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Abstract

Temporal specification languages provide an efficient
way to express events comprised of complex temporal sce-
narios. Assertions based on these languages are used to
detect violations of the specification and monitor cover-
age events. In this paper, we propose to extend temporal
specification languages, and assertions based on these lan-
guages with auxiliary variables. We attach these variables
to sub-expressions and assign them values when the sub-
expressions are evaluated. The use of auxiliary variables
enables the implementation of large cross-product coverage
models, using small number of assertions. This simplifies
the definition and implementation of coverage models and
helps reduce the simulation overhead caused by assertions,
thus increasing the efficiency of simulation resources.

1 Introduction

Functional verification is widely acknowledged as the
bottleneck of the hardware design cycle [4]. In current de-
signs, up to 70% of the design development time and re-
sources are spent on functional verification. In current in-
dustrial practice, simulation is the main vehicle for func-
tional verification. Two of the main issues verification
teams face are: how to check that the design behaves ac-
cording to its specification and how to make sure the testing
has been thorough.

Assertions (or checkers) are a traditional part of simula-
tion environments. They are used to monitor the behavior of
the design under test, and detect when its behavior deviates
from the design’s specification. Assertions assist in the de-
tection of errors by monitoring the internal behavior of the
design. They also help in the analysis of errors by reporting
them as soon as they occur.

In recent years, assertion-based verification techniques
that use temporal specification languages, such as Sugar [3]
and ForSpec [2], have become popular. These languages,
which are based on temporal logic [5], allow users to spec-
ify assertions for complex temporal scenarios. For exam-
ple, a command sent to the storage control unit is com-
pleted after three to five cycles, unless it is an illegal com-
mand that completes after one cycle. There are several tools
that implement assertions from properties specified in tem-
poral specification languages [1, 9]. These tools translate
properties into routines and data structures (usually state-
machines) that are integrated into the simulation environ-
ment, monitor the simulation on a cycle-by-cycle basis, and
report when a property is violated.

Coverage [7] is a recognized technique for checking and
showing that the testing has been thorough. The idea of
coverage is to create, in a systematic fashion, a large and
comprehensive list of tasks and check that each task was
covered during the testing phase. Assertions are commonly
used to detect coverage events [1]. In this case, the asser-
tions are responsible for detecting interesting legal events.
Whenever an assertion detects such an event, it records the
event in the coverage database.

In many cases, instead of coverage of a single event, we
are interested in coverage of a coverage model, which com-
prises a family of events, specified as parameters of a basic
event. In these cases, we are usually interested in coverage
of the cross-product of the parameters [6]. For example, we
may want to see that all possible commands have been sent
to the storage control unit and that for each command all
possible responses have been received.

One possible way to implement a cross-product cover-
age model with assertions is to build an assertion for each
possible coverage task. The problem with this approach is
that it requires many assertions. For example, if there are 50
possible commands, with 20 possible responses, then 1000
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assertions are needed. Therefore, this solution can signifi-
cantly slow down the simulation.

In this paper, we describe a technique that implements
cross-product functional coverage with a small number of
assertions. In this new technique, we specify the param-
eters of the cross-product coverage as auxiliary variables
that are attached to sub-expressions in the temporal expres-
sion. The auxiliary variables are assigned values when the
sub-expressions to which they are attached are evaluated as
true. When the full temporal expression becomes true, the
values of the auxiliary variables are reported as a covered
task. This technique allows us to use a single assertion or a
small number of assertions for a coverage model with many
coverage tasks, instead of using a single assertion for each
coverage task. For example, to implement the command
response model above, we attach an auxiliary variable that
stores the type of command to the sub-expression that de-
tects a new command and another auxiliary variable that
stores the response type to the sub-expression that detects
the corresponding response. When a command response
pair is detected during simulation, the values stored in the
auxiliary variables are reported as a covered task.

In addition to the auxiliary variables, we also introduce
a new coverage operator C. This new operator detects mul-
tiple occurrences of an event and reports them as separate
coverage tasks. Note, Sugar 2.0 proposes a coverage di-
rective. The C operator described here provides a possible
implementation of this directive.

