
Improving SAT-based Bounded Model Checking by Means of BDD-based
Approximate Traversals

Gianpiero Cabodi Sergio Nocco Stefano Quer

Politecnico di Torino
Dip. di Automatica e Informatica

Turin, ITALY

Abstract
Binary Decision Diagrams (BDDs) have been widely used for hardware
verification since the beginning of the ’90s, whereas Boolean Satisfiability
(SAT) has been gaining ground more recently, with the introduction of
Bounded Model Cheking (BMC).

In this paper we dovetail BDD and SAT based methods to improve
the efficiency of BMC. More specifically, we first exploit inexpensive sym-
bolic approximate reachability analysis to gather information on the state
space. We then use the above information to restrict and focus the overall
search space of SAT based BMC.

In the experimental results section we show how the information com-

ing from a BDD tool can improve the efficiency of a SAT engine by drasti-
cally reducing the number of “variable assignments” and “variable con-
flicts”. This results in a significant overall performance gain associated

with a general, robust, and easy-to-apply methodology.

1 Introduction
Given a propositional formula, the Boolean Satisfiability Prob-
lem (commonly abbreviated as SAT) consists of determining a
variable assignment such that the formula evaluates to true, or
establishing that no such assignment exists. Although SAT is
an NP-complete problem, or at least no polynomial algorithm
to solve it is known, SAT solvers have received considerable re-
search attention and large practical instances have been worked
out thanks to efficient implementation procedures [1, 2]. Their
application ranges from EDA to ATPG, from logic synthesis to
verification [3]. In the verification domain, SAT techniques are
mainly used for Bounded Model Cheking (BMC), looking for
bugs (and counter-examples) of limited length k.

BDDs have often been used in the same fields since they
started gaining interest at the end of the ’80s. Nevertheless, they
have never been able to deal with the largest models and problem
instances, because of the so called “BDD blow-up” (or memory
explosion) problem.

Several recent papers have compared BDD and SAT method-
ologies on sequential verification within the unbounded and bounded
model checking frameworks. Even though no definite conclusion
can be drawn, researchers and engineers agree that SAT tools are
complementary to BDD-based ones and that the quest for effi-
cient and comprehensive combinational and sequential verifica-
tion methods is still not completed.

In this work we explore a new way to make BDD-based and
SAT-based tools cooperate. Our target is to improve the efficiency

of SAT-based BMC with the help of “cheap” and affordable BDD-
based operations. To this respect, “approximate” traversals may
deal with larger circuits than “exact” ones, at the expense of exact-
ness. Moreover, as the degree of approximation can be trimmed,
it is always possible to trade-off memory and time with the accu-
racy of the result. Unfortunately nothing comes for free and the
limit of approximate techniques in verification is that they are not
complete, i.e. over-approximate reachability can prove correct-
ness, but it cannot disprove it.

Our driving idea is to complement the initial over-approximate
BDD information with a final SAT-solver search, using BDDs
to prune and focus the search. In a first phase, we compute (in
the forward and/or backward directions) an over-approximate es-
timate of the traces connecting the initial state set to the target
one. Then the estimate is combined, as an additional constraint,
with the Bounded Model Check problem, to be solved by a SAT
tool.

Our target is to obtain an efficient pruning of the SAT solver
search space, which somehow mimics the contribution of “con-
flict clauses”, generated by means of “conflict analysis” in state-
of-the-art SAT tools. Each new conflict clause specifies a sub-set
of the state space in which there exist no solution. Similarly, our
over-approximate knowledge of reachable states restricts the SAT
solver state space. We presently implement this extra information
as an initial pre-processing or “learning” phase. On the one hand,
we might loose some optimizations achievable through a tighter
and more dynamic inter-leaving with the SAT solving tool. On the
other hand our method is quite simple and it is compatible with
any SAT solver, since we do not require any interaction with inner
steps of SAT algorithms. As far as we know, this is the first time
a symbolic BDD-based over-approximate information is used to
prune a SAT-solver search space.

A further minor contribution of our work is to introduce a set
of strategies to store a BDD (in a monolithic or conjoined form)
as a CNF formula. These methods will be compared in terms
of their compactness to generate the resulting CNF problem (in
terms of variables, literals and clauses), and their influence over
the SAT-engine (in terms of pruning efficiency).

