
Verification of Proofs of Unsatisfiability for CNF Formulas

Evgueni Goldberg Yakov Novikov
Cadence Berkeley Labs (USA),

Email: egold@cadence.com
The United Institute of Informatics Problems,

National Academy of Sciences (Belarus),
Email: nov@newman.bas-net.by

Abstract

As SAT-algorithms become more and more complex, there
is little chance of writing a SAT-solver that is free of bugs.
So it is of great importance to be able to verify the
information returned by a SAT-solver. If the CNF formula
to be tested is satisfiable, solution verification is trivial and
can be easily done by the user. However, in the case of
unsatisfiability, the user has to rely on the reputation of the
SAT-solver. We describe an efficient procedure for
checking the correctness of unsatisfiability proofs. As a
by-product, the proposed procedure finds an unsatisfiable
core of the initial CNF formula. The efficiency of the
proposed procedure was tested on a representative set of
large “ real-life” CNF formulas from the formal
verification domain.

1. Introduction

Many problems such as ATPG [10], logic synthesis
[3], equivalence checking [4,8], and bounded model
checking [2] reduce to the satisfiability problem. In the last
decade substantial progress has been made in the
development of practical SAT algorithms [1,5,9,10,
13,14,16]. As a result, SAT-solvers are becoming
commercially viable. However, due to the growing
complexity of the state-of-the art algorithms it is unlikely
that a SAT-solver will be free of bugs. Hence it is
important to run an independent check of the information
returned by a SAT-solver so that the latter can be used
even if it is buggy.

When testing the satisfiability of a CNF formula a
SAT-solver either 1) returns an assignment of values that
satisfies all the clauses of the formula or 2) reports that
such an assignment does not exist. In the first case, it is
trivial to check whether the returned solution is correct. To
verify the second kind of an answer, one needs much more
information about SAT-solver’s work.

One way to verify a proof of unsatisfiability is to build
a resolution directed acyclic graph (DAG) G [7,12]. We
will refer to such a DAG as a resolution graph proof. The
sources of G are assigned clauses of the initial CNF
formula. Each internal (i.e. different from a source) node v

has two incoming edges going out of two (parent) nodes v1
and v2. The proof verification procedure consists of gradual
assigning clauses to the internal nodes of G. As soon as the
two parent nodes v1 and v2 of node v are assigned clauses
(denote them by C(v1) and C(v2) respectively), the child
clause C(v) is produced by resolving C(v1) and C(v2). The
proof specified by DAG G is correct if 1) for any parent
nodes v1 and v2 clauses C(v1) and C(v2) have the opposite
literals of exactly one variable (and so they can be resolved
in this variable); 2) A sink node of the DAG G will be
eventually assigned the empty clause.

In [7] it is explained how a resolution graph can be
built by a SAT-solver based on the DPLL procedure and
the state-of-the-art techniques. The advantage of the
approach is that the procedure of proof verification is very
simple. However, there are at least two potential
drawbacks. First, generation of a resolution proof may take
a substantial rewriting of some parts of the SAT-solver.
Second, the size of the resolution graph to be stored may
get prohibitively large. Addressing the last issue is the
main motivation of the paper.

We present a simple verification procedure that is, in a
sense, complementary to building a resolution graph. This
procedure can be applied to all state-of-the-art SAT-solvers
based on conflict clause recording, for example
[1,9,13,14,16]. We used the proposed procedure to verify
proofs obtained by our SAT-solver BerkMin [9]. The idea
of the verification procedure is to represent the proof as a
chronologically ordered set of the conflict clauses. (Here,
we assume that any observed conflict assignment was
accompanied by recording a conflict clause. In practice, as
soon as the SAT-solver hits a conflict, the corresponding
conflict clause is output to disk.). We will refer to such a
proof as a conflict clause proof. To verify a conflict clause
proof one just checks whether each conflict clause was
deduced correctly.

Let F* be a conflict clause proof i.e. the set of all
deduced conflict clauses. To prove the correctness of a
conflict clause C we form the CNF formula G obtained by
adding to the initial CNF F all the clauses of F* deduced
before C. Then we falsify C by making the assignment of
values A setting the literals of C to 0. The key point is that

1530-1591/03 $17.00  2003 IEEE

if C was deduced “correctly” then the Boolean Constraint
Propagation (BCP) procedure triggered by A in G will lead
to a conflict. Obtaining such a conflict means that C is
implied by G (and hence by F). If for all the deduced
clauses of the proof their correctness has been established,
then the whole proof is correct. Otherwise, one can point
to a clause of the proof whose deduction is questionable.

