
Area Fill Generation With Inherent Data Volume Reduction
�

Yu Chen†, Andrew B. Kahng‡, Gabriel Robins§ Alexander Zelikovsky¶ and Yuhong Zheng£

†Computer Science Department, UCLA, Los Angeles, CA 90095-1596
‡CSE and ECE Departments, UCSD, La Jolla, CA 92093-0114

§Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
¶Department of Computer Science, Georgia State University, Atlanta, GA 30303

£Computer Science and Engineering Department, UCSD, La Jolla, CA 92093-0114

yuchen@cs.ucla.edu, � abk, yzheng � @cs.ucsd.edu, robins@cs.virginia.edu, alexz@cs.gsu.edu

Abstract

Control of variability and performance in the back end of the VLSI
manufacturing line has become extremely difficult with the intro-
duction of new materials such as copper and low-k dielectrics. Uni-
formity of chemical-mechanical planarization (CMP) requires the
insertion of area fill features into the layout, in order to smoothen
the variation of feature densities across the die and thus improve
manufacturability. Because the size of area fill features is very
small compared with the large empty layout areas that must be
filled, the filling process can increase the size of a GDSII file by
an order of magnitude or more. Data compression is therefore a
significant issue in successful fill synthesis. In this paper, we in-
troduce compressed fill strategies which exploit the GDSII array
reference record (AREF) construct. We apply greedy and linear
programming based optimization techniques, and obtain practical
compressed filling solutions.

1 Introduction

Chemical-mechanical planarization (CMP) and other manufactur-
ing steps in nanometer-scale VLSI processes have varying effects
on device and interconnect features, depending on the local char-
acteristics of the layout. To improve manufacturability and perfor-
mance predictability, foundry rules require that a layout be made
uniform with respect to prescribed density criteria, through the in-
sertion of area fill geometries. Currently, area fill is added by physi-
cal verification tools (such as Mentor Graphics Calibre) in the form
of a flat “target layer” [9] that is eventually merged with the actual
layout geometries at the mask data preparation step of the manu-
facturing handoff. Interconnect layers above M1 have no natural
hierarchy that can be exploited, which results in a flat filling. Ac-
cording to the 2001 International Technology Roadmap for Semi-
conductors, the fractured (MEBES format) layout data volume for
a single critical layer will reach hundreds of gigabytes during the
transition between 130nm and 90nm technologies [2]. To alleviate
file transfer times, and to accommodate future regimes of maskless
lithography (e.g., direct-write requires transfer of terabytes of lay-
out data per second), layout data must be compressed as much as
possible (required compression factors have been estimated at 20 �
or more [6]).

�
This research was supported by a grant from Cadence Design Systems, Inc., by the

MARCO/DARPA Gigascale Silicon Research Center, by a Packard Foundation Fel-
lowship, by a National Science Foundation Young Investigator Award (MIP-9457412)
by NSF grant CCR-9988331 and by the State of Georgia’s Yamacraw Initiative.

In today’s standard practice, the basic area fill feature is the
same across the entire layout (the most common fill shape is square
or rectangular). Moreover, filling patterns exhibit a high degree of
spatial regularity across the layout [8]. Area fill feature dimensions
scale with the underlying technology, since microloading and other
mechanisms of process variability are exacerbated by large varia-
tions in feature dimensions. Thus, the number of fill geometries per
layer is expected to scale with the number of non-feature geome-
tries, i.e., at approximately 2 � per technology node (ignoring the
impact of reticle enhancement techniques such as OPC). To achieve
the density requirements, the filling process tends to increase the
size of a GDSII file by an order of magnitude, due to the small size
of the area fill features relative to the large empty layout areas that
must be filled. Higher data volume leads to increased read/write
times and prevents leverage of hierarchical data processing, among
other concerns. Thus, fill data compression becomes an important
issue in successful fill synthesis.