We added the auxiliary variables and the new coverage
operator to a checking tool that is based on temporal logic
from the University of Tuebingen [8] and used it to measure
coverage for several coverage models of a storage subsys-
tem of a multiprocessor. We compared the simulation over-
head of a large set of simple assertions, one for each cov-
erage task, to the overhead of a small number of assertions
with auxiliary variables. The results show that the use of
auxiliary variables can reduce the checking overhead by an
average factor of 10, significantly increasing the efficiency
of the simulation.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a short background on assertions that
are based on temporal specification languages and cross-
product functional coverage. In Section 3, we show how
assertions can be used as coverage monitors. Section 4 in-
troduces the auxiliary variables and explains how they can
be used to enhance the capabilities of assertions for cross-
product coverage. In Section 5, we describe how we im-
plemented the auxiliary variables and present some experi-
mental results. Finally, Section 6 concludes the paper.

2 Background

2.1 Assertions Based on Temporal Properties

Temporal specification languages [3] allow users to spec-
ify properties that involve complex temporal scenarios.
Checking tools, such as [1] and [9], translate these prop-
erties into assertions, which are integrated into the simula-
tion environment; the assertions monitor the simulation on a
cycle-by-cycle basis and report when a property is violated.

This paper refers to basic Linear-time Temporal Logic
(LTL) [5], which is the basis for most temporal specification
languages, rather than a particular specification language.
This is done to simplify the description of the temporal logic
and highlight our new ideas, which are not unique to a spe-
cific language.

Temporal logic provides operators that define temporal
relations between operands. LTL has four basic temporal
operators:

X: the next operator X(expr) is true if expr is true in the
following cycle.

F: the eventually operator F(expr) is true if expr becomes
true sometime in the future.

G: the always operator G(expr) is true if expr is true in all
cycles (current and future).

U: the until operator U(expr1,expr2) is true if expr2 be-
comes true sometime in the future and expr1 is true
until that time.

There are finite interval versions of these operators that limit
the scope of the future [8]. These finite operators are short-
hand for many X operations, but they provide a convenient
way to specify time bounded events. For example, speci-
fying that a command must be followed by a response
within one to five cycles, can be very easily specified using
the formula Cmd→ F [1,5](Res).

Since LTL expressions refer to the infinite future, they
cannot always be evaluated during simulation that takes a
finite time. For example, the temporal expression G(expr),
which means that expr is always true, cannot become true
during simulation. Even if expr is true in every cycle during
the simulation, there is no guaranty that it will not become
false after the simulation ends. On the other hand, if expr
becomes false for a single cycle, G(expr) becomes false at
the same time. In a similar way, F(expr) can never become
false in finite simulation, since expr can become true after
the simulation ends, but F(expr) can become true if expr
becomes true during the simulation.

Therefore, assertions based on temporal specification
languages can be used to detect violations of safety prop-
erties that are expressed as G(expr) expressions. They can



also be used to detect interesting events that are expressed
as F(expr) expressions. On the other hand, they cannot be
used to detect violations of liveness properties.

2.2 Functional Coverage

Coverage is the main technique for checking and show-
ing that testing has been thorough [7]. Coverage, in gen-
eral, can be divided into two types: code-based and func-
tional [10]. Functional coverage focuses on the functional-
ity of the design. It is used to check that all important as-
pects of the design’s functionality have been tested. Func-
tional coverage models can be built using a list of single
events or from a family of events with some common de-
nominator. Often, models of the latter type are defined as
the cross-product of the values of a given set of attributes.

A cross-product functional coverage model can be con-
structed in the following manner [6]. We start by creating
a semantic description (story) of the model, to describe the
type of events we want to cover. The story contains a set
of attributes that become the attributes of the cross-product
coverage model. For each attribute, we define the set of
all possible values it can receive. Finally, we define a list
of restrictions that describe the legal combinations in the
cross-product of the attribute values.

The storage subsystem of a multiprocessor, described in
Figure 1, illustrates how cross-product coverage models are
used. We used a model of the same subsystem to measure
the performance of our checking tool (see Section 5.1). The
storage subsystem is built of a Storage Control Unit (SCU)
that is connected to four processors, CP0 – CP3, and a main
memory. Each CP can send commands to the SCU. The
SCU handles these commands, either locally or, using the
main memory. When the handling of a command is com-
pleted, the SCU sends a response to the requesting CP. Each
CP has four internal sources of commands; each of them
generates its own commands independently. To distinguish
between commands from different sources in the CP, the
command line from the CP to the SCU contains two bits that
identify the source of the command. The response from the
SCU to the CP also contains the same source bits. Note that
a CP can have several commands pending in the SCU, how-
ever, an internal source cannot send new commands before
it receives a response to the last command it sent.