Conflict clause proofs have the following advantages.
First, such proofs are, in general, shorter than resolution
graph ones (see Section 5). Second, it takes only a slight
modification of the SAT-solver, to generate a conflict
clause proof. Besides, SAT-solver’s performance does not
change much. In our experiments, outputting all the
conflict clauses to disk took about 10% of the total runtime
of the SAT-solver. A potential disadvantage of conflict
clause proofs is that the proof verification procedure is
more time consuming and a bit more complex than for
resolution graph proofs. However, the BCP procedure (the
only procedure one needs to implement to verify a conflict
clause proof) is well established and it should not be a
problem for a user to implement it. Besides, our
experiments showed that verification of a conflict clause
proof can be done in a reasonable time. (Unfortunately, we
could not directly compare our results with data on
resolution graph proof verification because no
experimental results have been ever reported on resolution
proofs to the best of our knowledge).

In the procedure sketched above we have to verify the
correctness of each conflict clause of F*. (The order in
which clauses are checked does not matter.) At the same
time, some conflict clauses may not contribute to the
deduction of the empty clause and so checking their
correctness is a waste of time. This problem is easily
solved by checking conflict clauses in the order that is
reverse to chronological (i.e. we start with clauses deduced
last). Then we can limit verification checks only to clauses
that have been actually used in deducing the empty clause.
This is done by marking the clauses of F* that were used at
least once in a BCP procedure invoked when verifying a
conflict clause. Initially, only the last two deduced unit
clauses of F* are marked. If during verification one
reaches a conflict clause C of F* that has not been marked,
it can be skipped (because C has never been used in
deducing the empty clause).

In some applications the user may want to know what
subset of clauses of the original CNF formula is
responsible for its unsatisfiability. The extraction of an
unsatisfiable core of the formula can help to understand the
“cause” of unsatisfiability. Such a core can be identified as
a “by-product” of the procedure above. The idea is that
during BCP procedures one marks not only the used
conflict clauses of F* but also the used clauses of the
original CNF formula. After completing proof verification,
the subset of clauses of the initial formula F that turned out
to be marked after completing proof verification forms an
unsatisfiabile core of F.

The paper is organized as follows. In Section 2 we
introduce basic notions. Section 3 describes a conflict
clause proof verification procedure. In Section 4 a more
efficient version of the procedure of Section 3 is
described that can also identify an unsatisfiable core of the
initial formula. Conflict clause and resolution graph proofs
and their verification procedures are compared in Section
5. In Section 6 experimental results are given. In Section 7
we make some conclusions.

2. Basic notions

 Given a conjunctive normal form (CNF) F specified

on a set of variables { x1,…,xn} , the satisfiability problem
(SAT) is to satisfy (set to 1) all the disjunctions of F by
some assignment of values to variables from { x1,…,xn} . If
such an assignment does not exist, CNF F is said to be
unsatisfiable. A disjunction of literals is also called a
clause. A clause containing one literal is called unit. Two
unit clauses consisting of the opposite literals of a variable
are called a conflicting pair. The Boolean Constraint
Propagation procedure (BCP) [5] is as follows.

 Conflicting_pair, Assignments ← BCP(CNF F)
 { While (there is no conflicting pair and
 there is a unit clause l)
 {Assignment = satisfy(l);
 Assignments = Assignments ∪ Assignment
 F= simplify(F, Assignment);
 }
 return(conflicting_pair(F),Assignments);
 }

The satisfy procedure returns the assignment satisfying

the unit clause l. Such an assignment is called deduced. For
instance, assignment x=0 is deduced from the unit clause
~x. The simplify procedure removes the clauses satisfied
by Assignment from formula F. For instance, if
Assignment is x=0, then all the clauses containing ~x are
removed from F. Besides, literal x is removed from all the
clauses of CNF F containing it. The situation when the
BCP procedure produces a conflicting pair is called a
conflict. The BCP(F) procedure returns either the found
conflicting pair or the set of assignments accumulated
during the procedure.