Previous efforts in fill data compression used off-the-shelf data
compression techniques including the Joint Bi-level Image Pro-
cessing Group (JBIG), Ziv-Lempel(LZ77) and ZIP. A data process-
ing system architecture and three compression algorithms (JBIG,
LZ77, 2D-LZ) were studied in [6] for a direct-write maskless
lithography system, and an interesting alternative compression is
suggested in [7]. However, it is not possible to represent such com-
pression directly inside the standard GDSII data stream format,
and such techniques are therefore of limited use for manufactur-
ers. Ueki et al. in [12] proposed a data compaction algorithm for
mask data processing in vector scan electron beam writing systems,
where ‘array’ and ‘cell’ constructs are used to represent the data.

In this paper we explore compression possibilities inherent in
the GDSII format itself. There are two types of GDSII constructs
which allow compression: Structure REFerence record (SREF) and
Array REFerence record (AREF). The SREF construct enables the
hierarchical representation of data, e.g., using macros. A more effi-
cient way to represent spatially regular configurations is the AREF
construct, which is defined mainly by the following six parame-
ters: x- and y-coordinates of the left-bottom corner of an array, the
horizontal and vertical periods (or steps) at which a given feature
(e.g., a filling geometry) is replicated in the array, and the num-
ber of columns and rows in the array. It is also possible to spec-
ify additionald optional parameters such as transformation records
STRANS, MAG, and ANGLE, which specify the orientation of the
instances. Clearly, the AREF construct can compress a flat area fill
representation by a factor proportional to the number of the area fill
features. Therefore, using larger AREFs in area fill representation
achieves better compression.

1530-1591/03 $17.00 2003 IEEE

X

Y
w/rW

n

Windows

Tile

Figure 1: The fixed r-dissection regime, with r � 3; the n-by-n layout is
partitioned by r2 distinct overlapping dissections with window size w � w.

This paper makes the following contributions:

� formulation of new problems for fill generation and compres-
sion using the GDSII AREF construct;

� new linear programming formulations for the above objec-
tives with several practical variations;

� description of a greedy method to determine all maximal
AREFs which satisfy the fill data requirement, as well as
modifications that speed up the greedy algorithm; and

� experimental comparisons of different methods for com-
pressed fill generation, confirming the advantages of our com-
pressible fill strategies.

In the next section we briefly describe existing fill generation
practices. In Section 3 we propose several problem formulations
for compressed fill generation. Sections 4 and 5 outline linear pro-
gramming based approaches and greedy algorithms, respectively,
for these formulations. Our computational experience with the pro-
posed methods is described in Section 6.

2 Fill Generation in Fixed-Dissection Regimes

All existing methods for the synthesis of area fill are based on
discretization: the layout is partitioned into tiles, and filling con-
straints or objectives (e.g., minimizing the maximum density vari-
ation) are enforced for square windows each consisting of r � r
tiles. Thus, to practically control layout density in arbitrary win-
dows, density bounds are enforced only in a finite set of windows.
More precisely, both foundry rules and EDA physical verifica-
tion and layout tools attempt to enforce density bounds within r2

overlapping fixed dissections, where r determines the “phase shift”
w
�
r by which the dissections are offset from each other. The re-

sulting fixed r-dissection (see Figure 1) partitions the n � n lay-
out into tiles Ti j, then covers the layout by w � w-windows Wi j ,
i � j � 1 ��������� nr

w 	 1, such that each window Wi j consists of r2 tiles
Tkl , k � i ��������� i
 r 	 1, l � j ��������� j
 r 	 1.

The fill generation problem in the fixed-dissection regime seeks
a number of area fill features to be inserted into each tile. Two main
filling objectives have been addressed in the recent literature:

� the Min-Var Objective, where the variation in window den-
sity (i.e., maximum window density minus minimum window
density) is minimized while the window density does not ex-
ceed the given upper bound U ; and

� the Min-Fill Objective, where the number of inserted area fill
features is minimized while the density of any window re-
mains in the given range � L � U � .

Methods for area fill synthesis in the fixed-dissection context,
include:

� Linear Programming (LP) methods based on rounding the so-
lution to a relaxation of the corresponding integer linear pro-
gram formulations [8, 10, 11];

� Greedy and Monte-Carlo (MC) methods which iteratively
find a best or random tile for the next filling geometry to be
added into the layout [5, 4, 11];

� Iterated Greedy (IGreedy) and Iterated Monte-Carlo (IMC)
methods that improve the solution quality by atternating be-
tween phases of area fill insertion and deletion while optimiz-
ing the density variation [4].

