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ABSTRACT 
As the use of SAT solvers as core engines in EDA applications 
grows, it becomes increasingly important to validate their 
correctness. In this paper, we describe the implementation of an 
independent resolution-based checking procedure that can check 
the validity of unsatisfiable claims produced by the SAT solver 
zchaff. We examine the practical implementation issues of such 
a checker and describe two implementations with different pros 
and cons. Experimental results show low overhead for the 
checking process. Our checker can work with many other 
modern SAT solvers with minor modifications, and it can 
provide information for debugging when checking fails. Finally 
we describe additional results that can be obtained by the 
validation process and briefly discuss their applications. 
  
1. Introduction and Previous Work 

Given a propositional logic formula, the question whether it is 
satisfiable (i.e. exists a variable assignment that makes the 
formula evaluates to true) is called the Boolean Satisfiability 
problem, or SAT. SAT is a well-known NP-Complete problem. 
Many practical EDA problems such as test pattern generation, 
combinational equivalence checking, microprocessor 
verification [1], bounded model checking [2] and FPGA routing 
[3] can be formulated as SAT instances and solved by SAT 
solvers.  

Recent advances in SAT solving algorithms (learning and 
non-chronological backtracking e.g. [4], random restart [5]) and 
efficient implementation techniques (e.g. fast implication engine 
[6]) have dramatically improved the efficiency and capacity of 
state-of-the-art SAT solving algorithms. SAT solvers have 
quickly become a viable deduction engine for industrial strength 
applications (e.g. [7]). As these applications are often mission 
critical, it is very important to ensure that the results provided 
by their SAT engines are correct.  

Typically, a SAT solver takes a formula as input and 
produces an output that claims the formula to be either 
satisfiable or unsatisfiable. A formula is satisfiable if there 
exists a variable assignment that makes the formula evaluate to 
true; and is unsatisfiable if no such assignment exists. When the 
solver claims satisfiability it is usually possible for the solver to 
provide the satisfying solution with very little overhead. An 
independent program can take this and verify that it indeed 
satisfies the formula. The NP-Completeness of SAT guarantees 
that such a check takes polynomial time in the size of the SAT 
instance – in fact linear time for Conjunctive Normal Form 
(CNF) representations used in practice. On the other hand, when 
a SAT solver claims unsatisfiability, it is usually not trivial for 
an independent checker to verify the correctness of that claim.  

It can be shown that to prove a formula in CNF to be 
unsatisfiable, we only need to show that an empty clause can be 
generated from a sequence of resolutions among the original 
clauses. The classic Davis-Putnam (DP) [8] algorithm is based 
on this. However, this algorithm is hard to use in practice due to 
prohibitive space requirements, and over the years has given 
way to search algorithms based on the Davis-Logemann-
Loveland (DLL) algorithm [9]. In this paper, we describe how a 
checker for a DLL based solver can use the resolution based 
proof, even though the solver itself is not resolution based in the 
DP sense. During the solution process, the SAT solver produces 
a trace. The checker can take the trace together with the original 
CNF formula as inputs and verify that there indeed exists a 
resolution sequence to generate an empty clause from the 
original clauses. If the solver claims that the instance is 
unsatisfiable but the checker cannot construct an empty clause, 
then a bug exists in the solver.  

The ability to produce checkable proofs in automated 
reasoning tools is not new. Some theorem provers (e.g. [10]) 
and model checkers (e.g. [11]) have this ability. Verifying SAT 
solvers has also been addressed before. In [12], the author 
mentions that one of the requirements for Stålmarck’s SAT 
solver is the ability to provide a trace that can be independently 
checked. However, no details are provided for the checking 
procedure. That SAT solver is based on proprietary algorithms, 
so the checking procedure may not be applicable to 
contemporary DLL based solvers. In [13], the authors provide a 
SAT procedure that can produce easily checkable proofs. 
However, it is not obvious that the method employed can be 
easily adapted to current state-of-the-art solvers. Moreover, in 
that work an independent checker is not addressed, thus no 
evaluation of the actual feasibility of checking is provided. To 
the best of our knowledge, the checker described in this paper is 
the first for this purpose and that can easily check the 
correctness of many existing state-of-the-art SAT solvers with 
little modification.  

