or
columns are not large enough to create intra-array conflicts in
the cache. Based on the results given in Figures 1, 2, and 3,

1530-1591/03 $17.00  2003 IEEE

Figure 1. Contribution of conflict misses and
other (capacity plus cold) misses.

Figure 2. Impact of array padding.

we can conclude that a technique that focuses on minimizing
inter-array conflict misses without increasing the data space
requirements might be very desirable in embedded environ-
ments.

In this paper, we present such acompiler-baseddata trans-
formation strategy for reducing inter-array conflict misses in
embedded applications. This strategy maps the simultane-
ously used arrays into a common array space. This mapping
is done in such a way that the elements (from different arrays)
that are accessed one after another in the original execution
are stored in consecutive locations in the new array space.
This helps to reduce inter-array conflict misses dramatically.
We call the data transformations that work on multiple arrays
simultaneously thegeneralized data transformations.This
is in contrast to many previous compiler work on data trans-
formations (e.g., [8, 6, 3]) that handle each array in isolation
(that is, each array is transformed independently and the di-
mensionality of an array is not changed). Our approach is
also different from the previously proposed array interleaving
strategies (e.g., [4, 5]) in two aspects. First, our data transfor-
mations are more general than the classical transformations
used for interleaving. Second, we present a strategy for se-
lecting a dimensionality for the target common array space.

We present the theory behind the generalized data trans-
formations in Section 3. Section 4 presents our overall ap-
proach. Our experimental results (Section 5) demonstrate
that the generalized data transformations are very effective
in improving data cache behavior of embedded applications.
Finally, in Section 6, we summarize our contributions.

Figure 3. Contribution of inter-array and intra-
array conflict misses.

2. Assumptions and Background

We consider the case of references (accesses) to arrays
with affine subscript functions in nested loops, which are very
common in array-intensive embedded image/video applica-
tions [2]. Let us consider such an access to anm-dimensional
array in ann-deep loop nest. We use�I to denote the iteration
vector (consisting of loop indices starting from the outermost
loop). Each array reference can be represented asX �I + �x;
where them�nmatrixX is called the reference matrix [12]
and them-element vector�x is called the offset vector. In or-
der to illustrate the concept, let us consider an array reference
A(i+3; i+ j�4) in a nest with two loops:i (the outer loop)
andj (the inner loop). For this reference, we have

�I =
�

i
j

�
; X =

�
1 0

1 1

�
; and �x =

�
3

�4

�
:

In execution of a given loop nest, an element is reused if it
is accessed (read or written) more than once in a loop. There
are two types of reuses: temporal and spatial. Temporal reuse
occurs when two references (not necessarily distinct) access
the same memory location; spatial reuse arises between two
references that access nearby memory locations [13]. The
notion of nearby locations is a function of the memory layout
of elements and the cache topology. It is important to note
that the most important reuses (whether temporal or spatial)
are the ones exhibited by the innermost loop. If the innermost
loop exhibits temporal reuse for a reference, then the element
accessed by that reference can be kept in a register throughout
the execution of the innermost loop (assuming that there is no
aliasing). Similarly, spatial reuse is most beneficial when it
occurs in the innermost loop because, in that case, it may en-
able unit-stride accesses to the consecutive locations in mem-
ory. It is also important to stress that reuse is an intrinsic
property of a program. Whenever a data item is present in the
cache at the time of reuse, we say that the reference to that
item exhibits locality. The key optimization problem is then
to convert patterns of reuse into locality, which depends on a
number of factors such as cache size, associativity, and block
replacement policy. Consider the referenceA(i+3; i+j�4)
mentioned above in a nest with the outer loopi and the inner
loopj: In this case, each iteration accesses a distinct element
(from arrayA); thus, there is no temporal reuse. However,
assuming a row-major memory layout, successive iterations

4x4 4x4

4x4

4x4

4x4x2

(a)

(b)

Figure 4. (a) 2D to 2D data mapping. (b) 2D to
3D generalized data mapping.

of the j loop (for a fixed value ofi) access the neighboring
elements on the same row. We express this by saying that the
reference exhibits spatial reuse in thej loop. Since this loop
(j loop) is the innermost loop, we can expect that this reuse
will be converted into locality during execution. However,
this would not be the case ifi was the inner loop andj was
the outer loop.