3 The Compressed Fill Generation Problem

We represent each tile as an array of sites, which are possible posi-
tions for inserting area fill features. Some sites are forbidden since
they are occupied by existing features. In the discussion below we
use the term AREF to denote GDSII array reference records that
covers only free sites (i.e., sites that are not occupied by any origi-
nal layout features).

The Compressed Fill Generation Problem (CFGP): Given a de-
sign rule-correct layout consisting of m � n tiles, and the site arrays
for each tile, create the minimum number of AREFs such that the
window density variation is within the given bounds � L � U � .

We address the CFGP formulation by first solving the fill gen-
eration problem and then compressing the area fill. Let Fi j be the
number of area fill features for tile � i � j � , computed using one of the
methods described above.

The Fill Compression Problem: Given a design rule-correct lay-
out consisting of m � n tiles Ti j, the site arrays for each tile, and fill
requirement Fi j for each tile, create the minimum number of AREFs
such that each tile Ti j contains exactly Fi j area fill features.

While solving the Min-Var and Min-Fill fill generation prob-
lems, we can obtain a feasible range for the number of area fill
features in each tile, rather a single requirement Fi j. Below we give
the corresponding optimization formulation.

The Ranged Fill Compression Problem: Given a design rule-
correct layout consisting of m � n tiles, and the site arrays for each
tile, create the minimum number of AREFs such that each tile Ti j
contains a number of area fill features in the range � LBi j � UBi j � .

4 Linear Programming Based Methods

Integer linear programming (ILP) approaches for the Fill Compres-
sion problem seek to minimize the number of AREFs for the given
number of area fill features, while obeying the constraints which
prescribe the exact number of area fill features to be inserted into
each tile. We use the following definitions:

� Si j pq � site in position � p � q � in a tile, where the tile itself is
in position � i � j � in the overall layout. Every empty site is a
possible position for a fill feature.

� Aα � feasible AREF in the layout, where α consists of the
following eight parameters: starting site coordinate � i j � pq � ,
width w, height h, horizontal step x, and vertical step y (see
Figure 2).

Grid

Dummy features

Horizontal Step (x) = 2

H
eight = 5

(0, 0)

Width = 5

V
ertical Step (y) = 4

Figure 2: Illustration of AREF ai � j;0 � 0;5 � 5;2 � 4. in tile (i � j)

4.1 Single-Tile Integer Linear Program

To insert the exact number of area fill features into each tile, a
straightforward method for fill compression is to consider the prob-
lem independently in each tile. We call this single-tile compression.

For tile ti j, we define the variables

spq �
�

1 Si j pq is covered by some AREF;
0 otherwise; (1)

aα �
�

1 AREF Aα is chosen;
0 otherwise; (2)

We then seek the minimum number of AREFs in the slack sites
of the tile ti j. The total size of these AREFs must be equal to the
given number of area fill features. The corresponding ILP is as
follows.

Minimize:
∑

all feasible AREFs
aα (3)

Subject to:

Fi j �
k � 1

∑
p � 0

l � 1

∑
q � 0

spq (4)

spq � aα if spq is covered by aα (5)

spq � ∑
all AREFs covering spq

aα (6)

spq � 0 if Si j pq is occupied by original features (7)

� Constraints (4) imply that the total number of covered slack
sites is equal to the number of area fill features.

� Constraints (5) imply that once an AREF is chosen, all sites
covered by it will be filled.

� Constraints (6) imply that if no AREF which covers site Si j pq
is chosen, the site Si j pq can not be filled.

� Constraints (7) imply that we cannot fill any site Si j pq which
is already covered by an original layout feature.

Constraints (5) construct an inequality for each site covered by each
AREF. However, we can replace these with the following to signif-
icantly decrease the number of constraints:

npq � spq � ∑
all AREFs covering spq

aα (8)

where npq is the number of AREFs which cover site Si j pq in tile
ti j , and ∑aα is the sum of all AREF variables which cover the site
Si j pq . To decrease the ILP problem size, we determine all valid
AREFs and then construct the ILP formulations based only on these
valid AREFs. We call an AREF valid if all sites in it are empty, and
its indices have reasonable physical meaning (e.g., ai j;0 0;2 1;0 0 in
tile (i � j) is invalid since there is no such AREF with width = 2 and
horizontal step 0).