The checker imposes some requirements on the solver for the 
generated trace to be sufficient. In particular, we require that the 
solver be DLL based, and use assertion for backtracking. These 
requirements will be discussed in later sections. Many widely 
used state-of-the-art SAT solvers such as GRASP [4], Chaff [6], 
Berkmin [14] satisfy the requirements and can be easily 
modified to produce the trace to be checked. In this paper, we 
focus our discussion and experimentation on the SAT solver 
zchaff, which is an implementation of the Chaff [6] algorithm, 
but the same discussion is applicable to other similar SAT 
solvers.  
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2. The Boolean SAT solver Chaff 
In this section, we describe the algorithms used by Chaff and 

prove its correctness. This forms the foundation of our checking 
procedure described in the next sections.  

2.1 The Algorithm 
Like most SAT solvers, Chaff requires that the input formula 

be in Conjunctive Normal Form (CNF).  To make a CNF 
formula satisfiable, each clause should be satisfied. If a clause 
contains only one free (i.e. not assigned a value) literal and all 
the other literals are assigned the value false, then the free literal 
must be assigned the value true. Such clauses are called unit 
clauses and the free literal is called the unit literal. Since a unit 
literal is forced to be true, we say that it is implied. The unit 
clause is called the antecedent of the variable corresponding to 
the implied literal. The process of iteratively assigning all unit 
literals with the value true till no unit clause left is called 
Boolean Constraint Propagation (BCP). 

The top-level algorithm of Chaff is shown in Figure 1. It 
begins with all variables being unassigned. Function 
preprocess()makes some deductions before any decision is 
made. The preprocessor will perform BCP, and if during BCP a 
clause has all its literals assigned the value false, we say that a 
conflict occurred and this clause is said to be conflicting. In that 
case, the preprocessor returns with value CONFLICT. 
Otherwise, the main loop begins. The solver chooses a free 
variable to branch on by assigning it a value. This is called a 
decision and is performed by decide_next_branch() in 
Figure 1. In Chaff (as well as most solvers based on DLL), each 
decision has a decision level associated with it, with the first 
decision at level 1. The variables that are assigned during 
preprocessing (before any decision) will have decision level 0. 
After a decision variable is assigned a value, some clauses may 
become unit and function deduce() performs BCP. Variables 
that are assigned after a branch during BCP assume the same 
decision level as the decision variable. An important invariant is 
that a non-free, non-decision variable will always have an 
antecedent, and its decision level will always equal the highest 
decision level of the other variables in its antecedent clause. If 
after BCP no conflict occurs, then the solver will choose another 
free variable to branch on and increment the decision level. 
Function decide_next_branch() will return true if it is 
possible to find a variable to branch on. Otherwise, all variables 
must have been assigned a value. As no conflicting clause 
exists, the formula must be satisfiable.  

If there exists a conflicting clause during BCP, the function 
analyze_conflict() is called to analyze the reason for the 
conflict, perform learning, and find out the decision level to 

backtrack to. If conflict analysis reports that the solver needs to 
backtrack to decision level -1 to resolve the conflict, it implies 
that the formula has conflicts even without any branching, so 
the solver will claim the problem to be unsatisfiable.  

Conflict analysis and determining the backtracking level is 
crucial to the completeness of the solver, so we will discuss it 
here in a little more detail. The conflict analysis is based on an 
operation called resolution. Two clauses can be resolved to 
generate a resolvent clause as long as there is one and only one 
variable that appears in both clauses in different phases. The 
resolvent clause takes the disjunction of the remaining literals in 
both clauses. An example of resolution is: 

 (x + y) (y’ + z)⇒(x+z) 
with the third clause being the resolvent of the first two. The 
resolvent is redundant with respect to the original clauses. 
Therefore, we can generate clauses from original clause 
database by resolution and add them back to the original clause 
database without changing the satisfiability of the formula.  