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce some preliminary concepts on notation, SAT
problems and reachability analysis. Section 3 is dedicated to the
related works. Section 4 introduces our approach and Section 5
describes our technique to store BDDs as CNF problems. Sec-

1530-1591/03 $17.00 2003 IEEE

tion 6 presents the experimental results. Finally, Section 7 con-
cludes the paper with a brief summary and some hints on possible
future work.

2 Background
2.1 Model and Property Definition

The sequential systems we address are usually modeled as Finite
State Machines (FSMs). Each FSM is described by a Transition
Relation TR, which indicates its present-next state behavior, and
an initial state set S.

An invariant property1 P is checked by attempting to prove
(or disprove) the reachability of its complement T (target state set,
T = P) from S.

2.2 SAT-Based Model Checking

For an overview on SAT solvers and a complete list of references
the reader can refer to the tutorial [3].

SAT based BMC considers only paths of bounded length k

and builds a propositional formula f that is satisfiable iff there
is a counter-example (a path from S to T) of the same length.
For the above reason the technique works well in falsification and
partial verification, whereas Full verification is usually achieved
by BMC with longer and longer bounds, possibly augmented with
inductive proofs, when proving correctness rather than seeking for
bugs.

SAT solvers generally operate on problems for which f is
specified in Conjunctive Normal Form (CNF). This form is a two-
level decomposition: The logical AND of one or more clauses,
each of which consists of the logical OR of one or more literals.
A literal is merely an instance of a variable or its complement.

In order to decide if f is satisfied, most solvers adopt variants
of the basic Davis-Putnam recursive algorithm. At each step of
recursion, the algorithm basically proceeds through the following
three steps:

� Variable Decision: Assign a value to an unassigned variable so
exploring new regions of the search space.

� Boolean Constraint Propagation: Carry out all possible impli-
cations due to the previous assignment.

� Conflict Analysis: Check for “conflicting clauses”, i.e., clauses
whose literals are all assigned to a value zero, and in case
one of this is discovered to undo the current assignment (so
that another assignment can be tried). In this phase, “conflict
clauses”, i.e., clauses which identify previous conflicts, are also
added to the clause database for early detection (and pruning)
of bad decisions and/or variable assignments.

2.3 BDD-Based Model Checking

A standard BDD-based forward reachability analysis procedure is
a breadth-first visit of the state space that starts from R = S and
proceeds through a least fix-point (lfp) iteration:

FR = lfp R:(S _ (Img(TR;R))

which returns FR, i.e., the set of forward reachable states. The
method is based on the iterated application of the IMG function,
to compute symbolic images of the R state set. We indicate with

1Or AG CTL property.

Ri the state sets generated at each traversal iteration (the so called
frontier sets).

As T may be reached before the fix-point it is possible to
avoid a full computation of FR with on the fly tests for intersec-
tion with T. A counter-example is eventually computed starting
from the array FR of frontier sets Ri.

CTL model checking procedures are often implemented as
backward traversal procedures, computing BR sets in the back-
ward direction. This is easily expressed by swapping the S and T
sets, and changing the IMG function with the PREIMG computa-
tion.

Approximate Traversals [4, 5] are a popular way to extend the
applicability of reachability analysis to larger circuits.

The approach is based on the approximate image (IMG+) op-
erator, returning over-estimations of exact images:

IMG
+
(TR; R) � IMG(TR; R)

Notice that although R+ represents more states, its BDD repre-
sentation is usually much smaller and simpler than R, as many
mutual interactions and dependences among state variables dis-
appear because of the approximation. As a final remark, let us
remember that the limit of approximate techniques is that they
allow a sufficient but not necessary check, i.e., they can prove
equivalence but they cannot disprove it.

3 Related Works
With the advent of SAT-based BMC tools a lot of researchers have
tried to compare SAT-based method with more traditional BDD-
based methods. To this respect different researchers agree that
the two approaches are essentially complementary. For exam-
ple in [6] the author compare BDD-based and SAT-based using a
new algorithm solving unbounded model checking problems. As
a conclusion he shows that performance strictly depends on the
problem instances and no clear winner can be drawn at least at
the moment. Driven by the same conclusions, other researchers
tried to combine the two approaches. In [7] the authors perform
reachability analysis by using a SAT engine to create and manip-
ulate a disjunctive partition of the transition relation and BDDs to
represent state sets and deal with them.