4.2 Multiple-Tile Integer Linear Program

Ideally, we should seek AREFs for the fill features with respect to
the entire layout, rather than for each tile independently. However,
the large number of tiles and possible AREFs across the entire lay-
out make such a global strategy intractable. Instead, we propose
a multiple-tile compression approach, which offers a tradeoff be-
tween solution quality and runtime, as follows.

� Partition the layout into groups consisting of A � B tiles.
� Solve each group separately.

Thus, instead of finding non-overlapping AREFs in one tile,
we seek AREFs for the empty spaces of neighboring A � B tiles.
The difference between the Multiple-Tile ILP formulation and the
Single-Tile ILP formulation is that the prescribed number of fill
features for each tile must be simultaneously achieved. I.e., we
replace the constraints (4) with:

Fi j �	� i
 1 �� k � 1

∑
p � � i � k � j
 1 ��� l � 1

∑
q � � j � B sp � q � (9)

i � 0 ��������� A 	 1; j � 1 ������� � B 	 1;

Here, constraints (9) imply that the total number of covered slack
sites in each tile is equal to its given number of fill features.

4.3 Ranged Fill Compression

As noted in [4], excess fill features can be deleted without affecting
the density variation to meet the Min-Fill objective. In other words,
we can exploit the allowed range of fill features for each tile to relax
the LP constraints in order to decrease the LP solver’s runtime. The
constraints (4) and (9) can thus be respectively rewritten as:

LBi j � k � 1

∑
p � 0

l � 1

∑
q � 0

spq � UBi j (10)

LBi j � � i
 1 ��� k � 1

∑
p � � i � k � j
 1 �� l � 1

∑
q � � j � B sp � q � � UBi j (11)

i � 0 ��������� A 	 1; j � 1 ������� � B 	 1;

Here, UBi j is the upper bound for the number of fill features for
tile � i � j � which can, e.g., be taken from the normal Monte-Carlo
fill result in [3], and LBi j is the lower bound for the number of fill
features for tile � i � j � which can, e.g., be taken from the result after
the deletion phase in [4].

4.4 Rounded Relaxation Integer Linear Programming

If we round the fractional relaxation of the above ILP’s, then a so-
lution may not be feasible since the number of fill features may
be unequal to the Fi j’s. Therefore, after rounding we use a greedy
algorithm (see next section) to add or remove AREFs in order to
exactly add Fi j fill features into each tile Ti j .

5 Greedy Compression Approaches

We propose greedy heuristics to determine a minimum number of
AREFs for the required number of area fill features in each tile.
A strict greedy algorithm with impractical run time, and followed
by two faster practical variants, are described for the multiple-
tile ranged fill generation using either overlapping AREFs or non-
overlapping AREFs. Single-tile and fixed fill are special cases of
multiple-tile and ranged fill, respectively.

A Strict Greedy Method

The strict greedy heuristic repeatedly adds an AREF that fills
the maximum number of unfilled free sites in multiple tiles, yet
does not overfill any tile, and it iterates until the filling require-
ments in all of the tiles are satisfied. In the ranged filling context,
the fill requirements in each tile are changed from a fixed Fi j to a
certain range � Li j � Ui j � , where Ui j is used to control overfill, and
Li j is used to satisfy the minimum fill requirements. The status of
all the valid AREFs is checked and updated at each iteration, re-
sulting in a time complexity of O � n4 � . Our implementation of this
algorithm provides good solutions, but is impractical due to its high
time complexity. Letting Li j � Ui j � Fi j in Figure 3 will solve the
fixed fill problem, and using a single tile as a multiple-tile will solve
the single tile filling problem.