The pseudo-code for function analyze_conflict() is 
given in Figure 2. At the beginning, the function checks if the 
current decision level is already 0. In that case, the function will 
return -1, declaring that there is no way to resolve the conflict 
and the formula is unsatisfiable. Otherwise, iteratively, the 
procedure resolves the conflicting clause with the antecedent 
clause of a variable in it. Function choose_literal() will 
choose a literal in reverse chronological order, meaning that it 
will choose the literal in the clause that is assigned last. 
Function resolve(cl1,cl2,var) will return a clause that 
has all the literals appearing in cl1 and cl2 except for the literals 
corresponding to var. Notice that the conflicting clause has all 
literals evaluating to false, and the antecedent clause has all but 
one literal evaluating to false and the remaining one literal 
evaluates to true (since it is a unit clause). Therefore, one and 
only one variable appears in both clauses with different phases 
and the two clauses can be resolved. The resolvent clause is still 
a conflicting clause because all its literals evaluate to false, and 
the resolution process can continue iteratively.  

The iterative resolution will stop if the resulting clause meets 
a stop criterion. The stop criterion is that the resulting clause be 
an asserting clause. An asserting clause is a clause with all false 
literals, among them only one literal is at the current decision 
level and all the others are assigned at decision levels less than 
current. After backtrack to a level less than the current one, the 
clause will become a unit clause and this literal will be forced to 
assume the opposite value, thus bringing the search to a new 
space. This flipped variable will assume the highest decision 
level of the rest of the literals in the asserting clause. We call 
this decision level the asserting level. Function backtrack() 

 

Fig. 1. Top-level algorithm of SAT solver Chaff 

if (preprocess()==CONFLICT) 
  return UNSATISFIABLE; 
while(1) { 
  if (decide_next_branch()) {      //Branching 
    while(deduce()==CONFLICT) {    //Deducing 
      blevel = analyze_conflict();//Learning 
      if (blevel < 0) 
        return UNSATISFIABLE; 
      else back_track(blevel); //Backtracking 
    } 
  } 
  else                //no free variables left 
    return SATISFIABLE; 
}

 

 Fig. 2. Generating Learned Clause by Resolution 

analyze_conflict(){ 
  if (current_decision_level()==0)  
    return -1; 
  cl = find_conflicting_clause(); 
  while (!stop_criterion_met(cl)) { 
    lit = choose_literal(cl); 
    var = variable_of_literal( lit ); 
    ante = antecedent( var ); 
    cl = resolve(cl, ante, var); 
  } 
  add_clause_to_database(cl); 
  back_dl = clause_asserting_level(cl); 
  return back_dl; 
} 



will undo all the variable assignments between the current 
decision level and the asserting level and reduce the current 
decision level to the asserting level. We call such a backtracking 
scheme assertion based backtracking. As we will see in the 
following sections, this backtracking scheme is key to the 
checker we describe in this paper.  

The resulting clauses from the resolution can be optionally 
added to the clause database. This mechanism is called learning. 
Learning is not required for the correctness or completeness of 
the algorithm. Experiments show that learning can often help 
prune future search space and reduce solution time, therefore it 
is always employed in modern SAT solvers (e.g. [4] [6] [14]). 
Learned clauses can also be deleted in the future if necessary 
(e.g. [14]). Regardless of whether the solver employs learning or 
not, the clauses that are antecedents of currently assigned 
variables should always be kept by the solver because they may 
be used in the future resolution process.  
2.2 The Correctness of the Chaff Algorithm 

