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Abstract 

 
As SAT-algorithms become more and more complex, there 
is little chance of writing a SAT-solver that is free of bugs. 
So it is of great importance to be able to verify the 
information returned by a SAT-solver. If the CNF formula 
to be tested is satisfiable, solution verification is trivial and 
can be easily done by the user. However,  in the case of 
unsatisfiability, the user has to rely on the reputation of the 
SAT-solver. We describe an efficient procedure for 
checking the correctness of unsatisfiability proofs.  As a 
by-product, the proposed procedure finds an unsatisfiable 
core of the initial CNF formula. The efficiency of the 
proposed procedure was tested on a representative set of 
large “ real-life”  CNF formulas from the formal 
verification domain.  
 
1. Introduction 
 

Many problems such as ATPG [10], logic synthesis 
[3], equivalence checking [4,8], and bounded model 
checking [2] reduce to the satisfiability problem. In the last 
decade substantial progress has been made in the 
development of practical SAT algorithms [1,5,9,10, 
13,14,16].  As a result, SAT-solvers are  becoming 
commercially viable.  However, due to the growing 
complexity of the state-of-the art algorithms it is unlikely 
that  a SAT-solver will be free of bugs. Hence it is 
important to run an independent check of the information 
returned by a SAT-solver so that the latter can be used 
even if  it is buggy. 

When testing the satisfiability of a CNF formula a 
SAT-solver either 1) returns an assignment of values that 
satisfies all the clauses of the formula or 2) reports that 
such an assignment does not exist. In the first case, it is 
trivial to check whether the returned solution is correct.  To 
verify the second kind of an answer, one needs much more 
information about SAT-solver’s work.   

One way to verify a proof of unsatisfiability is to build 
a resolution directed acyclic graph (DAG) G [7,12]. We 
will refer to such a DAG as a resolution graph proof. The 
sources of G are assigned clauses of the initial  CNF 
formula. Each internal (i.e. different from a source) node v  

has two incoming edges going out of two (parent) nodes v1 
and v2. The proof verification procedure consists of gradual 
assigning clauses to the internal nodes of G. As soon as the 
two parent nodes v1 and v2 of node v are assigned clauses 
(denote them by C(v1) and  C(v2) respectively), the child 
clause  C(v) is produced by resolving  C(v1) and  C(v2). The 
proof specified by DAG G is correct if 1) for any parent 
nodes v1 and v2 clauses C(v1) and  C(v2) have the opposite 
literals of exactly one variable (and so they can be resolved 
in this variable); 2) A sink node of the DAG G will be 
eventually  assigned the empty clause. 

In [7] it is explained how a resolution graph can be 
built by a SAT-solver based on the DPLL procedure and 
the state-of-the-art techniques. The advantage of the 
approach is that the procedure of proof verification is very 
simple. However, there are at least two potential 
drawbacks. First, generation of a resolution proof may take 
a substantial rewriting of some parts of the SAT-solver. 
Second, the size of the resolution graph to be stored may 
get prohibitively large. Addressing the last issue is the 
main motivation  of the paper. 

We present a simple verification procedure that is, in a 
sense, complementary to building a resolution graph. This 
procedure can be applied to all state-of-the-art SAT-solvers 
based on  conflict clause recording, for example 
[1,9,13,14,16].  We used the proposed procedure to verify  
proofs obtained by our SAT-solver BerkMin  [9]. The idea 
of the verification procedure is to represent the proof as a 
chronologically ordered set of  the conflict clauses.  (Here, 
we assume that any observed conflict assignment was 
accompanied by recording a conflict clause.  In practice, as 
soon as the SAT-solver hits a conflict, the corresponding 
conflict clause is output to  disk.). We will refer to such a 
proof as a conflict clause proof. To verify a conflict clause 
proof one just checks  whether each conflict clause was 
deduced correctly.   