Strict Greedy Algorithm:
1. Get site set G of M � N multiple-tile consisting of tiles Ti j,

i � 1 � M � j � 1 � N;
2. For each valid AREF Aα in the multiple-tile Do

Initialize Sα (number of unfilled free sites in Aα), and
Sα � i j (number of unfilled free sites in Aα in each tile

�
i � j �);

3. Pick the AREF A �α, where S �α � max � Sα � Sα � i j � Ui j � ;
4. Update the fill requirements:

Ui j � Ui j � S �α � i j , Li j � Li j � S �α � i j ;
5. Update G, Sα and Sα � i j of each AREF;
6. If Li j � 0 in each single tile

�
i � j � Then exit Else go to Step 3;

Figure 3: Strict Greedy Algorithm for multiple-tile ranged fill generation.

Greedy Speedup Approach 1

We propose speedups of the basic greedy approach that offer
tradeoffs between compression performance and run time. Our first
greedy speedup heuristic finds the largest AREFs originating from
each free site, and picks an AREF that fills the maximum num-
ber of unfilled free sites but does not overfill the tiles (if such an
AREF exists). Otherwise, it selects the maximum AREF from all
the largest AREFs, and finds one of its sub-AREFs which does not
overfill the tiles. This process is iterated until all the tile filling re-
quirements are satisfied. Note that the solution is generated from
all the largest AREFs (or their sub-AREFs) originating from each
free site, instead of all the valid AREFs as in the Strict Greedy algo-
rithm. For the Greedy Speedup approach 1, the sets of the largest
AREFs originating from the free sites are different for the single
tile option and the multiple tile option, and due to runtime con-
siderations our heuristics (Step 3) will not necessarily choose the

best sub-AREF. Thus, we cannot guarantee better behavior with
the multiple tile option than with the single tile option. For exam-
ple, for test case T2 and s � 500 or 250 in Table 2, the results of
Greedy Speedup approach 1 with the multiple tile option are worse
than those with the single tile option in terms of both #AREF count
as well as run time. The time complexity of the algorithm is thus
reduced to O � n3 � .

Greedy Speedup Approach 1:
1. Get site set G of M � N multiple-tile consisting of tiles Ti j ,

i � 1 	
	
	 M � j � 1 	
	
	 N;
2. For the largest AREF Aα originated from each free site Do

Initialize Sα (number of unfilled free sites in Aα), and
Sα � i j (number of unfilled free sites in Aα in each tile

�
i � j �);

3. Pick the AREF that fills the maximum number of unfilled free
sites A �α, where S �α � max � Sα � Sα � i j � Ui j � If one exists;
Else select the AREF A �α where S �α � max � Sα � , and pick

its sub-AREF A �α by doubling x or y until S �α � i j � Ui j ;
4. Update the fill requirements:

Ui j � Ui j � S �α � i j , Li j � Li j � S �α � i j ;
5. Update G, Sα and Sα � i j of each largest AREF;
6. If Li j � 0 in every single tile

�
i � j � Then exit Else go to Step 3;

Figure 4: Greedy Speedup Approach 1.

Greedy Speedup Approach 2

An even more efficient approach can be realized by picking ac-
ceptable AREFs originating from each free site, instead of maxi-
mum AREFs. An acceptable AREF is an AREF that fills the max-
imum number of unfilled free sites but does not overfill the tiles
among all the AREFs, originating from the same free site, whose
sizes are smaller than K � L. Our second greedy speedup heuristic
repeatedly adds an acceptable AREF originating from each free site
and iterates until the tile filling requirements are satisfied. The time
complexity of the algorithm is thus reduced to O � KLn2 � . More-
over, the algorithm is very efficient on actual benchmarks, where
K � L �� n and using an AREF of size K � L yields adequate com-
pression.

Greedy Speedup Approach 2:
1. Get site set G of M � N multiple-tile consisting of tiles Ti j ,

i � 1 	
	
	 M � j � 1 	
	
	 N;
2. G � � G;
3. For each free site in G � in the scan order Do
4. Calculate Sα (number of unfilled free sites in Aα) of the

AREFs originating from each free site in G, where
Sα � i j � Ui j, w � Kx, and h � Ly (Sα � i j : number of
unfilled free sites in Aα in each tile

�
i � j �)

5. Pick the AREF A �α, where S �α = max � Sα � ;
6. Update the fill requirements:

Ui j � Ui j � S �α � i j, Li j � Li j � S �α � i j ;
7. Update G;
8. If Li j � 0 in every single tile

�
i � j � then Stop;

Figure 5: Greedy Speedup Approach 2.