The algorithm is correct if given enough run time the solver 
can always determine the correct satisfiability of the input 
formula. Our proof uses the following Lemma. 
Lemma. A Boolean propositional formula in CNF is 
unsatisfiable if it is possible to generate an empty clause by 
resolution from the original clauses. 
Proof. Clauses generated from resolution are redundant and can 
be added back to the original clause database. If a CNF formula 
has an empty clause in it, then it is unsatisfiable.   ■ 
In addition we use the following three propositions. 
Proposition 1. Given enough run time, the algorithm described 
in Section 2.1 will always terminate. 
Proof. We use k(l) to denote the number of variables assigned at 
decision level l in a certain state during the search. Suppose the 
input formula contains n variables. Because at least one variable 
is assigned at each decision level except decision level 0, ∀l, 0 ≤ 
l ≤ n, k(l) ≤ n; and Σl k(l) ≤n. Consider function f:  

∑
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The function is constructed such that for two sets of different 
variable assignment states α and β of the same propositional 
formula, the value fα > fβ if and only if  
∃d, 0≤d<n, kα(d) >kβ(d); For any l such that 0≤l<d,  kα(l)= kβ(l) 

Essentially this function biases the sum towards the number 
of variables assigned at lower decision levels. The value of f 
monotonically increases as the search progresses. This is 
obvious when no conflict exists, because the solver will keep 
assigning variables at the highest decision level. When a conflict 
occurs, assertion based backtracking moves an assigned variable 
at the current decision level to the asserting level, which is 
smaller than the current decision level. Therefore, the value of f 
still increases compared with its value before conflict analysis.   

Because function f can only take a finite number of different 
values for a given SAT instance, the algorithm is guaranteed to 
terminate after sufficient run time.   ■ 

Notice that in our proof for termination, we do not require the 
solver to keep all learned clauses; the value of function f will 
monotonically increase regardless whether any learned clauses 
are added or deleted. Therefore, contrary to common belief, 
deleting learned clauses cannot cause the solving process to loop 
indefinitely. On the other hand, with restarts [5] it is actually 
possible for the solver to loop indefinitely because after each 

restart, all the variables are unassigned, and the value of f 
decreases. Therefore, it is important for the solver to increase 
the restart period as the solving progresses to make sure that the 
algorithm will terminate.  
Proposition 2. If the algorithm described in Section 2.1 returns 
SATISFIABLE, then the formula is satisfiable. 
Proof. If all variables are assigned a value and no conflict 
exists, the formula is obviously satisfied.                  ■ 
Proposition 3. If the algorithm described in Section 2.1 returns 
UNSATISFIABLE, then the formula is unsatisfiable. 
Proof. We prove this proposition using the Lemma. We will 
show how to construct an empty clause from the original clauses 
by resolution.  

When the solver returns UNSATISFIABLE, the last 
analyze_conflict() function must have encountered a 
conflicting clause while the current decision level is 0. Starting 
from that clause, we iteratively do a resolution similar to the 
while loop shown in Figure 2. The only difference is that the 
stop criterion is changed so that the iteration will stop only if the 
resulting clause is an empty clause. Because there is no decision 
variable at decision level 0, every assigned variable must have 
an antecedent. Since function choose_literal() chooses 
literals in reverse chronological order, no literal can be chosen 
twice in the iteration and the process will stop after at most n 
calls to resolve(). At that moment, an empty clause is 
generated.  All the clauses involved in the resolution process are 
either original clauses or learned clauses that are generated by 
resolution from the original clauses; therefore by the Lemma, 
the original formula is indeed unsatisfiable.              ■      
                                               
3. A Resolution Based Checker 

In Section 2, we prove that the algorithm of Chaff is sound 
and complete. However, a SAT solver is a complex piece of 
code, and consequently the implementation may have bugs in it. 
In fact, during the recent SAT 2002 solver competition [15], 
quite a few submitted SAT solvers were found to be buggy. 
Thus, a rigorous checker is needed to validate the solvers. In this 
section, we describe the checker that is derived from the results 
of last section. The checker can prove a formula to be 
unsatisfiable when a SAT solver claims so.  
3.1 Producing the Trace for the Checker 

For the checker to be able to verify that a SAT instance is 
indeed unsatisfiable, it only needs to verify that there exists a 
sequence of resolution among the original clauses that can 
generate an empty clause. To achieve this, we need to modify 
the SAT solver to generate a trace that can be used for the 
resolution checking process of the checker. We assign each 
clause encountered in the solution process a unique ID. The 
original clauses have IDs that are agreed to by both the solver 
and the checker (e.g. the order of appearance in the formula). 