Let F* be a conflict clause proof i.e. the set of all 
deduced conflict clauses. To prove the correctness of a 
conflict clause C  we form the CNF formula G obtained by 
adding to the initial CNF F all the clauses of F*  deduced 
before C.  Then we falsify C by  making the assignment  of 
values A setting the literals of C to 0. The key point is that 
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if C was deduced “correctly”  then the Boolean Constraint 
Propagation (BCP) procedure triggered by A in G  will lead 
to a conflict. Obtaining such a conflict means that C is 
implied by G (and hence by F). If for all the deduced  
clauses of the proof their correctness has been established, 
then the whole proof is correct.  Otherwise, one can point 
to a clause of the proof whose deduction is questionable. 

Conflict clause proofs have the following advantages.  
First,  such proofs are, in general, shorter than resolution 
graph ones (see Section 5). Second, it takes only a slight 
modification of the SAT-solver, to generate a conflict 
clause proof. Besides, SAT-solver’s performance does not 
change much. In our experiments, outputting all the 
conflict clauses to disk took about 10% of the total runtime 
of the SAT-solver. A potential disadvantage of conflict 
clause proofs  is  that the proof verification procedure is 
more time consuming and a bit more complex than for 
resolution graph proofs. However, the BCP procedure (the 
only procedure one needs to implement to verify a conflict 
clause proof) is well established and it should not be a 
problem for a user to implement it. Besides, our 
experiments showed that  verification of a conflict clause 
proof can be done in a reasonable time. (Unfortunately, we 
could not directly compare our results  with  data on 
resolution graph proof verification because no 
experimental results have been ever reported on  resolution 
proofs to the best of our knowledge). 

In the procedure sketched above we have to verify the 
correctness of each conflict clause of F*. (The order in 
which clauses are checked does not matter.) At the same 
time, some conflict clauses may not contribute to the 
deduction of the empty clause and so checking their 
correctness is a waste of time.  This problem is easily 
solved by checking conflict clauses in the order that is 
reverse to chronological (i.e. we start with clauses deduced 
last). Then we can limit verification checks only to clauses 
that have been actually used in deducing the empty clause. 
This is done by marking the clauses of F*  that were used at 
least once in a BCP procedure invoked when verifying a 
conflict clause.  Initially, only the last two deduced unit 
clauses of F*  are marked.  If during verification one 
reaches a conflict clause C of F* that has not been marked, 
it can be skipped (because C has never been used in 
deducing the empty clause). 

In some applications the user may want to know what 
subset of clauses of the original CNF formula is 
responsible for its unsatisfiability.  The extraction of an 
unsatisfiable core of the formula can help to understand the 
“cause”  of unsatisfiability.  Such a core can be identified as 
a “by-product”  of the procedure above. The idea is that 
during BCP procedures one marks not only the used 
conflict clauses of  F* but also the used clauses of the 
original CNF formula. After completing proof verification, 
the subset of clauses of the initial formula F that turned out 
to be marked after completing proof verification forms an 
unsatisfiabile core of F.  

The paper is organized as follows. In Section 2 we 
introduce basic notions. Section 3 describes a conflict 
clause proof verification procedure. In Section 4 a more 
efficient version of  the procedure of  Section 3  is 
described that can also identify an unsatisfiable core of the 
initial formula.  Conflict clause and resolution graph proofs 
and their verification procedures are compared in Section 
5. In Section 6 experimental results are given. In Section  7 
we make some conclusions. 

 
2. Basic notions 

 
 Given a conjunctive normal form (CNF) F specified 

on a set of variables { x1,…,xn} , the satisfiability problem 
(SAT) is to satisfy (set to 1) all the disjunctions  of F  by 
some assignment of values to variables from { x1,…,xn} . If 
such an assignment does not exist, CNF F is said to be 
unsatisfiable. A disjunction of literals is also called a 
clause. A clause containing one literal is called unit. Two 
unit clauses consisting of the opposite literals of a variable 
are called a conflicting pair. The Boolean Constraint 
Propagation procedure (BCP) [5] is as follows. 