Consider the application of a non-singular linear loop
transformation to ann-deep loop nest that accesses an ar-
ray with the subscript function represented asX �I + �x. This
transformation can be represented by ann � n non-singular
transformation matrixT , and maps the iteration�I of the orig-
inal loop nest to the iteration�I 0 = T �I of the transformed loop
nest [12, 9, 13]. On applying such a transformation, the new
subscript function is obtained asXT�1�I 0+�x; that is, the new
(transformed) reference matrix isXT�1: The loop transfor-
mation also affects the loop bounds of the iteration space that
can be computed using techniques such as Fourier-Motzkin
elimination [13]. In this paper, for convenience, we denote
T�1 byQ. For example, a loop transformation such as

T =

�
0 1
1 0

�

transforms an original loop iteration(i; j)T to (j; i)T :

3. Generalized Data Transformations

Given an array referenceA(X �I+ �x) to anm-dimensional
arrayA in ann-level nested loop, a data transformation trans-
forms this reference toA0(X 0 �I+ �x0). Here,A0 corresponds to
the transformed array, andX 0 and �x0 denote the transformed
reference matrix and constant vector, respectively. In general,
A0 can havem0 dimensions, wherem0 6= m.

Formally, we can define a data transformation for an ar-
rayA using a pair(MA; �mA). This pair (referred to asdata
transformationhenceforth) performs the following two map-
pings:

X �! MAX

�x �! MA�x+ �mA

In other words, the original reference matrixX is trans-
formed toMAX and the original constant vector�x is trans-
formed toMA�x + �mA. We refer toMA as thedata trans-
formation matrixand �mA as thedisplacement vector.If
A(X �I + �x) is the original reference andA0(X 0 �I + �x0) is
the transformed reference, we haveX 0 = MAX and �x0 =
MA�x + �mA. Note thatMA is m0-by-m and �mA hasm0

entries. An example data transformation is depicted in Fig-
ure 4(a). In this data transformation, a 4� 4 array (for il-
lustrative purposes) is transposed; that is, the array element
(i; j)T in the original array is mapped to array element(j; i)T

in the transformed space. Note that in this case we have:

MA =
�

0 1

1 0

�
and �mA =

�
0

0

�
:

3.1. Motivation

In many previous compiler-based studies that employ data
transformations for improving cache behavior (e.g., [8, 10,
6]), only the cases wherem0 = m are considered. This
is because many of these studies target at reducing capac-
ity misses, rather than conflict misses, and, focusing on each
array individually is sufficient for reducing capacity misses
in most cases. However, such an approach may not be very
effective with conflict misses. Consider, for example, the fol-
lowing loop nest:

for (i = 0; i < n; i++)
for (j = 0; j < n; j ++)
k+ = A(i; j) +B(i; j)

In this nest, assuming row-major memory layouts (as in
C), both the references exhibit perfect spatial locality when
considered in isolation. However, if the base addresses of ar-
raysA andB happen to map on the same cache line, a miss
rate of 100% is possible due to the data cache conflicts be-
tween these two array references (i.e., inter-array conflicts).
A generalized data transformation, on the other hand, can
prevent this by mapping them to the same array index space
(data space). Consider, for example, the following data trans-
formations (depicted in Figure 4(b) form=2 andm0=3):

A(i; j) �! A0(i; j; 0)

B(i; j) �! A0(i; j; 1)

After these transformations are applied, a given loop iteration
(i; j)T accesses two consecutive elements fromA0 (the trans-
formed array). Consequently, the chances for conflict misses
are reduced significantly. Note that, in this specific example,
we have

MA =MB =

1 0
0 1
0 0

!
; �mA =

0
0
0

!
; and �mB =

0
0
1

!
:

In the next subsection, we formulate the problem of determin-
ing the data transformation matrices and displacement vec-
tors for each array in a given application.