The trace is produced by modifying the solver in the 
following ways: 
1. Each time a learned clause is generated, the clause’s ID is 

recorded, together with the clauses that are involved in 
generating this clause. In Figure 2, these include the clause 
returned by find_conflicting_clause(), as well 
as all the clauses that correspond to parameter ante in the 
calls to resolve(). We will call these clauses the 
resolve sources of the generated clause.  

2. When analyze_conflict() is called and the current 
decision level is 0, the solver will record the IDs of the 



clauses that are conflicting at that time before returning 
value -1. We call these clauses the final conflicting clauses. 
In the proof process, we only need one of these clauses to 
construct a proof, so it is sufficient to record only one ID.  

3. When analyze_conflict() returns with value -1, 
before returning with value UNSATISFIABLE, the solver 
will record all the variables that are assigned at decision 
level 0 together with their values and the IDs of their 
antecedent clauses in the trace.  

These modifications total less than twenty lines of C++ code, 
and should be very easy for other SAT solvers that are based on 
the same assertion based backtracking technique such as 
GRASP [4] and BerkMin [14].  

The checker will take the trace together with the original 
formula and try to generate an empty clause in a manner similar 
to the description of the proof for Proposition 3 in Section 2.2. 
However, initially the checker does not have the actual literals 
of the learned clauses. Instead, from the trace file the checker 
only knows the resolve sources’ IDs that are used to generate 
each of these learned clauses. Therefore, to do the resolution, 
the checker needs to use resolution to produce the needed 
learned clauses first. Essentially the checker creates and 
traverses the resolution graph, which is a directed acyclic-graph 
that describes the sequence of resolutions starting from the 
original clauses at the leaves and ending with the empty clause 
at the root. There are two different approaches for this traversal: 
depth first (Section 3.2) and breadth first (Section 3.3). 
3.2 The Depth First Approach 

The depth first approach for building the learned clauses 
begins from any one of the final conflicting clauses. It builds the 
needed clauses by resolution recursively as described in Figure 
3 in function check_depth_first().  

If a clause is needed, it will be built on the fly using function 
recursive_build(). The checking for the checker is 
built in at each of the functions it employs. For example, when 
resolve(cl, cl1) is called, the function should check 
whether there is one and only one variable appearing in both 

clauses with different phases; when a variable’s antecedent 
clause is needed, the function should check whether the clause is 
really the antecedent of the variable (i.e. whether it is a unit 
clause and whether the unit literal corresponds to the variable). 
If such checks fail, the solver (or its trace generation) is buggy. 
The checker can also provide as much information as possible 
about the failure to help debug the solver.  

The advantage of the depth-first approach is that the checker 
builds only the clauses that are involved in the empty clause 
generation process. Also, as a by-product, the checker can tell 
what clauses are needed for this proof of unsatisfiability. This 
gives us a minimal set of clauses in the original propositional 
formula that are needed for this particular proof. There are 
several applications that need small unsatisfiable subsets of an 
unsatisfiable instance (e.g. [16]), where this can be used. 