To extend approximate traversals to complete checks, a lot
of researchers have somehow mixed approximate, exact, forward,
and backward traversals [8, 9]. In [8] authors use a combina-
tion of approximate forward and backward reachability analysis.
The proposed algorithm attempts to prove the mutual reachability
between initial and failure states by iteratively performing over-
approximate forward and backward traversals. Each new traversal
increases the accuracy of the approximation, and the property is
proved whenever a forward (backward) traversal reaches a fix-
point outside its target.

Our work shares with these works the idea of focusing and
guiding a final search with previously cheaper and approximate
ones. In any case, our method ends with a SAT solver call as
we use reachability analysis frontier sets to help the SAT solver
search in its quest.

4 Proposed Methodology
The main flow or our methodology is represented in Figure 1.

+BR
k−1

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

(a)
S

(b)
S

(c)
S

+BR
k

+BR
1

T

TR
1

TR
2

... TR
k

T

...
FR+

2 FR
+

k
1FR+

...
T

Figure 1: (a) Standard combinational unrolling for SAT-based
BMC; (b) Approximate forward traversal from S to T; (c) Ap-
proximate backward traversal from T to S.

Figure 1(a) shows a graphical representation of the standard
SAT-based BMC. As introduced in Section 2, to find a path of
length k between S and T a combinational unrolling of the cir-
cuit representation, TR, of length k is generated. By adding the
expressions for S and T, and performing a proper variable re-
labeling for TR a propositional formula is generated in CNF for-
mat. The SAT-engine is finally run on the resulting problem to
solve it. It is useful here to remember that the value k of the
bound is generally unknown. This represents one of the draw-
backs of the method, as a complete verification requires checks
with increasing values of k, usually reaching computational lim-
its.

Our basic idea is to help the SAT solver with information
coming from a BDD-based reachability analysis tool. In the sim-
pler version we perform a standard forward breadth-first traversal
as the one indicated in Figure 1(b) or a backward breadth-first
traversal as the one indicated in Figure 1(c). In reality the ap-
plied approach is a little more sophisticated and it is detailed in
Section 4.1. This phase gives an over-estimate of the paths (a
“cylinder”) leading from S to T so that all possible real paths are
included in this over-approximation. Notice that, at this stage,
we work with BDD tools, then each set of state is represented by
means of BDDs2. From a SAT solver point of view these sets of
states constitute a guide for the search. Whereas standard “con-
flict clauses” defines impossible assignments, our state sets de-
fine possible assignments so potentially they drastically reduce
the search space for the SAT solver.

Notice that a minor contribution of applying approximate reach-
ability analysis before the satisfiability analysis is to identify early
terminations3, saving computation time. Moreover, the approxi-
mate search may also be useful to identify an inferior limit for

2Depending from the kind of BDD representation/decomposition used, which we
do not talk about for the lack of space, the state sets may be represented by monolith,
disjunctive or conjunctive forms.

3Whenever the over-estimation of the reachable state set R+ does not intersect
the target set of states T the property will “pass” and in these are also the hardest
cases to be proved by the SAT engine. In these cases the approximate reachability
phase would consists in a preliminary and free-of-charge check.

the value of the bound k4. This can be useful to avoid useless
searches for impossible values of k. Finally, the over-approximation
reveals to be particularly useful for high value of the bound.

4.1 The Approximate Reachability Analysis Phase

The approximate traversal phase is very important as far as the
resulting space simplification is concerned. From a theoretical
point of view, the more the approximate traversal is accurate the
more the sets of states are close to the exact ones and the more
the SAT solver search space is reduced. From a practical point
of view, the more the approximate traversal is accurate, the larger
are the BDDs representing the Ri sets and the more likely is the
translation process to CNF formulas (see Section 5) to introduce
a larger amount of temporary variables and clauses. As a con-
sequence there is a trade-off between accuracy and usability of
the result and this is also balanced by the cost of computing the
over-estimation.