 
 Conflicting_pair, Assignments ← BCP(CNF F)             
         { While  (there is no conflicting pair and  
                 there   is  a unit clause l )  
              {Assignment = satisfy( l ); 
                Assignments = Assignments  ∪ Assignment 
                F= simplify( F, Assignment); 
               }  
          return(conflicting_pair(F),Assignments);         
          }  

 
The satisfy procedure returns the assignment satisfying 

the unit clause l. Such an assignment is called deduced. For 
instance, assignment x=0 is deduced from the unit clause   
~x.  The simplify procedure removes the clauses satisfied 
by Assignment from formula  F. For instance, if 
Assignment is  x=0, then all the clauses containing ~x are 
removed from F. Besides, literal x is removed from all the 
clauses of CNF F containing it. The situation when the 
BCP procedure produces a conflicting pair is called a 
conflict. The BCP(F) procedure returns either  the found 
conflicting pair or the set of assignments accumulated 
during the procedure. 

Note that in the implementation of the BCP procedure 
literals and clauses are not physically removed.  Instead, 
some variables are marked as assigned (and the assigned 
values are stored) and some clauses are marked as 
satisfied.  This  way one can easily restore the right CNF 
formula after undoing some assignments. To speed up the 
BCP procedure one can use the idea of watched literals 
[16], the description of which we omit. 

 Let R be a set of assignments. Each assignment from 
R specifies the literal which is set to 0  by this assignment. 
Denote by C(R) the disjunction of literals specified by R. 
(Obviously, clause C(R)  is falsified by assignment R.)  We 



will say that the clause C(R) encodes the assignment R. In 
its turn, the assignment R is said to specify the clause C(R). 

Denote by F|R  the CNF that is obtained from F by 
making the assignments from R  and removing all the 
satisfied clauses and all literals set to 0. (Henceforth, we 
assume that no clause of F is falsified by R.) If BCP(F|R) 
leads to a conflict due to appearance of a conflicting pair (l, 
~l) we will say that R is responsible for that conflict.   
Suppose that R is responsible for a conflict in CNF F. Then 
clause C(R) is called a conflict clause for F.  It can be 
shown that a conflict clause is implied by F (because it can 
be obtained by resolving clauses of F). Due to this property 
one can always add a conflict clause to the current CNF 
and this is exactly what  SAT-solvers based on conflict 
clause recording do. 

Proof of the unsatisfiability of a CNF performed by 
such SAT-solvers can be considered as a sequence of steps. 
At each step a conflict clause is added to the current CNF 
formula F (at the first step F is equal to the initial CNF 
formula). Once in a while, some clauses are removed from 
the current formula. The proof terminates if after obtaining 
a unit conflict clause (say clause ~x)  we prove that the unit 
clause x is also a conflict one. The pair of unit clauses ~x 
and x  is called the final conflicting pair (in contrast to a 
conflicting pair obtained in each BCP procedure leading to 
a conflict.) 

We consider a proof to be correct if each step of the 
proof is correct. That is, each clause C added to the current 
CNF F is indeed a conflict one. This means that BCP(F|R) 
where R  is the set of assignments encoded by C returns a 
conflicting pair.  

 
3. Conflict clause proof verification 

 
Let F be an unsatisfiable CNF formula and F* be the 

set of all deduced clauses.  For the sake of clarity, we will 
view  F*  as a chronologically ordered stack of clauses 
where the last (first) conflict clause is located at the top (at 
the bottom).  We assume that the two topmost clauses of 
F* form the final conflicting pair. The verification 
procedure is as follows. 

 
 bool Proof_verification1(CNF F, CNF F* )  {  
    { While(F*  is not empty)   
         { C = pop_clause_off ( F*  );  

                 R=assignments_encoded_by(  ); 
                  if (no_confl_pair== BCP(  (F∪ F* )|R) 
                       return proof_is_not_correct;  
                  }            

      return proof_is_correct;  
    }  
    
As it was mentioned before, if one checks the 

correctness of all the clauses of F*, the order in which 
clauses are processed does not matter. In the procedure 
above, clauses are verified in the order that is opposite to 
chronological (i.e. we start verification with the two 

clauses of the final conflicting pair).  The reason for such a 
choice will be explained in the next section.  