Note that in the implementation of the BCP procedure
literals and clauses are not physically removed. Instead,
some variables are marked as assigned (and the assigned
values are stored) and some clauses are marked as
satisfied. This way one can easily restore the right CNF
formula after undoing some assignments. To speed up the
BCP procedure one can use the idea of watched literals
[16], the description of which we omit.

 Let R be a set of assignments. Each assignment from
R specifies the literal which is set to 0 by this assignment.
Denote by C(R) the disjunction of literals specified by R.
(Obviously, clause C(R) is falsified by assignment R.) We

will say that the clause C(R) encodes the assignment R. In
its turn, the assignment R is said to specify the clause C(R).

Denote by F|R the CNF that is obtained from F by
making the assignments from R and removing all the
satisfied clauses and all literals set to 0. (Henceforth, we
assume that no clause of F is falsified by R.) If BCP(F|R)
leads to a conflict due to appearance of a conflicting pair (l,
~l) we will say that R is responsible for that conflict.
Suppose that R is responsible for a conflict in CNF F. Then
clause C(R) is called a conflict clause for F. It can be
shown that a conflict clause is implied by F (because it can
be obtained by resolving clauses of F). Due to this property
one can always add a conflict clause to the current CNF
and this is exactly what SAT-solvers based on conflict
clause recording do.

Proof of the unsatisfiability of a CNF performed by
such SAT-solvers can be considered as a sequence of steps.
At each step a conflict clause is added to the current CNF
formula F (at the first step F is equal to the initial CNF
formula). Once in a while, some clauses are removed from
the current formula. The proof terminates if after obtaining
a unit conflict clause (say clause ~x) we prove that the unit
clause x is also a conflict one. The pair of unit clauses ~x
and x is called the final conflicting pair (in contrast to a
conflicting pair obtained in each BCP procedure leading to
a conflict.)

We consider a proof to be correct if each step of the
proof is correct. That is, each clause C added to the current
CNF F is indeed a conflict one. This means that BCP(F|R)
where R is the set of assignments encoded by C returns a
conflicting pair.

3. Conflict clause proof verification

Let F be an unsatisfiable CNF formula and F* be the

set of all deduced clauses. For the sake of clarity, we will
view F* as a chronologically ordered stack of clauses
where the last (first) conflict clause is located at the top (at
the bottom). We assume that the two topmost clauses of
F* form the final conflicting pair. The verification
procedure is as follows.

 bool Proof_verification1(CNF F, CNF F*) {
 { While(F* is not empty)
 { C = pop_clause_off (F*);

 R=assignments_encoded_by();
 if (no_confl_pair== BCP((F∪ F*)|R)
 return proof_is_not_correct;
 }

 return proof_is_correct;
 }

As it was mentioned before, if one checks the

correctness of all the clauses of F*, the order in which
clauses are processed does not matter. In the procedure
above, clauses are verified in the order that is opposite to
chronological (i.e. we start verification with the two

clauses of the final conflicting pair). The reason for such a
choice will be explained in the next section.

Note that in the procedure above, one runs BCP for
(F∪F*)|R. On the other hand, at the point of obtaining the
conflict clause C(R) (when testing the satisfiability of F)
the current CNF was equal to F∪F′ where F′ ⊆ F* because
some conflict clauses may have been dropped. However, if
BCP((F∪F*)|R) does not find a conflict, BCP((F∪F′)|R)
would not find a conflict either. So if the
Proof_verification1 procedure returns
proof_is_not_correct, the SAT-solver contains a bug. On
the other hand, if the procedure returns proof_is_corre t it
may validate a correct proof produced by a buggy SAT-
solver. (It is possible that BCP((F∪F*)|R) produces a
conflict while BCP((F∪ F′)|R) did not and the conflict
clause C(R) was deduced “by mistake” .)

4. Extraction of unsatisfiable core

In this section, we describe a more efficient proof
verification procedure that also extracts an unsatisfiable
subset of clauses of the original formula as a “by-product”
of verification. The idea is that some conflict clauses are
“redundant” from the viewpoint of the proof. A proof of
unsatisfiability F* has to contain two conflict clauses (l, ~l)
forming the final conflicting pair. By redundancy of a
conflict clause C we mean that no descendent of C has ever
been used for deducing l and ~l. Obviously, checking the
correctness of deducing C is a waste of time.