3.2. Problem Formulation and Solution

In this section, we formulate the problem at several levels
of complexity, starting from the most simple case and end-
ing with the most general case. Let us assume first that we
have a single nest that accesses two different arrays using a
single reference per array. Without loss of generality, we use
A(X1

�I + �x1) andB(X2
�I + �x2) to refer to these references.

Our task is to determine two data transformations(MA; �mA)
(for arrayA) and(MB ; �mB) (for arrayB) such that a given
iteration accesses consecutive elements in the loop body.

In mathematical terms, since the transformed references
areMAX1

�I+MA �x1+ �mA andMBX2
�I+MB �x2+ �mB , for

the best data locality, our data transformations should satisfy
the following two constraints:

MAX1 =MBX2

(MA �x1 + �mA)� (MB �x2 + �mB) = (0; 0; :::; 0; 0; 1)T :

The first constraint demands that the transformed reference
matrices should be the same so that the difference between
the memory locations accessed by these two references (in
a given iteration) does not depend on a specific loop itera-
tion value. This is important as if the difference between the
accessed locations depends on loop iterator value, the local-
ity becomes very difficult to exploit. The second constraint,
on the other hand, indicates that the difference between the
said memory locations should be 1. If we are able to satisfy
these two constraints, this means that a given loop iteration
accesses successive elements in memory; therefore, the pos-
sibility of cache conflict within a loop iteration is eliminated.
One way of determining the data transformations(MA; �mA)
and (MB; �mB) from these constraints is as follows. First,
from the first constraint above, we can determineMA and
MB. Then, substituting (the values of the elements of) these
matrices in the second constraint, we can solve that constraint
for �mA and �mB . For example, in the loop nest above (in Sec-
tion 3.1), this strategy determines the data transformations
given earlier.

It should be stressed that this approach can improve capac-
ity misses as well (in addition to conflict misses). This is be-
cause in determining the data transformation matrices (from
the first constraint) we can improve self-spatial reuse too.
In the following, we generalize our method to handle more
realistic cases. We also present a general solution method
that can be employed within an optimizing compiler that tar-
gets embedded environments where data space optimizations
(minimizations) are critical.

Let us now focus on a single nest with multiple arrays.
Assume further that each array is accessed through a single
reference only. Without loss of generality, letAi(Xi

�I+ �xi) be
the reference to arrayAi, where1 � i � s. We also assume
that the these references are touched (during program execu-
tion) in increasing values ofi (i.e., from 1 tos). We want
to determine data transformations(MAi

; �mAi
). We have two

different sets of constraints (one for the data transformation

matrices and the other for the displacement vectors):

MAi
Xi =MAj

Xj

(MAk+1
�xk+1+ �mAk+1

)�(MAk
�xk+ �mAk

) = (0; 0; :::; 0; 0; 1)T ;

where1 � i; j � s and1 � k � (s � 1). Satisfying these
constraints for all possiblei, j, andk values guarantees good
spatial locality during nest execution.

The discussion above assumes that each array has a single
reference in the loop body. If we have multiple references to
the same array, then the corresponding constraints should also
be added to the constraints given above. Let us assume that
there areti references to arrayAi and that these references
are accessed (during nest execution) in the order of 1,2,..,ti.
So, for a given arrayAi, we have the following constraints:

MAi
Xi;j =MAi

Xi;j0

(MAi
�xi;(k+1)+ �mAi

)�(MAi
�xi;k+ �mAi

) = (0; 0; :::; 0; 0; 1)T ;

where1 � j; j0 � ti, 1 � k � (ti � 1), andXi;j and �xi;j
are thejth reference matrix and constant vector for arrayAi,
respectively.

It should be observed that the system of constraints given
above may not always have a valid solution. This is because
the second constraint above simplifies toMAi

(�xi;(k+1) �

�xi;k) = (0; 0; :::; 0; 0; 1)T , and it may not be possible to find
anMAi

to satisfy both this andMAi
Xi;j = MAi

Xi;j0 : We
note, however, that ifXi;j = Xi;j0 , we can dropMAi

Xi;j

= MAi
Xi;j0 from consideration (as it is always satisfied).