Our basic approach is to perform a forward or a backward
over-approximate analysis from S to T or from T to S as de-
scribed in Section 4. More in detail, we follow previous ap-
proaches on the use of forward and backward approximations [8,
10], and we adopt an iterative refinement process based on a se-
quence of alternate forward and backward traversals to produce
better estimates. The pseudo-code of the procedure is shown in
Figure 2. It proceeds through a cycle computing least fix points in
the forward and backward direction computing forward FR and
backward BR reachable state sets. Each forward fix point is per-
formed by restricting the search with the BR state set and vice-
versa. The iteration stops when no further simplification occur or
when the traversal costs, in terms of CPU time and memory usage,
exceed a user-defined threshold. The COSTEVALUATE function
checks hardware constraints, memory and time costs after each it-
eration and the process is stopped whenever the costTh threshold
is exceeded.

FWDBACKVER (TR, S, T)
R = FR = S
BR = 1
do

FR = lfp R.(S _ (IMG+ (TR, R) ^ BR))
BR = lfp R.(T _ (PREIMG+ (TR, R) ^ FR))

while (FR 6= BR AND COSTEVALUATE< costTh)
return (BR)

Figure 2: Over-approximate Forward/Backward Traversal.

4.2 Using Symbolic State Sets Information

Once we have our set of states over-estimating a path from S to T
we can apply two possible strategies:

� Adding the new information to the original CNF problem.

� Using each single “ring” of the estimate, R+

i
, to simplify the

circuit representation at the corresponding time frame and then
create the CNF problem using the simplified instances.

In the first case the approach is straightforward as it is enough to
append the set of states, represented as monolithic or decomposed

4Notice that, to this respect, the paths found by the over-approximation are al-
ways shorter than the exact ones.

BDDs, as a set of CNF clauses. In the second case, we try to per-
form some simplifications before the CNF problem formulation
using cofactor based techniques on the BDD representations of
the circuit and the state sets.

Notice that in all the cases the counter-example eventually
obtained possibly includes some temporary variables generated
by the BDD to CNF translation process. So we need to bring it
back to the original representation space, by quantifying out the
temporary variables (see Section 5).

5 Dumping BDDs as CNF formulas
Given a BDD representing a function f in monolithic or conjunc-
tive form, we develop three possible ways to store it as a CNF
formula.

1. The first method, which we call Single-Node-Cut, models each
BDD nodes, but the ones with both children equal to the con-
stant node 1, as a multiplexer. Each multiplexer has two data
inputs (i.e., the children nodes), a selection input (i.e., the node
variable) and one output (i.e., the function value) whose value
is assigned to an additional CNF variable. The final number of
variables is equal to the number of original BDD variables plus
the number of “internal” nodes of the BDD.

2. The No-Cut method creates clauses starting from f corresponds
to the “off-set” (i.e., the set of cubes from the root to the ter-
minal node zero) of the function f . Within the BDD for f ,
such clauses are found by following all the paths from the root
node of the BDD to the constant node 0. The final number of
variables is equal to the number of original BDD variables.

3. The Auxiliary-Variable-Cut method is a trade-off between the
first two strategies. Internal variables, i.e., cut points, are added
in order to decompose the BDD into multiple sub-trees each of
which is stored following the second strategy. The trade-off is
guided by a cut point selection strategy, and we experimented
with two methodologies. In the first one, a new CNF variable
is inserted in correspondence to the shared nodes of the BDD,
i.e., the nodes which have more than one incoming edge. This
technique, albeit reducing the total number of literals stored,
can produce clauses with a high number of literals5. To avoid
this drawback, the second method, introduces all the previously
indicated cutting points more the ones necessary to break the
length of the path to a maximum (user) selected value.

Actually, all the methods described above can be brought back to
the basic idea of possibly breaking the BDD through the use of
additional cutting variables and dumping the paths between the
root of the BDD, the cutting variables and the terminal nodes.
Such internal cutting variables are added always (for each node),
never or sometimes respectively.

While the Single-Node-Cut method minimizes the length of
the clauses produced, but it also requires the higher number of
CNF variables, the No-Cut technique minimizes the number of
CNF variables required. This advantage is counter-balanced by
the fact that in the worst case the number of clauses, as well as
the total number of literals, produced is exponential in the BDD
size (in terms of number of nodes). The application of this method

5This value is superiorly limited by the number of variables of the BDD, i.e., the
longest path from the root to the terminal node.

is then limited to the cases in which the off-set of the represented
function f has a small cardinality. The Auxiliary-Variable-Cut
strategy is a trade-off between the first two methods and the ones
which gives more compact results. As a final remark notice that
for us the compactness of the formula takes second place after the
efficiency on the formula itself of the SAT engine.