An example of a coverage model for the storage subsys-
tem is the Command-Response model that looks at all the
command response combinations for each of the CPs in the
system and at each internal source in each CP. The attributes
of this model and the possible values for each attribute are
shown in Table 1. A CP can send one of four commands to
the storage control unit, Instruction fetch (IF), Data Fetch
(DF), Data Store (DS), and Read-Modify-Write (RMW). It
can also send an illegal command (ILL). In response, the
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Figure 1. Storage subsystem structure

Attribute Values
CP 0, 1, 2, 3
Source 0, 1, 2, 3
Command IF, DF, DS, RMW, ILL
Response ACK, NACK, ERROR

Table 1. Attributes of the Command-
Response model

storage control unit sends the requesting CP an ACK to in-
dicate that the command was executed, a NACK to indicate
that it was not executed, or an ERROR to indicate that an
error occurred. The number of tasks in this cross-product
coverage model is 4× 4× 5× 3 = 240 (number of CPs ×
number of sources in each CP × number of possible com-
mands × number of possible responses). However, not all
the tasks in the model are legal. For example, the response
for an illegal command must be ERROR, while the response
to a legal command cannot be ERROR. Considering this
and other restrictions, the number of legal tasks in the model
is 112.

3 Using Assertions for Coverage Measure-
ment

The goal of coverage monitors is to detect coverage tasks
that occur during the simulation. Therefore, to specify a
coverage task e as an assertion, we can use the expression
F(e). For example, if we want to cover the event that a
command was answered after 1 – 5 cycles with a NACK
response, the coverage event is

Cmd∧F [1,5](Res∧ResType= NACK).

We can use the assertion

F(Cmd∧F [1,5](Res∧ResType= NACK))

and mark the coverage task as covered if the expression be-
comes true during simulation.
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Figure 2. Ambiguous counting example

In many cases, coverage monitors need to count how
many times a coverage task occurred during simulation, not
just detect whether or not it occurred. In this case, using the
F operator for the coverage monitor is not sufficient. The
F operator detects the first occurrence of the event, reports
it to the user, and stops. To overcome this problem we in-
troduce a new coverage operator C for assertions. C(e) de-
tects all the occurrences of the event e during simulation and
counts how many times the event happened. Note, unlike
other temporal operators that evaluate to a Boolean value
(or a pending value if they cannot yet be evaluated), the C
operator evaluates to an integer value. Therefore, the C op-
erator can be used only as the top operator in the parse tree
of a temporal expression.

Implementing the C operator can be a complicated issue.
Counting the number of events that occur during simulation
requires a much more accurate definition of the event. For
example, consider the event that consists of a request sent
from Processor A to a common bus, where the bus is inter-
rupted by a request from another processor before it could
send a response to Processor A. During simulation we ob-
served the sequence in Figure 2. One possible interpretation
is that each interruption corresponds to a different coverage
event, and therefore the sequence represents three separate
events. Another possible interpretation is to associate the
request from processor A with all the interruptions. In this
case, the sequence represents a single event.

To simplify the implementation of the C operator, we as-
sume that in each cycle, at most one instance of an event can
start. If overlapping events are not possible, then the C op-
erator can be implemented by restarting the assertion (with
the F expression) after the assertion becomes true. This so-
lution will not work correctly if overlap between events is
possible. When overlapping events can occur, we start an
assertion for the coverage expression (without the C oper-
ator) every cycle. This solution seems to be very wasteful,
but in practically all cases, the expression would fail imme-
diately (in the example above, if Cmd is not set), therefore
the resource burden is small.

4 Auxiliary Variables

When cross-product functional coverage is used, the
number of coverage tasks that need to be covered can be-
come very large. For example, the Command-Response
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Figure 3. Example of a simple timing diagram

coverage model in Figure 1 contains 240 tasks (of which
only 112 are legal). Using a separate assertion for each cov-
erage task can significantly slow down the simulation. If we
examine the coverage model closely, we see that it consists
of two parts: (1) a basic event that specifies that a command
is sent and few cycles later a response is sent back; (2) pa-
rameters that are attached to the basic event, such as the type
of command and the type of response. Therefore, instead of
using many assertions, we can use a single assertion that
detects the basic event and collects the parameters while the
assertion operates. We specify the parameters of the cross-
product coverage as auxiliary variables that are attached to
sub-expressions in the temporal expression.