Note that in the procedure above, one runs BCP for  
(F∪F* )|R. On the other hand, at the point of obtaining the 
conflict clause C(R) (when testing the satisfiability of F) 
the current CNF was equal to F∪F′ where F′ ⊆ F*  because 
some conflict clauses may have been dropped.  However, if 
BCP((F∪F* )|R)  does not find a conflict, BCP((F∪F′ )|R) 
would not find a conflict either. So if the 
Proof_verification1 procedure returns 
proof_is_not_correct, the SAT-solver contains a bug. On 
the other hand, if the procedure returns proof_is_corre t it 
may validate a correct proof produced by a buggy SAT-
solver. (It is possible that BCP((F∪F* )|R) produces a 
conflict while       BCP((F∪ F′ )|R) did not and the conflict 
clause C(R) was deduced “by mistake” .) 

  
4.  Extraction of  unsatisfiable core  
 

In this section, we describe a more efficient proof 
verification procedure that  also extracts an unsatisfiable 
subset of clauses of the original formula as a “by-product”  
of verification. The idea is that some conflict clauses are 
“redundant”  from the viewpoint of the proof.  A proof of 
unsatisfiability F*  has to contain two conflict clauses (l, ~l) 
forming the final conflicting pair.  By redundancy of a 
conflict clause C we mean that no descendent of C has ever 
been used for deducing l and ~l.  Obviously, checking the 
correctness of deducing C is a waste of time.  

The identification of redundant conflict clauses can be 
done by modifying the Proof_verification1 procedure. 
The modification is that when checking the correctness of 
deducing a clause C of F*  one marks all the clauses that 
are involved in producing the conflict found by 
BCP((F∪F* )|R).  Initially, only the two clauses of F*  
forming the final conflicting pair (l, ~l) are marked. 

 
bool Proof_verfication2(CNF F, CNF F* )    

   { While(F*  is not empty)    
          { C = pop_clause_off ( F*  ); 
           if (C is not marked) 
               continue; 

                  R=assignments_encoded_by(  ); 
                  (Assgns, confl_pair) = BCP((F∪ F* )|R)   
                  if (confl_pair == ∅) 
                      return proof_is_not_correct; 
                  Conflict_analysis(Assgns,confl_pair,F ,F*); 
                   }  

   return proof_is_correct;   
    }  
    
In contrast to Proof_verification1, in the 

Proof_verification2 procedure described above,  clause C 
is checked for correctness only if it has been marked.  
Since the clauses of F* are processed in the 
chronologically reverse order, the fact that a clause C is not 
marked means that none of its descendents has contributed 



to deducing l or ~l.  The marking is done by the 
Conflict_analysis procedure.  This procedure just marks 
all the clauses of F and F*  that are responsible for the 
conflict produced by BCP((F∪ F* )|R). This is done by 
processing deduced assignments in the reverse order 
starting  with the conflicting pair of literals produced by 
BCP. Suppose for example that x and ~x is the conflicting 
pair produced by the BCP procedure and those literals 
where deduced  from clauses C’= x+v+~w and C” =~x+y+z.  
Then  C’  and C”  get marked.  After that, for each of the 
literals of the set S={ v,~w, y,z}  the following procedure is 
applied. If a literal p ∈ S  is in the clause C whose 
deduction is tested for correctness,   then nothing happens. 
However, if p was deduced from a clause of F or F* , that 
clause gets marked. The same procedure repeats 
recursively for the literals of each new marked clause.  

Note that the  Conflict_analysis procedure described 
above marks clauses of both  F* and the original formula 
F. If a clause of F  is left unmarked after applying the 
Proof_verification2 procedure it means that this clause 
has never been employed in deducing a “useful”  clause of 
F*. So it can be removed from F without affecting the  
unsatisfiability of the latter. Hence the set of marked 
clauses of F forms an unsatisfiable core.  