Example 1 Figure 3 shows an example of how our procedure
works to store a small monolithic BDD. Figure 3(a) represents
a BDD with 4 nodes. BDD variables are named after integer
numbers ranging from 1 to 4, to have an easy-to-follow corre-
spondence with the CNF variables. Figure 3(b), (c) and (d) show
the corresponding CNF representations generated by our three
methods. As in the standard format p indicates the total number
of variables used (4 is the minimum value as the BDD itself has 4
variables), and cnf the total number of clauses.

As a final remark notice that for this specific example the
“No-Cut” approach is the one which gives the most compact CNF
representation but also the clause with the largest number of lit-
erals (4).

1

1

2

3

4

(a)

p cnf 7 11
-5 3 0
-5 4 0
5 -3 -4 0
6 -2 0
6 -5 0
-6 2 5 0
7 1 5 0
-7 1 -5 0
7 -1 -6 0
-7 -1 6 0
7 0

(b)

p cnf 4 3
1 -3 -4 0
-1 2 3 0
-1 2 -3 4 0

(c)

p cnf 5 5
-5 1 0
5 -1 2 0
-3 -4 5 0
3 -5 0
-3 4 -5 0

(d)

Figure 3: (a) BDD; (b) “Single-Node-Cut” format; (c) “No-Cut”
format; (d) “Auxiliary-Variable-Cut” format.

6 Experimental Results
Our experimental set-up is made up of three distinct phases.

During the first phase, we start from the ISCAS’89 and ISCAS’89–
addendum benchmark circuits in a Verilog or blif format, and the
properties taken from [10]. From these source files we generate
the BMC-CNF formulation of the problem using four different
tools: the publicly available VIS, NUSMV and BMC and an
home-made generator. As far as our package is concerned it is
able to generate CNF formulas both from the original network
of the circuit and from its transition relation representation. The
generated CNF problem is stored as a standard DIMACS CNF
file. While NUSMV, VIS and our tool produce similar results,
BMC usually produces CNF files 20-30% more compact both in
terms of clauses and (intermediate) variables. Nevertheless the
BMC tool does not store the variable correspondence, which we
need to be congruent with our reachability analysis information,
as a consequence we do not report further experiments with this
tool at the moment. Among the other, we always report the best
results in term of performance of the SAT solver.

During the second phase, we generate the set of approximate
reachable state sets for the circuit. In this phase we use both the

VIS tool and again our home-made tool. Albeit VIS implements
almost all the approximate traversal algorithms presented in the
literature, we need the over-approximation of the reachable state
set at the same bound level for all sub-machines. As a conse-
quence we need variant of the original Machine By Machine
(MBM) algorithm with or without overlapping projections. Our
tool, implemented on top of the Colorado University Decision Di-
agram (CUDD) package, implements the approximation verifica-
tion method presented in Section 4.1. Once we have generated
the BDDs for the over-approximation we store them in different
format following the methodology reported in Section 5.

During the third and last phase we run the CHAFF sat engine
(both the MCHAFF and the ZCHAFF versions) on the two prob-
lem instances, i.e., the original problem formulation and the one
generated by merging in the information coming from the reach-
ability analysis phase. Notice that in all the cases CHAFF is run
with the default settings.

Our experiments ran on a Pentium IV 1700 MHz Workstation
with 1 GByte main memory, running RedHat Linux 7.1.

Table 1 and 2 report our results. The meaning of the columns
for the two tables is the following. # SV is the number of state
variables in the model. # Clauses, # Vars and # Lits represent
respectively the number of clauses, variables and literals in the
problem (they are reported as an absolute value or as a relative
ones). D.M. represents the method we used to dump the BDDs for
the states obtained during the approximate traversal (“S” stands
for the Single-Node-Cut method, “N” for the No-Cut and “A” for
the Auxiliary-Variable-Cut).

Decs and # Confl. represent the total number of decisions
taken and conflicts produced by the sat solver. Finally, Mem. and
Time indicate respectively memory occupation (in MBytes) and
CPU time (in seconds). As far our technique is concerned the
Setup time includes the one to perform the reachability analysis
phase and the one to generate the new problem formulation, and
the reported memory is mainly the one used by the SAT solver as
the one used during the traversal phase is usually much smaller.