The disadvantage of the depth-first approach is that in order 
to make the recursive function efficient, the checker needs to 
read in the entire trace file into main memory. This can be quite 
large and possibly not fit in memory. Therefore, for some long 
proofs, the checker may not be able to complete the checking.  
3.3 The Breadth-First Approach 

A breadth-first approach starting from the leaves can avoid 
keeping the entire trace file in memory as the depth-first solver 
does. The checker traverses the learned clauses in the order that 
they are generated in the solving process, which is the same 
order as they appear in the trace file. When generating the final 
empty clause, all its resolution sources should have all been 
constructed and available in memory.  

However, we will still have the memory blowup problem 
because the checker will have all the learned clauses in memory 
before the final empty clause construction begins. It is well 
known that storing all the learned clauses in memory is often not 
feasible. Note however that because of the breadth first nature, a 
clause can be deleted once its use as a resolve source is 
complete. A first pass through the trace can determine the 
number of times a clause is used as a resolve source. During the 
resolution process, the checker tracks the number of times the 
clause has been used as a resolve source and when its use is 
complete, the clause can be deleted safely from main memory.  

In the actual implementation, the clause’s total use count is 
stored in a temporary file because there is a possibility that even 
keeping just one counter for each learned clause in main 
memory is still not feasible. Due to the same reason, we may 
also need to break the first pass into several passes so that we 
can count the number of usages of the clauses in one range at a 
time. The checker is guaranteed to be able to check any proof 
produced by a SAT solver without danger of running out of 
memory because during the resolution process, the checker will 
never keep more clauses in the memory than the SAT solver did 
when producing the trace. Because the SAT solver did not run 
out of memory (it finished and claimed the instance to be 
unsatisfiable), the checker will not run out of memory during the 
checking process either; assuming we run both programs with 
the same amount of memory.  

 
4. Experimental Results 

In this section we report some experimental results. The 
experiments are carried out on a PIII 1133Mhz machine with 1G 
memory. We set the memory limit to 800MB for the checkers. 
The benchmarks we use are some relatively large unsatisfiable 
instances that are commonly used for SAT solver 

  Fig. 3. A depth-first  approach for the checker

check_depth_first() 
{ 
  id = get_one_final_conf_clause_id(); 
  cl = recursive_build(id); 
  while(!is_empty_clause(cl)){ 
    lit = choose_literal(cl); 
    var = variable_of_literal(lit); 
    ante_id = antecedent_id(var); 
    ante_cl = recursive_build(ante_id); 
    cl = resolve(cl,ante_cl); 
  } 
  if (error_exist()) 
    printf(“Check Failed”); 
  else  
    printf(“Check Succeeded”); 
} 
recursive_build(cl_id) { 
  if (is_built(cl_id)) 
    return actual_clause(cl_id); 
  id = get_first_resolve_source(cl_id); 
  cl = recursive_build(id); 
  id = get_next_resolve_source(cl_id); 
  do { 
    cl1 = recursive_build(id); 
    cl = resolve(cl,cl1); 
    id = get_next_resolve_source(cl_id); 
  }while(id != NULL); 
  associate_clause_with_id(cl, cl_id); 
} 



benchmarking. They include instances generated from EDA 
applications such as microprocessor verification [1] (9vliw, 
2dlx, 5pipe, 6pipe, 7pipe), bounded model checking [2] 
(longmult, barrel), FPGA routing [3] (too_largefs3w8v262) 
combinational equivalence checking (c7225, c5135) as well as a 
benchmark from AI planning community (bw_large).  

We modified the SAT solver zchaff to produce the trace files 
that are needed for the checker. In all experiments zchaff uses 
default parameters. Table 1 shows some statistics of the 
benchmarks and also of the solution process, arranged in 
increasing order of the run times. It also shows the run times of 
the solver with trace generating turned off (i.e. exactly the same 
as the original zchaff) and turned on. From Table 1 we find that 
the overhead for producing the trace file (1.7% to 12%) is not 
significant. Also, we notice that the overhead percentage tends 
to be small for difficult instances.  