The identification of redundant conflict clauses can be
done by modifying the Proof_verification1 procedure.
The modification is that when checking the correctness of
deducing a clause C of F* one marks all the clauses that
are involved in producing the conflict found by
BCP((F∪F*)|R). Initially, only the two clauses of F*
forming the final conflicting pair (l, ~l) are marked.

bool Proof_verfication2(CNF F, CNF F*)

 { While(F* is not empty)
 { C = pop_clause_off (F*);
 if (C is not marked)
 continue;

 R=assignments_encoded_by();
 (Assgns, confl_pair) = BCP((F∪ F*)|R)
 if (confl_pair == ∅)
 return proof_is_not_correct;
 Conflict_analysis(Assgns,confl_pair,F ,F*);
 }

 return proof_is_correct;
 }

In contrast to Proof_verification1, in the

Proof_verification2 procedure described above, clause C
is checked for correctness only if it has been marked.
Since the clauses of F* are processed in the
chronologically reverse order, the fact that a clause C is not
marked means that none of its descendents has contributed

to deducing l or ~l. The marking is done by the
Conflict_analysis procedure. This procedure just marks
all the clauses of F and F* that are responsible for the
conflict produced by BCP((F∪ F*)|R). This is done by
processing deduced assignments in the reverse order
starting with the conflicting pair of literals produced by
BCP. Suppose for example that x and ~x is the conflicting
pair produced by the BCP procedure and those literals
where deduced from clauses C’= x+v+~w and C” =~x+y+z.
Then C’ and C” get marked. After that, for each of the
literals of the set S={ v,~w, y,z} the following procedure is
applied. If a literal p ∈ S is in the clause C whose
deduction is tested for correctness, then nothing happens.
However, if p was deduced from a clause of F or F* , that
clause gets marked. The same procedure repeats
recursively for the literals of each new marked clause.

Note that the Conflict_analysis procedure described
above marks clauses of both F* and the original formula
F. If a clause of F is left unmarked after applying the
Proof_verification2 procedure it means that this clause
has never been employed in deducing a “useful” clause of
F*. So it can be removed from F without affecting the
unsatisfiability of the latter. Hence the set of marked
clauses of F forms an unsatisfiable core.

5. Resolution graph proof verification
versus conflict clause proof verification

In this section, we compare conflict clause and
resolution graph proofs in more detail. Let G be a
resolution graph. A source node of G is labeled with a
clause of the initial formula. Each internal node of G has
two parent nodes. Verification check consists of assigning
clauses to internal nodes of G. As soon as the two parent
nodes are assigned clauses, the clause corresponding to the
child node can be produced by resolving the two parent
clauses. The proof is correct if the resolution of each pair
of parent clauses produces a non-tautologous (i.e. not
having opposite literals of the same variable) clause and
the empty clause is deduced at a sink node of G .

Let F* be the set of conflict clauses produced by a
SAT-solver when proving that F is unsatisfiable. Let G be
the resolution graph corresponding to the same run of the
SAT-solver that produced the proof F*. In the general case,
for each node of G one needs to store at least three
numbers (the label of the node and the labels of the
parents). However in the case of SAT-solvers based on
conflict clause recording, it is sufficient to store only one
label per node using a special representation of the
resolution graph [12].

In the worst case, the size of a resolution graph is
O(|F* |2) (because for deducing each of the F* clauses one
may need to resolve O(F*) clauses.) The size of a conflict
clause proof is O(n� |F* |). A substantial difference between
the two kinds of proofs is that the size of a conflict clause
proof does not change during proof verification. On the

other hand, when verifying a resolution graph proof, one
has to assign clauses to internal nodes of the graph. So, in a
sense, the size of a conflict clause proof gives a lower
bound on the maximum size the corresponding resolution
graph proof may grow to during proof verification. (Each
conflict clause will be eventually assigned to an internal
node of the resolution graph.)