For circuit s1512 we report some comparison among differ-
ent possible settings. First of all, for the property P3, we store
reachable state sets as CNF formulas using the different imple-
mented methods (rows labeled A, S, and N). Secondly, we present
some results targeting the influence of the accuracy of R on the
CNF problem size. Rows S�, N� and A� report results obtained
with a more approximate traversal than the one used for rows S, N
and A. For this property the set of generated clauses is larger then
the original set from about 8% to more than 1000% in the worst
case. More approximate reachable state sets give more compact
representation as initially supposed. In Table 2 we report only
the best SAT results, which is in correspondence of the A storing
method of Table 1.

Among the other experiments performed, we try to add BDD
traversal information to the original problem formulation in dif-
ferent way (at the bottom of the file, at the top, each reachable
state set exactly before or after the relative transition relation, fol-
lowing the original order (from S to T) or following a reverse
order, etc.). We obtain small differences, in the range of 10-20%
in terms of CPU time, and, for the lack of space, we do not report
evidence on that issue.

Moreover we also try to guide the SAT solver variable selec-

tion, in the Variable Decision phase, with some indications on the
variable order and variable coupling derived from the reachabil-
ity analysis tool. Also in this case we have slight variations in
the SAT engine performances, in the order of about 10%, and we
again do not report evidence on that.

7 Conclusions and Future Works
In this paper we propose to exploit inexpensive symbolic approxi-
mate forward and/or backward reachability analysis to restrict the
overall search space of a SAT-solver engine.

We experimentally compare the resulting problem formula-
tion with the original one and show its power in term of problem
simplification and generality.

Among the possible future work we surely need some more
experimental work on public domain and industrial benchmarks
and difficult-to-find bugs. Moreover, we would like to investi-
gate smarter way to prune the SAT-engine search space using the
information coming from the over-approximate estimate.

References
[1] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.

Chaff: Engineering an Efficient SAT Solver. In Proc. 38th Design
Automat. Conf., Las Vegas, Nevada, June 2001.

[2] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robost SAT-
Solver. In Proc. Design Automation & Test in Europe Conf., Paris,
France, February 2002.

[3] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiabil-
ity Solvers. In Ed Brinksma and Kim Guldstrand Larsen, editors,
Proc. Computer Aided Verification, volume 2404 of LNCS, pages
17–36, Cophenagen, Denmark, 2002.

[4] H. Cho, G. D. Hatchel, E. Macii, B. Plessier, and F. Somenzi. Al-
gorithms for Approximate FSM Traversal Based on State Space De-
composition. IEEE Transactions on CAD, 15(12):1465–1478, De-
cember 1996.

[5] S. G. Govindaraju, D. L. Dill, A. Hu, and M. A. Horowitz. Approx-
imate Reachability Analysis with BDDs using Overlapping Projec-
tions. In Proc. 35th Design Automat. Conf., pages 451–456, San
Francisco, California, June 1998.

[6] K. L. McMillan. Applying SAT Methods in Unbounded Symbolic
Model Checking. In Ed Brinksma and Kim Guldstrand Larsen, ed-
itors, Proc. Computer Aided Verification, volume 2404 of LNCS,
pages 250–264, Cophenagen, Denmark, 2002.

[7] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT–Based Image Com-
putation with Application in Reachability Analysis. In Proc. Formal
Methods in Computer-Aided Design, volume 1954 of LNCS, Austin,
TX, USA, 2000.

[8] S. G. Govindaraju and D. L. Dill. Verification by Approximate For-
ward and Backward Reachability. In Proc. Int’l Conf. on Computer-
Aided Design, pages 366–370, San Jose, California, November
1998.

[9] I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan, and C. Pixley.
Approximate Reachability Don’t Cares for CTL Model Checking.
In Proc. Int’l Conf. on Computer-Aided Design, pages 351–358, San
Jose, California, November 1998.

[10] G. Cabodi, P. Camurati, and S. Quer. Can BDDs compete with SAT
solvers on Bounded Model Checking? In Proc. 39th Design Au-
tomat. Conf., New Orleans, Louisiana, June 2002.