We show the statistics for the checkers to check the validity 
of the proofs in Table 2. The column “File Size” shows the 
actual size of the trace files that are generated by the SAT 
solver. For the depth-first approach, the column “Num. Cls 
Built” are the number of clauses that have its literals constructed 
by function recursive_build() in Figure 3. The column 
“Built%” shows the ratio of the clauses that are built to the total 
number of learned clauses, which is listed under column “Num. 
Learned Clauses” in Table 1. As we can see from Table 2, we 
only need to construct between 19% to 90% learned clauses to 
check the proof. Moreover, we see that the instances that take a 
long time to finish often need a smaller percentage of clauses 
built to check the proofs. A notable exception to this is 
longmult12, which is derived from a multiplier. The original 
circuit contains many xor gates. It is well known that xor gates 
often require long proofs by resolution. For both the depth-first 
and breadth-first approaches, we show the actual run time to 
check the proof as well as the peak memory usage. Comparing 

these two approaches, we find that in all test cases, the depth-
first approach is faster by a factor of around 2. However, it 
requires much more memory than the breadth-first approach and 
fails on the two hardest instances because it runs out of memory. 
In contrast, even though the breadth-first approach is slower 
compared with the depth-first approach, it is able to finish all 
benchmarks with a relatively small memory footprint.  

From Table 2 we find that the actual time needed to check a 
proof is always significantly smaller compared with the time 
needed to perform the actual proof. We also find that the trace 
files produced by the SAT solvers are quite large for hard 
benchmarks. We want to point out that the format of the trace 
file we use is not very space-efficient in order to make the trace 
human readable. It is quite easy to modify the format to 
emphasize space efficiency and get a 2-3x compaction (e.g. use 
binary encoding instead of ASCII). By doing so, we also expect 
the efficiency of the checker to improve as profiling shows that 
a significant amount of run time for the checker is spent on 
parsing and translating the trace files.  

In Table 3, we show the number of original clauses and 
variables that are involved in the actual proof by the depth-first 
approach. The “original” columns show the statistics of the 
original benchmark. The variable numbers may be a little 
different from the ones reported in Table 1. Table 1 shows the 
variable numbers declared by the header of the CNF file, but 
some of the variables are actually not used in the formula. The 
“First iteration” column shows the number of original clauses 
and variables needed for the checker to prove the 
unsatisfiability. Essentially these numbers show that not all the 
clauses in the original CNF formula are needed for it to be 
unsatisfiable. We can use these involved clauses as a new SAT 
instance. The new instance should still be unsatisfiable. We can 
feed it back to the SAT solver and iteratively perform the depth-
first checking again to determine the number of clauses needed 

 

Depth First Breath First 
Instance Name Trace Size (KB) Num. Cls Built%  Runtime(s) Peak Mem (KB) Runtime(s)  Peak Mem(KB)

2dlx_cc_mc_ex_bp_f 1261 8105 84.83% 0.84 7860 1.30 4652
bw_large.d 1367 5513 77.21% 1.48 8720 2.44 9920
c5315 11337 27516 54.71% 2.80 18108 5.19 3732
too_largefs3w8v262 8866 56193 61.28% 3.79 26752 5.47 6164
c7552 24327 56603 56.33% 6.16 41420 11.44 5976
5pipe_5_ooo 17466 24910 31.23% 6.60 50044 13.29 17936
barrel9 19656 34624 28.60% 4.85 31456 10.46 6752
longmult12 102397 118615 90.10% 25.87 154288 41.22 7488
9vliw_bp_mc 39538 77296 30.24% 12.78 126752 33.81 17724
6pipe_6_ooo 151858 89695 19.41% 38.52 249468 102.67 40136
6pipe 493655 * * * * 301.98 40248
7pipe 736053 * * * * 645.33 62620

Table 2. Statistics for two different checking strategies  (* Indicates Memory Out) 

Instance Name 
Num. 

Variables 
Orig. Num. 