6 Computational Experience

In the above formulations, the resulting AREFs may overlap with
each other. This means that some area fill features will be described
multiple times in a GDSII file. The need for a non-overlapping
version of this formulation arises from practical concerns and our
experimental data. To determine a minimum number of non-
overlapping AREFs for the slack sites of the tile ti j , the constraints
(6) may be modified as follows:

spq � ∑
all AREFs covering spq

ast wh xy � 1 (12)

All of our experiments were performed using part of a metal
layer extracted from an industry standard-cell layout (Table 1). Our
experimental testbed integrates GDSII Stream input and internally-
developed geometric processing engines, coded in C++ under So-
laris 2.8. We use CPLEX version 7.0 as the linear programming
solver. All runtimes are in CPU seconds on a 300 MHz Sun Ultra-
10 with 1 GB of RAM.

Table 2 compares the data volumes from uncompressed fill re-
sults against compressed fill results (due to the infeasibility of run-
ning the LP solver on large test cases, only compression results
from the Greedy Speedup-1 and Greedy Speedup-2 approaches are
reported here). As shown in the table, the data volume increase
due to insertion of area fill features becomes significant when the
fill feature sizes are small (e.g., more than 100 MB for the single
layer T2 when s � 250). The Greedy approach can achieve very
large compression ratios for the resulting GDSII files, especially
when the fill features are small. For example, in testcase T3, the
fill data volumes are reduced by about 30 times from 73.8 MB to
2.5 MB when the fill feature size is decreased by 6 times from 1500
to 250. Furthermore, the run times of the Greedy approaches make
them feasible in practice. The tradeoff between run time and solu-
tion quality is also apparent from Table 2 by comparing the Single-
tile results with the Multiple-tile results. We can achieve a smaller
number of AREFs by using the Multiple-tile approach, although it
requires longer run times. As expected, the Greedy Speedup-2 ap-
proach is much faster than the Greedy Speedup-1 approach, with
only a small degradation in solution quality.

Table 3 compares several fill compression methods proposed
in this paper: the ILP method, the Greedy Speedup-1 method,
and the Greedy Speedup-2 method. Since the run times of ILP
methods make them infeasible for multiple-tile fill compression,
we only report results for single-tile fill compression. Also, since
the LP+Greedy method affects the fill quality, we do not detail
its results here. We observe improvements in terms of the num-
ber of AREFs as well as run times for the ranged fill-compression
approaches. The experiments also indicate that the results of the
Greedy method are very close to those of the optimal ILP method,
yet offer significant improvements in the run times (i.e., a decrease
from several hours to less than one second).

7 Conclusions and Future Research

We introduced new compressed fill strategies which exploit the
GDSII array reference record (AREF) construct in order to signif-
icantly reduce GDSII data volumes in filled layouts. We applied
greedy and linear programming based optimization techniques, and
obtained practical compressed filling solutions on industry layouts.
Future work entails improving the compression ratios and scala-
bility (capacity and runtime) of our algorithms. We also seek to
exploit SREF constructs in GDSII (as well as potential extensions
to the Stream format that is currently being considered by indus-
try consortia), and the new Standard Layout Format (SLF) recently
proposed for replacing the GDSII format. Finally, the problem of
compressible fill generation when there is an underlying layout hi-
erarchy (yet with context-dependent filling), or for specific mask
writing and inspection tool sets, is of considerable interest.

Testcase T1 T2 T3 T4 T5 T6
layout size 819,200 819,200 819,200 125,000 112,000 112,000
rectangles 32,258 142,585 78,293 49,506 76,423 133,201

Table 1: Parameters of three industry test cases.

References

[1] D. Boning, B. Lee, T. Tugbawa, and T. Park, “Models for
Pattern Dependencies: Capturing Effects in Oxide, STI, and
Copper CMP”, Semicon/West Tech. Symp.: CMP Tech. for
ULSI Manuf., July 2001.