To analyze the factors affecting the size of resolution
graph and conflict clause proofs one needs to introduce the
notion of “ local” and “global” conflict clauses.
Informally, a conflict clause C is local if it is obtained by
resolving a small number of clauses. In the corresponding
resolution, graph the deduction of the clause C is
represented by a small set A of internal nodes. On the
other hand, in a conflict clause proof, one has to store the
conflict clause itself. In the case C is long, storing its
literals may turn out to be more space consuming than
storing the nodes of A. (Of course during proof
verification, C has to be deduced and assigned to a node of
the resolution graph.). Informally, a conflict clause C is
called global if it is obtained by resolving many clauses of
the current CNF formula. In this case, especially if C is a
short clause, storing the literals of C in a conflict clause
proof is much more space efficient than storing the nodes
specifying the deduction of C in a resolution graph proof.

One way to deduce a global conflict clause is to
represent it in terms of literals of decision variables. In this
case one keeps resolving the clause falsified in the conflict
and its descendents until a clause containing only literals of
decision variables is obtained. (More detailed description
of different conflict driven learning schemes can be found
in [17]). Such a way of constructing a conflict clause is
used in the SAT-solver Relsat [1]. The reason why
conflict clauses specified in terms of decision variables are
global is that to obtain such a clause one has to resolve
many clauses of the current formula. On the other hand,
the SAT-solver Chaff [13] deduces local conflict clauses
because it uses the 1 UIP learning scheme (in terms of
paper [17]). In this case a conflict clause usually contains a
lot of literals of deduced variables and is typically obtained
by a small number of resolutions.

It is not hard to see that conflict clause and resolution
graph proofs are complementary from the viewpoint of
size. If a SAT-solver proved the unsatisfiability of a
formula deducing only local conflict clauses it makes
sense to represent the obtained proof as a resolution graph.
However, if a substantial number of deduced clauses are
global, then representing the proof as a set of conflict
clauses is the best (and perhaps the only) choice.

6. Experimental results

In the experiments we used our SAT-solver BerkMin

[9]. The experiments were carried out on a PC with clock
frequency of 500 MHz and 640 Mbytes of memory running
Windows. The objective of experiments was a) to estimate

the practicality of the proposed approach; b) to identify
unsatisfiable cores of some known benchmarks; c) to show
that resolution graph proofs may grow very large. BerkMin
is well suited for proving the third point. The reason is that
once in a while BerkMin deduces clauses in terms of
decision variables (i.e. “global” clauses). This is a new
feature of BerkMin not described in [9]. We found out that
for some instances, combining the deduction of local and
global clauses gives a noticeable speed-up.

In the implementation of Proof_verfication2 we used
an optimized version of the BCP procedure that employs
the machinery of watched literals [16]. A conflict clause
proof F* contains a large number of long clauses, which is
exactly the case when using watched literals is especially
effective. Of course, implementing the technique of
watched literals makes the verification program more
complex and so more prone to bugs. On the other hand, the
machinery of watched literals has been well studied in the
state-of-the-art SAT-solvers [9,13,16]. Besides, the code of
a verification program is “stable” (in contrast to SAT-
solvers whose code keeps changing).

Name All
conflict
clauses

Tested

%

Number of
clauses in
the initial
CNF

Unsa-
tisfi-
able
core

%

verification of pipelined microprocessors [15]
5pipe 20,137 44.6 195,452 21.5
5pipe_1 43,597 56.2 187,545 36.7
5pipe_5 34,209 50.3 240,892 30.4
6pipe 213,923 47.0 394,739 48.9
6pipe_6 110,161 37.5 545,612 39.6
7pipe 365,245 34.2 751,118 44.7
9vliw 88,975 49.1 179,492 51.1

verification of PicoJava IITM
 microprocessor [21]

exmp72 30,036 75.5 148,536 31.7
exmp73 54,014 61.0 219,972 38.7
exmp74 46,557 63.1 141,432 43.3
exmp75 29,761 72.0 284,446 22.6

bounded model checking [20]
Barrel7 44,024 83.0 13,765 66.1
Barrel8 123,712 94.1 20,083 66.7
Barrel9 46,423 56.1 36,606 70.7
Longmult12 113,698 89.7 18,645 71.2
Longmult13 111,421 88.2 20,487 72.7
Longmult14 117,215 88.0 22,389 72.6
Longmult15 110,074 90.3 24,351 71.1

equivalence checking [19]
c3540 15,433 67.2 9,326 98.6
c5315 16,132 75.0 15,024 95.3
c7572 22,307 77.9 20,423 97.3

bounded model checking, SAT-2002 [18]
w10_45 4,285 84.34 51,803 26.3
w10_60 14,489 78.65 83,538 33.0
w10_70 32,847 81.44 103,556 41.5