Clauses 
Num. Learned 

Clauses 
Runtime 

Trace Off (s) 
Runtime 

Trace On(s) 
Trace Gen. 
Overhead 

2dlx_cc_mc_ex_bp_f 4583 41704 9554 3.3 3.7 11.89% 
bw_large.d 5886 122412 7140 5.9 6.5 9.12% 
c5315 5399 15024 50298 22.0 24.3 10.45% 
too_largefs3w8v262 2946 50216 91691 40.6 43.8 7.68% 
c7552 7652 20423 100487 64.4 70.0 8.76% 
5pipe_5_ooo 10113 240892 79770 118.8 124.2 4.51% 
barrel9 8903 36606 121071 238.2 249.0 4.51% 
longmult12 5974 18645 131649 296.7 315.1 6.17% 
9vliw_bp_mc 20093 179492 255603 376.0 392.0 4.26% 
6pipe_6_ooo 17064 545612 462135 1252.4 1294.8 3.39% 
6pipe 15800 394739 1327373 4106.7 4220.6 2.77% 
7pipe 23910 751118 2613927 13672.8 13902.4 1.68% 

 Table 1. Statistics of zchaff with trace generation turned on and off  



for an unsatisfiability proof for it. After several iterations, the 
number may reach a fixed point, so that all the clauses are 
needed for the proof. We measured up to 30 iterations of such a 
process, and the data is reported under the column “30 iterations 
(or reach fixed point)”. If the “iteration” number is smaller than 
30, it means that after a certain number of iterations, all clauses 
are needed in the proof.  

The process described above can be used to determine a small 
sub-formula (an unsatisfiable core) of a CNF formula that is 
unsatisfiable. This unsatisfiable core is useful in some 
applications such as debugging software models in the Alloy 
system [17], FPGA routing [2] and AI planning. For example, in 
AI planning, a satisfiable solution corresponds to a feasible 
scheduling. The unsatisfiable core gives the information about 
why no scheduling is feasible. In FPGA routing, an unsatisfiable 
instances means that the channels are un-routable. The 
unsatisfiable core can help the designers concentrate on the 
reasons (constraints) that are responsible for the routing failure. 
Notice from Table 3, the instances from both AI planning 
(bw_large.d) and FPGA routing (too_largefs3w8v262) have 
small unsatisfiable cores compared with the original formulas.  

 
5. Conclusions and Future Work 

In this paper, we describe a checker for Boolean Satisfiability 
solvers. When a SAT solver proves that a SAT instance is 
unsatisfiable, the checker can take a trace produced by the SAT 
solver and check whether the proof is actually valid. The 
checker uses resolution to generate an empty clause from the 
original clause database with the information provided by the 
trace. We discuss two approaches for implementing the checker. 
Experiments show that both approaches have their relative 
merits. In all cases, the time needed to check a proof is much 
less than the SAT solving time.  

It is desirable to have a checker that has the advantage of both 
the depth-first and breadth-first approaches without suffering 
from their respective shortcomings. Potentially a depth-first 
algorithm for the graph on disk [18] can provide this.   
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Original First Iteration 30 Iterations (or reach fixed point) Benchmark 
Instance Num Cls Num. Vars Num. Cls Num. Vars Num. Cls Num. Vars Iteration 

2dlx_cc_mc_ex_bp_f 41704 4524 11169 3145 8038 3070 26
bw_large.d 122412 5886 8151 3107 1364 769 30
c5315 15024 5399 14336 5399 14289 5399 3
too_largefs3w8v262 50216 2946 10060 2946 4473 645 30
c7552 20423 7651 19912 7651 19798 7651 9
5pipe_5_ooo 240892 10113 57515 7494 41499 7312 30
barrel9 36606 8903 23870 8604 19238 8543 30
longmult12 18645 5974 10727 4532 9524 4252 7
9vliw_bp_mc 179492 19148 66458 16737 36840 16099 30
6pipe_6_ooo 545612 17064 180559 12975 109369 12308 30

Table. 3. Number of  Clauses and Variables involved in the proof 
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