[2] P. Buck (Dupont Photomasks), personal communication, In-
ternational Sematech Mask-EDA Workshop, July 2001.

[3] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “New
Monte-Carlo Algorithms for Layout Density Control”, Proc.
ASP-DAC, 2000, pp. 523-528.

[4] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Prac-
tical Iterated Fill Synthesis for CMP Uniformity”, Proc.
ACM/IEEE Design Automation Conf., Los Angeles, June
2000, pp. 671-674.

[5] Y. Chen, A. B. Kahng, G. Robins and A. Zelikovsky, “Hierar-
chical Dummy Fill for Process Uniformity”, Proc. ASP-DAC,
Jan. 2001, pp.139-144.

[6] V. Dai and A. Zakhor, “Lossless Layout Compression for
Maskless Lithography Systems”, Proc. Emerging Litho-
graphic Technologies IV, Santa Clara, February 2000, SPIE
Volume 3997, pp. 467-477.

[7] R. Ellis, A. B. Kahng, Y. Zheng, “JBIG Compression Algo-
rithms for Dummy Fill VLSI Layout Data”, technical report
#CS2002-0709, UCSD CSE Department, June 2002.

[8] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Ze-
likovsky, “Filling Algorithms and Analyses for Layout Den-
sity Control”, IEEE Trans. Computer-Aided Design 18(4)
(1999), pp. 445-462.

[9] F.M. Schellenberg, L. Capodieci and B. Socha, “Adoption
of OPC and the Impact on Design and Layout”, Proc.
ACM/IEEE Design Automation Conf., Las Vegas, June 2001,
pp. 89-92.

[10] R. Tian, D. Wong, and R. Boone, “Model-Based Dummy
Feature Placement for Oxide Chemical Mechanical Polish-
ing Manufacturability”, Proc. ACM/IEEE 2Design Automa-
tion Conf., June 2000, pp. 667-670.

[11] R. Tian, X. Tang and D. F. Wong, “Dummy feature place-
ment for chemical-mechanical polishing uniformity in a shal-
low trench isolation process ”, Proc. ACM/IEEE International
Symposium on Physical Design, April 2001, pp. 118-123.

[12] S. Ueki, I. Ashida, and H. Kawahira, “Effective data com-
paction algorithm for vector scan EB writing system”, 20th
Annual BACUS Symposium on Photomask Technology, Mon-
terey, CA, Sept. 2000, pp. 589-600.

Ranged Single-Tile Ranged Multiple-Tile
Testcase Uncomp GS-2 GS-1 GS-2 GS-1

T/W/r/ s Data(K) Data CPU Data CPU Data CPU Data CPU
T1/80K/4 1500 1538 1036 (1.48 �) 0.23 1016 (1.51 �) 3.07 1004 (1.53 �) 0.26 1001 (1.54 �) 8.87
T1/80K/4 1000 2303 1043 (2.20 �) 0.60 1013 (2.27 �) 17.10 1010 (2.28 �) 0.73 993 (2.32 �) 57.14
T1/80K/4 500 6156 1062 (5.80 �) 3.27 1016 (6.06 �) 357.36 1035 (5.95 �) 4.47 1008 (6.10 �) 1329.84
T1/80K/4 250 22256 1099 (20.25 �) 20.75 1016 (21.90 �) 11976.27 1061 (20.98 �) 31.64 1027 (21.67 �) 29081.66

T2/80K/4 1500 1672 1242 (1.35 �) 0.20 1188 (1.41 �) 1.56 1135 (1.47 �) 0.22 1161 (1.44 �) 4.63
T2/80K/4 1000 4846 2105 (2.30 �) 0.75 1777 (2.73 �) 8.52 1949 (2.49 �) 1.06 1776 (2.73 �) 30.64
T2/80K/4 500 27405 5015 (5.46 �) 7.59 3671 (7.49 �) 178.50 4731 (5.79 �) 14.67 3925 (6.98 �) 693.64
T2/80K/4 250 106664 7527 (14.17 �) 64.17 3071 (34.73 �) 5525.80 7460 (14.30 �) 133.02 4251 (25.09 �) 14166.58