 Table 1. Unsatisfiable core extraction

In Tables 1,2,3 we give experimental results on hard
instances from the verification domain. Table 1 gives the
data on unsatisfiable core extraction. Name of the instances
are given in the first column. The “All conflict clauses”
column gives the cardinality of the set F*. The “Tested”
column shows the percentage of clauses of F* that got
marked and hence were tested for correctness. On the one
hand, these numbers show that proof_verfication2 is,
indeed, more efficient than proof_verification1. On the
other hand, the percentage of tested clauses allows one to
estimate “ the coefficient of efficiency” of the used SAT-
solver that is the share of deduced conflict clauses actually
used in the proof of unsatisfiability. The “Unsatisfiable
core” column shows the percentage of clauses of the initial
CNF formula that formed the found unsatisfiable core.

Name Verifi-

cation
time

(sec.)

Resolu-
tion graph
size
(in thou-
sands of
nodes)

Confl.
clause
proof
size
(in
thou-
sands of
lit.)

(Confl.
clause
proof
size)/
(res.
proof
size)

%
5pipe 25.7 1,128 1,234 109.5
5pipe_1 110.8 10,592 2,747 25.9
5pipe_5 69.6 6,319 2,575 40.8
6pipe 747.6 105,506 24,947 23.7
6pipe_6 446.2 55,406 9,797 17.7
7pipe 1,902. 435,726 60,312 13.8
9vliw 433.4 8,756 5,877 67.1
exmp72 340.5 6,875 1,768 25.7
exmp73 536.6 9,705 5,039 51.9
exmp74 307.3 5,828 2,973 51.0
exmp75 519.3 4,394 1,237 28.2
Barrel7 138.0 3,915 4,691 119.8
Barrel8 1579.2 21,955 26,844 122.3
Barrel9 63.9 2,919 2,959 101.4
Longmult12 1366.1 30,138 8,487 28.2
Longmult13 1306.3 32,124 8,939 27.8
Longmult14 1417.6 35,734 9,592 26.8
Longmult15 1251.7 26,945 8,346 31.0
c3540 16.5 623 724 116.2
c5315 7.0 441 416 94.4
c7572 17.3 761 726 95.4
w10_45 20.5 532 89 16.7
w10_60 104.4 1,844 440 23.9
w10_70 354.6 6,723 1,303 19.4

 Table 2. Proof verification

Table 2 gives data about proof verification. The

“Verification time” column shows the time taken by
Proof_verification2. (Typically, verifying a proof that a
formula F was unsatisfiabile took 2-3 times the time one
needed to generate the proof i.e. to test the satisfiability of
F.) The “Resolution graph size” column shows a lower
bound on the number of nodes in the resolution graph (in
thousands). For instance, the size of the graph for 5pipe
would be greater or equal to 1 million and 128 thousand

nodes. The reason for computing only a lower bound of
the resolution graph size is that some conflict clauses are
built by our SAT-solver using an involved procedure. To
avoid writing too much extra code, if a conflict clause was
obtained using that procedure, we computed only a lower
bound on the number of resolutions one has to apply to
produce the clause. (For the rest of the conflict clauses we
computed the number of resolutions exactly. So we believe
the lower bounds shown in Table2 are close to the real
sizes.) The “Confl. clause proof size” column contains the
total number of literals in the clauses of F* (in thousands).
The last column gives the ratio (per cent) of conflict clause
and resolution proof sizes.

It is not hard to see that with the exception of a few
instances conflict clause proofs are smaller than resolution
graph ones. (In Table 2 we estimate only the initial size of
a resolution graph. That is we do not take into account that,
as it was mentioned in Section 5, the size of the resolution
proof grows during proof verification.)