When a sub-expression is evaluated to true, all the auxil-
iary variables that are attached to the sub-expression are as-
signed values. When the full temporal expression becomes
true, the values of the auxiliary variables are reported as a
covered task. For example, if we consider a simple ver-
sion of the Command-Response model that looks at a sin-
gle CP and assumes that only a single internal source exists,
we can use a single assertion to detect all the command-
response pairs that occurred during simulation with the fol-
lowing coverage expression

C(Cmd{$CT ← CmdType}∧F(Res{$RT ← ResType})),

where $CT and $RT are auxiliary variables that are attached
to Cmd and Res, respectively.

Figure 3 presents a simulation example. In the third cy-
cle, the CP raised the Cmd signal and set CmdType to DF.
This caused the sub expression Cmd to become true and
the value in CmdType to be assigned to the auxiliary vari-
able $CT . Next, the checking tool waits for the second part
of the expression, F(Res{$RT ← ResType}), to become
true as well. In the seventh cycle, the SCU raises Res and
sets ResType to ACK to indicate that the command fin-
ished successfully. This causes the Res sub-expression to
become true and therefore the ACK is stored in $RT . This
also causes the F sub-expression to become true, and thus,
the full coverage expression is true. When the coverage ex-
pression becomes true, the checking tool reports the values
of $CT and $RT (DF and ACK) to a coverage collection tool
as a coverage task that was covered.

Another important role for auxiliary variables, besides
collecting coverage parameters, is to connect between sub-
expressions in the coverage expression. For example, in the
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Figure 4. Example of overlapping events

storage subsystem of Figure 1, a CP can send new com-
mands to the SCU before the last command is answered,
and responses may arrive out of order. The CP uses the
source bits to associate the command with its response. In
this case, we can modify our coverage expression to do the
same thing. That is, to look for the matching source bits
in the response using an auxiliary variable. The expression
will appear as follows:

C(Cmd{$CT ← CmdType,$S← CmdSrc}∧
F((Res∧$S = ResSrc){$RT ← ResType})).

(1)

Note, the second time $S appears, it is used as part of
the expression, not as an auxiliary variable that has to be
stored. Figure 4 shows a simulation example with over-
lapping events. The implementation of the C operator de-
scribed earlier, means that each cycle a new assertion for
the internal expression in (1) is started. The assertion that
starts in the first cycle detects that the CP raised the Cmd
signal and saves IF and 2 in the auxiliary variables $CT
and $S, respectively. The assertion that starts in the second
cycle stops immediately, since the Cmd signal is not set.
The assertion that starts in the third cycle detects that Cmd
is set and saves DF and 3 in its auxiliary variables. Dur-
ing the fifth cycle both active assertions detect that Res is
active. The first assertion ignores this response, since the
value in ResSrc does not match the value stored in its $S
auxiliary variable. The value in ResSrc does match $S of
the second assertion, and therefore, its coverage expression
becomes true and it reports (DF, ACK, 3) as a covered
task. In the seventh cycle, Res is set again and this time
ResSrc matches $S of the first assertion, which reports
that (IF, NACK, 2) is covered.

5 Implementation of Auxiliary Variables

We implemented the coverage operator and the auxiliary
variables as an extension to an LTL-based checking tool
from the University of Tuebingen [8]. This tool is based on
SystemC [11], a C++ class library for hardware description.
The tool is implemented as a SystemC module that evalu-
ates all pending assertions in every cycle during simulation
and reports to the user each time an assertion becomes true
or false. The algorithm used by the tool to evaluate tempo-
ral expressions is based on the recursive evaluation of the

expression’s sub-expressions. Since some sub-expressions
may not be immediately evaluated to true or false, each ex-
pression maintains a list of sub-expressions with pending
values that are evaluated in future cycles.