 
5.  Resolution graph  proof verification 
versus conflict clause proof verification 
 

In this section, we compare conflict clause and 
resolution graph proofs  in more detail. Let G be a 
resolution graph. A source node of  G is labeled with a 
clause of the initial formula. Each internal node of G has 
two parent nodes. Verification check consists of  assigning 
clauses to internal nodes of  G. As soon as the two parent 
nodes are assigned clauses, the clause corresponding to the 
child node can be produced by resolving the two parent 
clauses.  The proof is correct if the resolution of each pair 
of parent clauses  produces a non-tautologous (i.e. not 
having opposite literals of the same variable) clause and 
the empty clause is deduced at a sink node of G . 

Let F* be the set of conflict clauses produced by a 
SAT-solver when proving that F is unsatisfiable.  Let G be 
the resolution graph corresponding to the same run of the 
SAT-solver that produced the proof F*. In the general case, 
for each node of G one needs to store at least three 
numbers (the label of the node and the labels of the 
parents). However in the case of SAT-solvers based on 
conflict clause recording, it is sufficient to store only one 
label per node using a special representation of the 
resolution graph [12]. 

In the worst case, the size of a resolution graph is 
O(|F* |2) (because for deducing each of the F* clauses one 
may need to resolve O(F*) clauses.) The size of a conflict 
clause proof is O(n� |F* |).  A substantial difference between 
the two kinds of proofs is that the size of a conflict clause 
proof does not change during proof verification. On the 

other hand, when verifying a resolution graph proof, one 
has to assign clauses to internal nodes of the graph. So, in a 
sense,  the size of a conflict clause proof gives a lower 
bound on the maximum size the corresponding resolution 
graph proof  may grow to during proof verification. (Each 
conflict clause will be eventually assigned to an internal 
node of the resolution graph.) 

To analyze the factors affecting the size of resolution 
graph and conflict clause proofs one needs to introduce the 
notion of   “ local”  and “global”  conflict clauses.  
Informally, a conflict clause C is local if it is obtained by 
resolving a small number of clauses.  In the corresponding 
resolution, graph the deduction of the clause C is 
represented by a small set A of internal nodes.  On the 
other hand,  in a conflict clause proof, one has to store the 
conflict clause itself. In the case C is long, storing its 
literals may turn out to be more space consuming than 
storing the nodes of A. (Of course during proof 
verification, C has to be deduced and assigned to a node of 
the resolution graph.). Informally, a conflict clause C is 
called global if it is obtained by resolving many clauses of 
the current CNF formula. In this case, especially if C is a 
short clause,  storing the literals of C in a conflict clause 
proof is much more space efficient than storing  the nodes 
specifying the deduction of C in a resolution graph proof.   

One way to deduce a global conflict clause is to 
represent it in terms of literals of decision variables. In this 
case one keeps resolving the clause falsified in the conflict 
and its descendents until a clause containing only literals of 
decision variables is obtained. (More detailed description 
of different conflict driven learning schemes can be found 
in  [17]).  Such a way of constructing a conflict clause  is 
used in the SAT-solver Relsat [1].  The reason why  
conflict clauses specified in terms of decision variables are 
global is that to obtain such a clause one has to resolve 
many clauses of the current formula.  On the other hand, 
the SAT-solver Chaff [13] deduces local conflict clauses 
because it uses the 1 UIP learning scheme (in terms of 
paper [17]). In this case a conflict clause usually contains a 
lot of literals of deduced variables and is typically obtained 
by a small number of resolutions. 

It is not hard to see that conflict clause and resolution 
graph proofs  are complementary from the viewpoint of 
size.  If a SAT-solver proved the unsatisfiability of a 
formula  deducing only local  conflict clauses it makes 
sense to represent the obtained proof as a resolution graph. 
However, if  a substantial number of  deduced clauses are 
global, then representing the proof as a set of conflict 
clauses is the best (and  perhaps the only) choice. 
 
6. Experimental results 

 
In the experiments we used  our SAT-solver BerkMin 

[9]. The experiments were carried out on a PC with clock 
frequency of 500 MHz and 640 Mbytes of memory running 
Windows.  The objective of experiments was a) to estimate 



the practicality of the proposed approach; b) to identify 
unsatisfiable cores of some known benchmarks; c) to show 
that resolution graph proofs may grow very large. BerkMin 
is well suited for proving the third point. The reason is that  
once in a while BerkMin deduces clauses in terms of 
decision variables  (i.e. “global”  clauses).   This is a new 
feature of BerkMin not described in [9]. We found out that 
for some instances, combining the deduction of local and 
global clauses gives a noticeable speed-up. 