Name Resol. proof
size
(in thou-
sands of
nodes)

Confl. cl.
proof size
(in thou-
sands of
literals)

Ra-
tio
%

bounded model checking, SAT-2002 [18]
fifo8_200 379,992 71,971 18
fifo8_300 987,840 118,132 11
fifo8_400 4,581,450 335,752 7

 Table 3. Growth of resolution proof size

The size of the largest proof of Table 2 (formula 7pipe)

was 257 Mbyte and so we were able to verify the proof on
the computer with 640 Mbytes of memory. On the other
hand, the corresponding resolution graph proof contained
435 million nodes and so the resolution graph would take
more than 2 Gbytes of memory (assuming that on average
one needs 5 digits to label a node of the resolution graph).
Instances of the pipe family show that the gap between
conflict clause proofs and resolution graph ones may
widen as the size of instances grows. One more example of
this trend is shown in Table 3 where the ratio of sizes of
conflict clause and resolution graph proofs decreases from
18% to 7% as the size of intstances grows.

7. Conclusion

We introduced a simple procedure for the verification of
proofs of unsatisfiability for CNF formulas where a proof
is represented as a chronologically ordered set of conflict
clauses. Conflict clause proofs are complementary to
resolution graph proofs and should be used when the size
of the resolution graph proof grows too large. Experiments
show that conflict clause proofs can be generated even for
large real-life formulas and the verification of a conflict

clause proof can be completed in a reasonable time.

References

1. R.J.J.Bayardo, R.C. Schrag. Using CSP Look-Back

Techniques to Solve Real-World SAT Instances, in:
Proceeding of the Fourteenth National Conference on
Artificial Intelligence (AAAI’97), Providence,Rhode Island,
1997, pp. 203-208.

2. A. Biere et.al. Symbolic model checking using SAT
procedures instead of BDDs. Proceedings of Design
Automation Conference, DAC'99. -1999.

3. R.K.Brayton et. al. Logic Minimization Algorithms for VLSI
Synthesis. Kluwer Academic Publishers, -1984.

4. J.Burch, V.Singhal. Tight Integration of Combinational
Verification Methods. Proceedings of International. Conf.
on Computer-Aided Design.-1998.

5. M.Davis, G.Longemann, D.Loveland. A Machine program
for theorem proving. Communications of the ACM. -1962. -
V.5. -P.394-397.

6. O.Dubois, P.Andre, Y. Boufkhad, J.Carlier. SAT versus
UNSAT. In: Johnson and Trick, Second DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, 1996, pp.415-436.

7. A. Van Gelder: Extracting (easily) checkable proofs from a
satisfiability solver. In Proceedings of the 7-th International
Symposium on Artificial Intelligence and Mathematics,
January 2002.

8. E. Goldberg, M.Prasad. Using Sat for combinational
equivalence checking. Proceedings of Design, Automation
and Test in Europe Conference. –2001. -pp.114-121.

9. E.Goldberg,Y.Novikov. BerkMin:A fast and robust
SAT_solver. Proceedings of Design, Automation and Test in
Europe Conference, DATE-2002, pp.142-149.

10. J.W. Freeman. Improvements to propositional satisfiability
search algorithms. Ph.D. thesis, University of Pennsylvania,
Philadelphia , 1995.

11. T.Larrabee. Test pattern generation using Boolean
satisfiability. IEEE transactions on computer-aided design,
vol. 11, pp.4-15, January 1992.

12. K.McMillan. Private communication.
13. M.W.Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S.

Malik. Chaff: Engineering an Efficient SAT Solver. In:
Proceeding of the 38th Design Automation Conference
(DAC’01), 2001.

14. J.P.M.Silva, K.A.Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions of
Computers. -1999. -V. 48. -P. 506-521.

15. M.Velev. CMU benchmark suite. Available from
http://www.ece.cmu.edu/~mvelev.

16. H.Zhang. SATO: An efficient propositional prover.
Proceedings of the International Conference on Automated
Deduction. -July 1997. -P.272-275.

17. L.Zhang, C.F.Madigan, M.H.Moskewicz, S.Malik. Efficient
Conflict Driven Learning in a Boolean Satisfiability Solver.
International Conference on Computer-Aided Design
(ICCAD '01), November 2001, pp. 279-285.

18. http://www.ececs.uc.edu/sat2002/scripts/menu_choix2.php3
19. http://sat.inesc.pt/benchmarks/cnf/equiv-checking
20. http://www.mrg.dist.unige.it/star/sim/
21. http://www-cad.eecs.berkeley.edu/ ~kenmcmil

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