This case occurs very frequently in many embedded image
processing applications (e.g., in many stencil-type computa-
tions). As an example, consider the referencesA(i; j) and
A(i � 1; j + 1) in a nest with two loops,i and j. Since
�xi;j � �xi;j0 = (1; � 1)T ; we need to select aMAi

which
satisfies the following constraint:

MAi

�
1

�1

�
=

0
0
1

!
:

It is easy to see that a possible solution is:

MAi
=

1 1
0 0
1 0

!
:

The transformed references are thenA0(i+j; 0; i) andA0(i+
j; 0; i+1). We observe that for a given loop iteration(i; j)T ,
these two references access consecutive memory locations.

So far, we have focussed only on a single nest. Many
large array-intensive embedded applications consist of mul-
tiple nests. Our formulation above can easily extend to the
cases where we have multiple nests in the application. First,
if two nests of an application do not share any array between
them, then there is no point in trying to handle these two
nests together. In other words, in this case, each nest can
be handled independently. On the other hand, if the nests
share arrays, then the compiler needs to consider them to-
gether. In mathematical terms, the constraints (equations)
given above should be written for each nest separately. Note,
however, that the equations for nests that access the same ar-
ray A should use the same data transformation matrix and

same displacement vector (in each nest). This is because in
this paper we assign a single layout (i.e., a single data trans-
formation) to each array; that is, we do not consider dynamic
data transformations during the course of execution.

Given a program with multiple arrays referenced by multi-
ple nest, the system of equations built (in terms of data trans-
formation matrices and displacement vectors) may not have
a solution. In this case, to find a solution, we need to drop
some equations (constraints) from consideration. To select
the equations to drop, we can rank the array references with
respect to each other. More specifically, if an array refer-
ence is (expected to be) touched (during execution) more fre-
quently than another reference, we can drop the latter from
consideration and try to solve the resulting system again. We
repeat this process until the resulting system has a solution.
To determine the relative ranking of references, our current
approach exploits profile information. More specifically, it
runs the original program several times with typical input sets
and records the number of times each array reference is used
(touched). Then, based on these numbers, the references are
ordered.

3.3. Dimensionality Selection

In our discussion so far, we have not explained how we
determine the dimensionality of the target (common) array
(data space). Consider the following nest which accesses four
two-dimensional (2D) arrays.

for (i = 0; i < n; i++)
for (j = 0; j < n; j ++)
k+ = A(i; j) +B(i; j) + C(i; j) +D(i; j)

These arrays can be mapped to a common array space in
multiple ways. Three such ways are given in Table 1. The
second column shows the case where the target space (i.e.,
the common array space) is two-dimensional. Note that, in
this case, the coefficient 4 (in front of loop indexj) is nec-
essary so that the elements from the different arrays can be
interleaved. The next two columns illustrate the cases where
the target space is three-dimensional and four-dimensional,
respectively. While in these cases we do not have explicit co-
efficients (as in the 2D case), the address computation (that
will be performed by the back-end compiler) is more involved
as the number of dimensions is larger. It should be empha-
sized that all these three mapping strategies have one com-
mon characteristic: for a given loop iteration, when we move
from one iteration to another, the array elements accessed are
consecutively stored in memory (under a row-major memory
layout). We also note that, for this example, going beyond
four-dimensional case does not make much sense as some ar-
ray elements would be unused. This is because we have only
four references in the loop body.

In selecting the dimensionality of the common address
space, our current implementation uses the following strat-
egy. Letq be the number of references (to distinct arrays) in
the loop body andm the dimensionality of the original ar-
rays. We set the dimensionality of the common (array) space
to m0=maxfq;mg. This is reasonable, because as we men-
tioned above, there is no point in selecting a dimensional-
ity which is larger than the number of references in the loop
body. Also, we want the dimensionality of the common to be
at least as large as the dimensionality of the original arrays.