In the implementation of Proof_verfication2 we used 
an optimized version of the BCP procedure that employs 
the machinery of watched literals [16]. A conflict clause 
proof F*   contains a large number of long clauses, which is 
exactly the case when using watched literals is especially  
effective. Of course,  implementing the technique of 
watched literals makes the verification program more 
complex and so more prone to bugs. On the other hand, the 
machinery of watched literals has been well studied in the  
state-of-the-art SAT-solvers [9,13,16]. Besides, the code of 
a verification program is “stable”  (in contrast to SAT-
solvers whose code keeps changing).  
 

Name All 
conflict 
clauses 

Tested 
 
 
 

% 

Number of 
clauses in  
the initial 
CNF 

Unsa-
tisfi- 
able       
core 

% 
 

verification of pipelined microprocessors [15] 
5pipe 20,137 44.6 195,452 21.5 
5pipe_1 43,597 56.2 187,545 36.7 
5pipe_5 34,209 50.3 240,892 30.4 
6pipe 213,923 47.0 394,739 48.9 
6pipe_6 110,161 37.5 545,612 39.6 
7pipe 365,245 34.2 751,118 44.7 
9vliw 88,975 49.1 179,492 51.1 

verification of PicoJava IITM
  microprocessor [21] 

exmp72 30,036 75.5 148,536 31.7 
exmp73 54,014 61.0 219,972 38.7 
exmp74 46,557 63.1 141,432 43.3 
exmp75 29,761 72.0 284,446 22.6 

bounded model checking [20] 
Barrel7 44,024 83.0 13,765 66.1 
Barrel8 123,712 94.1 20,083 66.7 
Barrel9 46,423 56.1 36,606 70.7 
Longmult12 113,698 89.7 18,645 71.2 
Longmult13 111,421 88.2 20,487 72.7 
Longmult14 117,215 88.0 22,389 72.6 
Longmult15 110,074 90.3 24,351 71.1 

equivalence checking [19] 
c3540 15,433 67.2 9,326 98.6 
c5315 16,132 75.0 15,024 95.3 
c7572 22,307 77.9 20,423 97.3 

bounded model checking, SAT-2002 [18] 
w10_45 4,285 84.34 51,803 26.3 
w10_60 14,489 78.65 83,538 33.0 
w10_70 32,847 81.44 103,556 41.5 

        
          Table 1. Unsatisfiable core extraction 

 

In  Tables 1,2,3 we give experimental results on hard 
instances from the verification domain. Table 1 gives the 
data on unsatisfiable core extraction. Name of the instances 
are given in the first column.  The “All conflict clauses”  
column gives the cardinality of the set F*. The “Tested”  
column shows the percentage of clauses of F*  that got 
marked  and hence were tested for correctness. On the one 
hand, these numbers show that  proof_verfication2 is, 
indeed, more efficient than  proof_verification1. On the 
other hand, the percentage of tested clauses allows one to 
estimate “ the coefficient of efficiency”  of the  used SAT-
solver that is the share of deduced conflict clauses actually 
used in the proof of unsatisfiability. The “Unsatisfiable 
core”  column shows the percentage of clauses of the initial 
CNF formula that formed the found unsatisfiable core.  

 
Name Verifi-

cation 
time 

 
(sec.) 

Resolu-
tion graph 
size 
(in thou-
sands of 
nodes) 

Confl. 
clause 
proof 
size  
(in 
thou-
sands of 
lit.) 