Since auxiliary variables are attached to sub-expressions,
it is simple to support them in the tool. When a sub-
expression becomes true, the tool assigns values to all the
attached auxiliary variables. These values propagate to the
parent sub-expression. When the parent becomes true, these
values continue to propagate up until they reach the root of
the expression parse tree. When the coverage operator is
used as the root of the tree, the values of the auxiliary vari-
ables are reported to the coverage tool when the coverage
expression becomes true. The coverage operator C is imple-
mented by starting an assertion for the internal expression in
each cycle and reporting the values of the auxiliary variables
attached to the assertion when it becomes true. Assertions
that are evaluated to false are ignored.

5.1 Experimental Results

We implemented three coverage models for the interface
between the CPs and the Storage Control Unit in the storage
subsystem described in Figure 1. We used these models to
check how the checking tool operates with auxiliary vari-
ables. We also wanted to compare the performance of cov-
erage monitors that use temporal expressions with auxiliary
variables to coverage monitors that use a separate assertion
for each coverage task. The three coverage models that we
implemented are as follows:

Commands - checks that all combinations of commands
from all four CPs were sent at the same cycle. Note,
this coverage model is not temporal. The number of
possible tasks in this model is 64 = 1296, since every
CP can send one of the five possible commands (IF,
DF, DS, RMW, ILL) to the SCU, or not send any com-
mand. Since 1296 assertions slowed down the simula-
tion considerably, we grouped the two fetch commands
together and the two commands that modify the main
memory together. This left us with 44 = 256 tasks.

Command-Response - as described in Section 2.2. The
model checks that all the possible command-response
pairs appear during simulation for all the CPs in the
system and for all sources in the CP. The total number
of tasks in the model is 4×4×5×3 = 240 tasks, out
of which only 112 are legal.

Out-of-Order - checks for all possible out-of-order execu-
tions of commands from the same CP. That is, a com-
mand that was sent from source si after a command that
was sent from source s j in the same CP is responded



Model # Tasks Sim Overhead [sec]
Name (Legal) Simple Auxiliary Ratio
Commands 256 206 4 51.5
Command- 240 225 9 25
Response (112) (50) (5.6)
Out-of- 576 711 21 33.9
Order (192) (125) (6)

Table 2. Performance comparison

before the earlier command. Figure 4 illustrates an ex-
ample of an out-of-order event. After the same group-
ing described in the Commands model, the total num-
ber of tasks in the model is 4× 42× 32 = 576, out of
which only 192 are legal.

We used two alternative implementations for each
model; one used a simple assertion for each coverage task
in the model and the other used a small number of asser-
tions with auxiliary variables. For all the models, the two
implementations detected the same coverage tasks. We also
compared the performance of the two alternative implemen-
tations in terms of the overhead in simulation time. For the
second and third model, the measurements for the separate
simple assertions were done twice — once when we used
an assertion for each task in the model and once when we
used assertions only for the legal tasks.

Table 2 shows the performance comparison information.
For each model, the table shows the number of tasks in the
model and the overhead in seconds per 10,000 cycles of
simulation for the simple separate assertions and for small
number of assertions that utilize the auxiliary variables. The
numbers in parenthesis indicate the cases when only asser-
tions for legal tasks are used. As the table shows, utiliz-
ing the auxiliary variables and reducing the number of as-
sertions can reduce the simulation overhead by a factor of
more than 5, and up to 50. In fact, using the auxiliary vari-
ables can make coverage model whose implementation is
impractical (e.g., the Commands model without the group-
ing), and turn it into a coverage model that can be measured
with a small overhead.

6 Conclusions

In this paper, we showed how assertions that are based
on temporal specification language expressions can be used
as monitors for the collection of functional coverage infor-
mation. We also showed how the addition of auxiliary vari-
ables can significantly reduce the number of assertions used
to collect coverage information for cross-product coverage
models. Experimental measurements of the performance of
the proposed assertions show that the use of auxiliary vari-

ables can lead to a large reduction in the simulation time
overhead introduced by the assertions.

We are currently investigating several methods to en-
hance the capabilities of our checking tool and improve
its performance. Specifically, we are working on an AR-
automata based implementation of our checking tool. We
are also trying to incorporate the auxiliary variables into
Sugar [3], the Accellera EDA Standards Organization selec-
tion for a standard property language. This includes exten-
sions to the language to provide improved ways to express
the exact semantics of temporal expressions and allow ac-
curate counting of events.
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