Original 2D 3D 4D

A(i; j) A0(i; 4j � 3) A0(i; j; 0) A0(i; j; 0; 0)
B(i; j) A0(i; 4j � 2) A0(i; j; 1) A0(i; j; 0; 1)
C(i; j) A0(i; 4j � 1) A0(i; j; 2) A0(i; j; 1; 0)
D(i; j) A0(i; 4j) A0(i; j; 3) A0(i; j; 1; 1)

Table 1. Three different mapping strategies.

4. Discussion and Overall Approach

So far, we have discussed the mechanics of the generalized
data transformations and tried to make a case for them. As
will be shown in the next section, the generalized data trans-
formations can bring about significant performance benefits
for array-intensive embedded applications. In this section, we
discuss some of the critical implementation choices that we
made and summarize our overall strategy for optimizing data
locality.

An important decision that we need to make is to select
the arrays that will be mapped onto a common address space.
More formally, if we haves arrays in the application, we
need to divide them intogroups.These groups do not have to
be disjoint (that is, they can share arrays); however, this can
make the optimization process much harder. So, our curent
implementation uses only disjoint groups. The question is to
decide which arrays need to be placed into the same group.
A closer look at this problem reveals that there are several
factors that need to be considered. For example, the dimen-
sionality of the arrays might be important. In general, it is
very difficult (if not impossible) to place arrays with different
dimensionalities into the common space. So, our current im-
plementation requires that the arrays to be mapped together
should have the same number of dimensions. However, not
all the arrays with the same number of dimensions should
be mapped together. In particular, if two arrays are not used
together (e.g., in the same loop nest), there is no point in try-
ing to map them to a common array space to improve local-
ity. Therefore, our second criterion to select the arrays to
be mapped together is that they should be used together in a
given nest. To have a more precise measure, our current ap-
proach uses the following strategy. We first create an affinity
graph such that the nodes represent arrays and the edges rep-
resent the fact that the corresponding arrays are used together.
The edge weights give the number of loop iterations (consid-
ering all the loop nests in the code) that the corresponding
arrays are used together. Then, we cluster the nodes in such
a way that the nodes in a given cluster exhibit high affinity
(that is, they are generally used together in nests). Each clus-
ter then corresponds to a group provided that the nodes in it
also satisfy the other criteria. The last criterion we consider
is that the arrays in the same group should be accessed with
the same frequency. For example, if one array is accessed
by the innermost loop whereas the other array is not, there is
not much point in trying to place these arrays into a common
address space.

Another important decision is to determine the mapping
of the arrays in a given group to the corresponding common
address space. To do this, we use the affinity graph discussed
in the previous paragraph. If the weight of an edge in this
graph is very high, that means it is beneficial to map the cor-
responding arrays in such a way that the accesses to them

occur one after another. As an example, suppose that we
have three two-dimensional arrays are to be mapped onto the
same address space. Suppose also that the common address
space is three-dimensional. If two of these arrays are used
together more frequently, then, if possible, their references
should be mapped toA0(i; j; 0) andA0(i; j; 1), repsectively
(or toA0(i; j; 1) andA0(i; j; 2)); that is, they should be con-
secutive in memory.

Based on this discussion, our overall optimization strat-
egy works as follows. First, we build the affinity graph and
determine the groups taking into account the dimensionality
of the arrays and access frequency. Then, we use the strat-
egy discussed in the previous two sections in detail to build
a system of equations. After that, we try to solve this sys-
tem. If the system has no solution, we drop some equations
from consideration (as explained earlier), and try to solve the
resulting system again. This iterative process continues until
we find a solution. Then, the output code is generated. The
code generation techniques for data transformations are quite
well-known and can be found elsewhere [8, 3].

5. Experimental Setup and Results

All results presented in this section are obtained using an
in-house execution-driven simulator that simulates an em-
bedded MIPS processor core (5Kf). 5Kf is a synthesizable
64-bit processor core with an integrated FPU. It has a six-
stage, high-performance integer pipeline optimized for SoC
design that allows most instructions to execute in 1 cycle and
individually configurable instruction and data caches. The
default configuration contains separate 8KB, direct-mapped
instruction and data caches. Both the caches have a (de-
fault) line (block) size of 32 bytes. In all experiments, a miss
penalty of 70 cycles is assumed. Our simulator takes a C
code as input, simulates its execution, and produces statistics
including cache hit/miss behavior and execution time.