Model # SV Property Bound Original SAT Problem Modified SAT+BDD Problem
Clauses # Vars # Lits D.M. # Clauses # Vars # Lits

[k] [k] [k] [%] [%] [%]

s1512 57 P1 (pass) 66 92 36 222 A + 21.7 % + 7.5 % + 72.1 %
P1 (fail) 67 94 37 225 A + 22.0 % + 7.6 % + 73.2 %
P2 (pass) 130 181 70 436 A + 53.4 % + 20.0 % + 168.5 %
P2 (fail) 131 183 71 440 A + 53.4 % + 20.0 % + 169.4 %
P3 (pass) 259 381 146 917 A + 115.0 % + 40.0 % + 317.7 %
P3 (fail) 260 383 147 920 A + 115.3 % + 40.0 % + 318.6 %

S + 218.3 % + 153.9 % + 257.4 %
N + 1361.1 % + 0.0 % + 13536.2 %

A� + 7.7 % + 3.3 % + 13.5 %
S� + 13.9 % + 10.2 % + 15.7 %
N� + 56.6 % + 0.0 % + 373.9 %

s9234 211 P1 (pass) 80 598 214 1443 S + 14.6 % + 13.4 % + 14.5 %
P1 (fail) 81 606 217 1461 S + 14.6 % + 13.4 % + 14.5 %
P2 (pass) 80 598 214 1443 S + 14.6 % + 13.4 % + 14.5 %
P2 (fail) 81 606 217 1461 S + 14.6 % + 13.4 % + 14.5 %
P3 (pass) 80 598 214 1443 S + 14.6 % + 13.4 % + 14.5 %
P3 (fail) 81 606 217 1461 S + 14.6 % + 13.4 % + 14.5 %

s15850.1 534 P1 (pass) 75 1057 387 2572 A + 2.0 % + 0.4 % + 13.0 %
P1 (fail) 76 1071 391 2607 A + 2.0 % + 0.4 % + 13.0 %

s13207.1 638 P1 (pass) 55 465 188 1151 A + 21.8 % + 5.4 % + 76.7 %
P1 (fail) 56 474 191 1172 A + 21.8 % + 5.4 % + 76.6 %
P2 (pass) 109 920 369 2278 A + 21.2 % + 5.3 % + 74.5 %
P2 (fail) 110 929 372 2299 A + 21.2 % + 5.3 % + 75.2 %

s35932 1728 P1 (pass) 31 1495 537 3630 A + 4.4 % + 1.0 % + 33.9 %
P1 (fail) 32 1543 554 3747 A + 4.3 % + 1.0 % + 33.2 %

Table 1: Comparison between original and modified CNF problems. For circuit s1512, the rows S�, N� and A� report results obtained
with a more approximate traversal than the one used for the previous three lines S, N and A.

Model Property Bound Original SAT Problem Modified SAT+BDD Problem
Decs # Confl. Mem. Time [s] # Decs # Confl. Mem. Time [s]

[k] [k] [MByte] Search [k] [k] [MByte] Setup Search

s1512 P2 (pass) 66 106 57 28 74 3 1 17 2 2
P2 (fail) 67 155 97 28 169 20 1 17 2 5
P4 (pass) 130 566 318 85 899 157 73 51 5 104
P4 (fail) 131 707 415 84 1326 149 59 50 5 76
P5 (pass) 259 3469 2018 172 11330 415 163 146 19 390
P5 (fail) 260 4502 2579 299 18677 609 230 97 19 603

s9234 P1 (pass) 80 167 133 123 517 23 10 95 14 27
P1 (fail) 81 275 221 122 950 35 14 71 14 45
P2 (pass) 80 135 111 90 426 20 9 95 14 25
P2 (fail) 81 127 87 90 256 42 18 71 14 49
P3 (pass) 80 259 211 123 813 24 10 95 14 29
P3 (fail) 81 245 198 122 755 27 13 95 14 32

s15850.1 P1 (pass) 75 25 20 175 184 8 6 143 53 35
P1 (fail) 76 475 120 140 1227 173 43 141 53 273

s13207.1 P1 (pass) 55 22 11 55 22 24 16 74 54 53
P1 (fail) 56 641 83 46 375 758 35 59 54 116
P2 (pass) 109 315 230 193 4287 98 51 133 96 176
P2 (fail) 110 640 358 158 3210 2348 109 115 96 432

s35932 P1 (pass) 31 0 0 205 9 0 0 219 175 10
P1 (fail) 32 206 40 201 1156 119 25 181 175 760

Table 2: Comparison between output statistics produced by CHAFF for the original and the modified CNF problems. Memory limit
900 MBytes. Time limit 36000 sec.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