T3/80K/4 1500 1448 993 (1.46 �) 0.16 978 (1.48 �) 1.07 960 (1.51 �) 0.10 962 (1.51 �) 2.99
T3/80K/4 1000 2867 1142 (2.51 �) 0.48 1073 (2.67 �) 7.06 1031 (2.78 �) 0.50 1068 (2.68 �) 21.83
T3/80K/4 500 18842 2719 (6.93 �) 5.44 2583 (7.29 �) 156.53 1946 (9.68 �) 7.11 2957 (6.37 �) 523.87
T3/80K/4 250 73825 3477 (21.23 �) 39.68 1968 (37.51 �) 4917.56 2512 (29.39 �) 50.04 2888 (25.56 �) 11066.06

Table 2: Data compression. Notation: Ranged Single-Tile: ranged single-tile fill compression approaches; Ranged Multiple-Tile: ranged multiple-tile fill
compression approaches; Uncomp: fill solution without compression; GS-1 Greedy Speedup-1 approach; GS-2 Greedy Speedup-2 approach; T/W/r: Layout
/ window size / r-dissection; s: site size; Data: file size increase in kilobytes due to fill features (reduction factor relative to Uncomp); CPU: runtime (in CPU
seconds).

Fixed Fill-Compression Ranged Fill-Compression
Testcase ILP GS-1 GS-2 ILP GS-1 GS-2

T/W/r s #AREF CPU #AREF CPU #AREF CPU #AREF CPU #AREF CPU #AREF CPU
T1/80K/4 1500 1187 11918 1307 2.04 1548 0.22 1151 7931 1159 2.01 1323 0.21
T2/80K/4 1500 1210 6932 1269 0.99 1429 0.10 1167 1154 1193 0.95 1371 0.09
T3/80K/4 1500 464 4502 456 0.62 552 0.09 381 759 384 0.58 483 0.10

T4/12K/4 200 850 30922 891 1.63 1317 0.15 787 4215 796 1.58 1272 0.16
T5/12K/4 200 3787 23002 4043 4.61 6712 0.50 3694 18126 3927 4.49 6403 0.47
T6/12K/4 200 1249 13813 1320 1.60 1727 0.15 1230 11466 1304 1.58 1666 0.17

Table 3: Performance of the fill compression methods. Notation: Fixed Fill-Compression: fixed fill compression approaches (where the number of fill
features for each tile is fixed); Ranged Fill-Compression: ranged fill compression approaches (where the number of fill features for each tile is ranged); ILP:
ILP based approach; GS-1: Greedy Speedup-1 Approach; GS-2: Greedy Speedup-2 Approach. #AREF: number of AREFs in the fill solution; CPU: runtime
(in seconds).

testcase
T1/80K/4

testcase
T2/80K/4

testcase
T3/80K/4

Runtime (sec)

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−2

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−1

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−1

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−2

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−2

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−1

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−2

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−1

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−1

Ra
ng

ed
 M

ult
ipl

e−
Ti

le
GS

−2

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−1

Ra
ng

ed
 Si

ng
le−

Ti
le

GS
−2

Un
co

mp
res

se
d

Un
co

mp
res

se
d

Un
co

mp
res

se
d

data volume

Figure 6: Data compression results (for more details, see Table 2).

T2/80K/4
testcase
T1/80K/4

testcase
T6/80K/4

testcase

AREF’s

Fix
ed

 IL
P

Fix
ed

 G
S−

1
Fix

ed
 G

S−
2

Ra
ng

ed
 G

S−
1

Ra
ng

ed
 G

S−
2

Ra
ng

ed
 IL

P

Ra
ng

ed
 IL

P

Ra
ng

ed
 IL

P

Ra
ng

ed
 G

S−
1

Ra
ng

ed
 G

S−
1

Ra
ng

ed
 G

S−
2

Fix
ed

 G
S−

2

Fix
ed

 G
S−

2

Fix
ed

 IL
P

Fix
ed

 IL
P

Fix
ed

 G
S−

1

Fix
ed

 G
S−

1

Runtime (sec)

Ra
ng

ed
 G

S−
2

Figure 7: Performance results (for more details, see Table 3).

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