To measure the effectiveness of our approach, we used
seven array-intensive embedded applications from image and
video processing domain.Vcap is a video capture and pro-
cessing application. It generates video streams of different
picture sizes, color spaces, and frame rates.Convolution
is an efficient implementation of a convolution filter. One of
the abilities of this benchmark is that it can process data ele-
ments of variable lengths.TM is an image conversion pro-
gram that converts images from TIFF to MODCA or vice
versa.IA is an image understanding code that performs tar-
get detection and classification.H.263 is a key routine from
a simple H.263 decoder implementation.ImgMult is a sub-
program that multiplies three images with each other, and
adds the resulting images and one of the input images.Face
is a face recognition algorithm. More details about these ap-
plications are beyond the scope of this paper.

Figure 5 gives the percentage reduction in cache misses (as
compared to the original codes) when the global data trans-
formations are used (without the support of loop transforma-
tions). Each bar in this graph is broken into two portions
to show the reductions in conflict misses and other misses
separately. We see from these results that overall (when con-
sidered all types of cache misses) we have nearly a 53% re-
duction in misses. We also observe that more than half of
this reduction occur in conflict misses, clearly demonstrating
the effectiveness of our approach in reducing conflict misses.

Figure 5. Reduction in cache misses.

It is also important to compare these results with those of
array-padding presented in Figure 2. Our generalized data
transformations bring much more significant reductions in
cache misses as compared to array padding. More impor-
tantly, these benefits are obtained without increasing the data
space requirements of applications.

6. Concluding Remarks

Most existing work based on data transformations for im-
proving data cache behavior of array dominated codes target
a single array at a time. In this work, we develop a new,
generalized data space transformation theory and present ex-
perimental data to demonstrate its effectiveness. Our results
clearly indicate that the proposed approach is very successful
in practice.

References

[1] S. P. Amarasinghe et al. The SUIF compiler for scalable parallel machines. In
Proc. the Seventh SIAM Conference on Parallel Processing for Scientific Com-
puting,February, 1995.

[2] F. Catthoor et al.Custom Memory Management Methodology – Exploration of
Memory Organization for Embedded Multimedia System Design.Kluwer Aca-
demic Publishers, 1998.

[3] M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared memory machines. InProc. Programming Language Design and Imple-
mentation,pp. 205–217, 1995.

[4] C. Ding. Improving Effective Bandwidth through Compiler Enhancement of
Global and Dynamic Cache Reuse,Ph.D Thesis, Rice University, Houston,
Texas, January 2000.

[5] M. Kandemir. Array unification: a locality optimization technique. InProc. In-
ternational Conference on Compiler Construction,ETAPS’2001, April, 2001.

[6] M. Kandemir et al. Improving locality using loop and data transformations in an
integrated framework. InProc. International Symposium on Microarchitecture,
Dallas, TX, December, 1998.

[7] I. Kodukula et al. Data-centric multi-level blocking. InProc. SIGPLAN
Conf. Programming Language Design and Implementation, June 1997.

[8] S.-T. Leung and J. Zahorjan. Optimizing data locality by array restructuring.
Technical Report TR 95–09–01,Dept. of Computer Science and Engineering,
University of Washington, September 1995.

[9] W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell Univer-
sity, Ithaca, New York, 1993.

[10] M. O’Boyle and P. Knijnenburg. Non-singular data transformations: Definition,
validity, applications. InProc. 6th Workshop on Compilers for Parallel Com-
puters, pages 287–297, Aachen, Germany, 1996.

[11] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict
misses. InProc. the 1998 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Montreal, Canada, June 1998.

[12] M. Wolf and M. Lam. A data locality optimizing algorithm. InProc. ACM SIG-
PLAN 91 Conf. Programming Language Design and Implementation, pages 30–
44, June 1991.

[13] M. Wolfe. High Performance Compilers for Parallel Computing, Addison-
Wesley Publishing Company, 1996.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