(Confl. 
clause 
proof 
size)/ 
(res. 
proof 
size) 

% 
5pipe 25.7 1,128 1,234 109.5 
5pipe_1 110.8 10,592 2,747 25.9 
5pipe_5 69.6 6,319 2,575 40.8 
6pipe 747.6 105,506 24,947 23.7 
6pipe_6 446.2 55,406 9,797 17.7 
7pipe 1,902. 435,726 60,312 13.8 
9vliw 433.4 8,756 5,877 67.1 
exmp72 340.5 6,875 1,768 25.7 
exmp73 536.6 9,705 5,039 51.9 
exmp74 307.3 5,828 2,973 51.0 
exmp75 519.3 4,394 1,237 28.2 
Barrel7 138.0 3,915 4,691 119.8 
Barrel8 1579.2 21,955 26,844 122.3 
Barrel9 63.9 2,919 2,959 101.4 
Longmult12 1366.1 30,138 8,487 28.2 
Longmult13 1306.3 32,124 8,939 27.8 
Longmult14 1417.6 35,734 9,592 26.8 
Longmult15 1251.7 26,945 8,346 31.0 
c3540 16.5 623 724 116.2 
c5315 7.0 441 416 94.4 
c7572 17.3 761 726 95.4 
w10_45 20.5 532 89 16.7 
w10_60 104.4 1,844 440 23.9 
w10_70 354.6 6,723 1,303 19.4 

                
               Table 2. Proof verification 

 
Table 2 gives data about  proof verification. The 

“Verification time”  column shows the time taken by 
Proof_verification2. (Typically, verifying a proof that a 
formula F was unsatisfiabile took 2-3 times the time one 
needed to generate the proof i.e. to  test the satisfiability of 
F.)  The “Resolution graph size”  column shows  a lower 
bound on the number of nodes in the resolution graph (in 
thousands). For instance, the size of the graph for  5pipe 
would be greater or equal to 1 million and 128 thousand 



nodes.  The reason  for computing only a lower bound of 
the resolution graph size is that some conflict clauses are 
built by our SAT-solver using an involved procedure.  To 
avoid writing too much extra code, if a conflict clause was 
obtained using that procedure, we computed only a lower 
bound on the number of resolutions one has to apply to 
produce the clause. (For the rest of the conflict clauses we 
computed the number of resolutions exactly. So we believe 
the lower bounds shown in Table2 are close to the real 
sizes.) The “Confl. clause proof size”  column contains the 
total number of literals in the clauses of F* (in thousands).  
The last column gives the ratio (per cent) of conflict clause 
and resolution proof sizes. 

It is not hard to see that with the exception of a few 
instances conflict clause proofs are smaller than resolution 
graph ones. (In Table 2 we estimate only the initial size of 
a resolution graph. That is we do not take into account that, 
as it was mentioned in Section 5,  the size of the resolution 
proof grows during proof verification. ) 
 

Name Resol. proof 
size 
(in thou-
sands of 
nodes) 

Confl. cl. 
proof size 
(in thou-
sands of 
literals) 

Ra- 
tio 
% 

bounded model checking, SAT-2002 [18] 
fifo8_200 379,992 71,971 18 
fifo8_300 987,840 118,132 11 
fifo8_400 4,581,450 335,752 7 

 
  Table 3. Growth of resolution  proof size 

 
The size of the largest proof of Table 2 (formula 7pipe) 

was 257 Mbyte and so we were able to verify the proof on 
the computer with 640 Mbytes of memory. On the other 
hand, the corresponding resolution graph proof contained 
435 million nodes and so the resolution graph would take 
more than 2 Gbytes of  memory (assuming that on  average 
one needs  5 digits to label a node of the resolution graph).  
Instances of the pipe family show that the gap between 
conflict clause proofs and  resolution graph ones may 
widen as the size of instances grows. One more example of 
this trend is shown in Table 3 where the ratio of sizes of 
conflict clause and resolution graph proofs decreases from 
18% to  7% as the size of intstances grows. 
 
7. Conclusion 
 
We introduced a  simple procedure for the verification of  
proofs of unsatisfiability for CNF formulas where  a proof 
is represented as a chronologically ordered set of conflict 
clauses. Conflict clause proofs are complementary to 
resolution graph proofs and should be used when the size 
of the resolution graph proof grows too large. Experiments 
show that conflict clause proofs can be generated even for 
large real-life formulas and the verification of a conflict 

clause proof can be completed in a reasonable time. 
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